JPS5811362B2 - Production method of anhydrous dicalcium phosphate - Google Patents

Production method of anhydrous dicalcium phosphate

Info

Publication number
JPS5811362B2
JPS5811362B2 JP9467377A JP9467377A JPS5811362B2 JP S5811362 B2 JPS5811362 B2 JP S5811362B2 JP 9467377 A JP9467377 A JP 9467377A JP 9467377 A JP9467377 A JP 9467377A JP S5811362 B2 JPS5811362 B2 JP S5811362B2
Authority
JP
Japan
Prior art keywords
dicalcium phosphate
trihydrate
particle size
temperature
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9467377A
Other languages
Japanese (ja)
Other versions
JPS5428797A (en
Inventor
榎本隆光
水野保
川本博美
田中亨次
藤永雅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP9467377A priority Critical patent/JPS5811362B2/en
Priority to DE2834532A priority patent/DE2834532C3/en
Priority to GB7832579A priority patent/GB2002337B/en
Priority to FR7823391A priority patent/FR2399974A1/en
Priority to US05/931,902 priority patent/US4203955A/en
Publication of JPS5428797A publication Critical patent/JPS5428797A/en
Publication of JPS5811362B2 publication Critical patent/JPS5811362B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 本発明は螢光体原料として好適な無水リン酸二石灰の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing anhydrous dicalcium phosphate suitable as a raw material for a phosphor.

リン酸塩螢光体例えばハロリン酸カルシウム螢光体の粒
度、純度及び粒形は螢光体の輝度、螢光膜形成の作業性
等螢光体の本質的性能と密接な関係を有する。
The particle size, purity, and shape of a phosphate phosphor, such as a calcium halophosphate phosphor, have a close relationship with the essential performance of the phosphor, such as its brightness and workability in forming a phosphor film.

これらの螢光体は一般式Ca5(PO4)3(C1・F
):Sb、Mnにて表わされ、所要の比率を構成するよ
うにCaHPO4、CaCO3、CaF2、NH4Cl
、Sb2O3、MnCO3等の粉末原料を混合し110
0〜1200℃程度にて加熱焼成され製造される。
These phosphors have the general formula Ca5(PO4)3(C1・F
): Sb, Mn, and CaHPO4, CaCO3, CaF2, NH4Cl to constitute the required ratio.
, Sb2O3, MnCO3 and other powder raw materials are mixed at 110
It is manufactured by heating and firing at about 0 to 1200°C.

かゝる螢光材料の製造での主成分は無水リン酸二石灰で
あるため螢光材料の物性を決定するためには無水リン酸
二石灰の純度、粒径、粒形を螢光材料に好適なものにす
る必要がある。
The main component in the production of such fluorescent materials is anhydrous dicalcium phosphate, so in order to determine the physical properties of the fluorescent material, the purity, particle size, and particle shape of the anhydrous dicalcium phosphate must be determined in order to determine the physical properties of the fluorescent material. It needs to be suitable.

この無水リン酸二石灰の純度及び物性については螢光体
メーカーにより要求されるスペックは一様でなく、SO
4、Na、Fe、C1,Mg、Pb等の不純物は可及的
低い値を求められるのは共通するが粒形、粒度、Ca/
Pモル比等については各社まちである。
Regarding the purity and physical properties of this anhydrous dicalcium phosphate, the specs required by phosphor manufacturers vary;
4. It is common that impurities such as Na, Fe, C1, Mg, and Pb are required to be as low as possible, but grain shape, grain size, Ca/
Regarding the P molar ratio, etc., it is up to each company.

従来螢光体原料の無水リン酸二石灰をつくるには純粋な
従がって高価な精製リン酸に精製したカルシウム塩を反
応させて生成するリン酸二石灰三水塩を脱水することに
より製造されてきた。
Conventionally, anhydrous dicalcium phosphate, which is a raw material for phosphors, is produced by dehydrating dicalcium phosphate trihydrate, which is produced by reacting purified calcium salt with pure, therefore expensive, purified phosphoric acid. It has been.

即ち常温付近における反応で生成したリン酸二石灰三水
塩を母液と共にあるいは母液を分離除去したのち水を加
えてスラリー状とじ70−100℃に加熱するか母液を
分離除去した沈殿を100℃又はそれ以上の高温で乾燥
して製造されている。
That is, the dicalcium phosphate trihydrate produced in the reaction at around room temperature is either mixed with the mother liquor, or after the mother liquor is separated and removed, water is added to form a slurry and heated to 70-100°C, or the precipitate from which the mother liquor has been separated and removed is heated to 100°C or 100°C. It is manufactured by drying at higher temperatures.

あるいはリン酸二アンモニウムと塩化カルシウムとの反
応で生成したリン酸二石灰三水塩のスラリーを充分所定
時間保持して加熱脱水を行なって製造されているが、こ
れらの従来法で製造された無水リン酸二石灰は要求され
る純度、結晶形状、粒度分布を十分満足させるものでな
く経済的にも欠点の多いものであった。
Alternatively, it is produced by heating and dehydrating a slurry of dicalcium phosphate trihydrate produced by the reaction of diammonium phosphate and calcium chloride by holding it for a sufficient predetermined period of time. Dicalcium phosphate does not fully satisfy the required purity, crystal shape, and particle size distribution, and has many disadvantages economically.

本発明者等はこれらの公知方法の欠点を排除する製造法
として既に特願昭50−11424号(%開昭51−8
7198号)公報として、リン酸水素アンモニウム四水
塩と塩化カルシウムとを反応させ三水塩を得、得られた
三水塩を5−20重量%のスラリー濃度でpH4,5−
5,5に調整し、85−97℃で急速に加熱脱水するこ
とにより純度高く正方形の好適粒度をもつ無水リン酸二
石灰を製造する方法を提案したが、この方法でも不純物
としてのNa、Feの除去が完全とは云えず且つひし形
もしくは平行四辺形状でCa/Pモル比1.01以下を
要求する螢光体メーカーを満足させ得ない事から、これ
らの点について鋭意研究の結果、これら問題点を解決し
た、形状、Ca/Pモル比、平均粒径等自在に変えうる
無水リン酸二石灰の製造方法を開発するに到った。
The present inventors have already proposed a manufacturing method that eliminates the drawbacks of these known methods in Japanese Patent Application No. 50-11424 (%
No. 7198), ammonium hydrogen phosphate tetrahydrate and calcium chloride were reacted to obtain a trihydrate, and the resulting trihydrate was slurried at a slurry concentration of 5 to 20% by weight at a pH of 4.5-
5.5, and rapidly heated and dehydrated at 85-97°C to produce anhydrous dicalcium phosphate with high purity and suitable square particle size. However, this method also eliminates impurities such as Na and Fe. As a result of intensive research on these points, as a result of intensive research, we have determined that the removal of the phosphor is not complete and that it cannot satisfy the phosphor manufacturers who require a rhombus or parallelogram shape and a Ca/P molar ratio of 1.01 or less. We have developed a method for producing anhydrous dicalcium phosphate that solves this problem and allows the shape, Ca/P molar ratio, average particle size, etc. to be freely changed.

すなわち、本発明はリン酸塩螢光体原料に好適な純度、
平均粒径、Ca/Pモル比を有するひし形もしくは平行
四辺形状無水リン酸二石灰の製造方法を提供することを
目的とし、その目的はリン酸水素アンモニウムナトリウ
ム四水塩と塩化カルシウムとを反応させてリン酸二石灰
三水塩を生成させ、得られたリン酸二石灰三水塩を一般
には無機酸を添加してリン酸二石灰三水塩投入後のpH
が4.4以下となるように調整した80℃以上の熱水中
に一時に添加しスラリー状で攪拌しながら脱水すること
を特徴とする無水リン酸二石灰の製造法によって達成さ
れる。
That is, the present invention provides suitable purity for the phosphate phosphor raw material,
The purpose of the present invention is to provide a method for producing anhydrous dicalcium phosphate having an average particle size and a Ca/P molar ratio in the form of a rhombus or a parallelogram. dicalcium phosphate trihydrate is produced, and the resulting dicalcium phosphate trihydrate is generally adjusted to pH after adding the dicalcium phosphate trihydrate by adding an inorganic acid.
This is achieved by a method for producing anhydrous dicalcium phosphate, which is characterized in that it is added all at once to hot water of 80° C. or higher adjusted to have a temperature of 4.4 or less, and dehydrated while stirring in a slurry form.

以下上記方法を一具体例によりさらに詳細に説明する。The above method will be explained in more detail below using a specific example.

先ず純度を高めるためには次の操作を行うことが望まし
い。
First, in order to increase the purity, it is desirable to perform the following operation.

すなわち湿式リン酸から得られるリン酸水素アンモニウ
ムナトリウム四水塩を濾過、再結晶等により精製したの
ち約20重量%(以下、特に断わらない限り、%は重量
%を表す)の水溶液とし、リン酸水素アンモニウムナト
リウやム四水塩に対しCa/Pモル比0.03以上の可
溶性カルシウム塩溶液を添加しリン酸カルシウム沈殿を
形成させ結晶中への噛み込み又は吸着及び共沈により除
鉄を行なう。
That is, after purifying sodium ammonium hydrogen phosphate tetrahydrate obtained from wet phosphoric acid by filtration, recrystallization, etc., it is made into an approximately 20% by weight aqueous solution (hereinafter, unless otherwise specified, % represents weight%), and phosphoric acid A soluble calcium salt solution with a Ca/P molar ratio of 0.03 or more is added to sodium ammonium hydrogen or tetrahydrate to form a calcium phosphate precipitate, and iron is removed by encroachment into the crystals or adsorption and co-precipitation.

原料リン酸水素アンモニウムナトリウム四本塩中結晶ベ
ースでFeとして約1.5ppm溶存する鉄は処理後0
.2ppm以下にまで減少する。
The amount of iron dissolved in the raw material sodium ammonium hydrogen phosphate, which is about 1.5 ppm on a crystal basis as Fe, is 0 after treatment.
.. It decreases to 2 ppm or less.

同様にソーダ灰製造工程で副生する塩化カルシウムを4
0%水溶性リン酸塩を塩化カルシウムに対しP/Caモ
ル比で0.005以上の割合で添加しリン酸カルシウム
を生成させ塩化カルシウム中の鉄および硫酸根を吸着ま
たは噛み込みおよび共沈により除去することにより塩化
カルシウム中に結晶ベースで約30ppmあったFeが
処理後0.lppm以下に、約300ppm存在したS
04が30ppm以下にまで減少した。
Similarly, calcium chloride, a by-product in the soda ash manufacturing process, is
Add 0% water-soluble phosphate to calcium chloride at a P/Ca molar ratio of 0.005 or more to generate calcium phosphate and remove iron and sulfate roots in calcium chloride by adsorption or entrainment and coprecipitation. As a result, Fe, which was approximately 30 ppm on a crystal basis in calcium chloride, was reduced to 0.0 ppm after treatment. About 300 ppm of S existed below 1 ppm.
04 decreased to 30 ppm or less.

塩化カルシウム中の鉄の除去法としてソーダ灰を添加し
炭酸カルシウムを形成させ吸着除去することも考えられ
るが塩化カルシウムの損失が大きく好ましくない。
As a method for removing iron from calcium chloride, it is possible to add soda ash to form calcium carbonate and remove it by adsorption, but this is not preferable because the loss of calcium chloride is large.

このようにして処理した鉄および硫酸根を除去したリン
酸水素アンモニウムナトリウム四水塩溶液と塩化カルシ
ウム溶液をそれぞれP2O5約5%、CaCl2約10
%に調整して常温でCa/P=1.1(モル比)になる
ように次式のように反応さけてリン酸二石灰三水塩結晶
を析出させる。
Sodium ammonium hydrogen phosphate tetrahydrate solution and calcium chloride solution from which iron and sulfate radicals were removed and calcium chloride solution were each mixed with P2O5 of about 5% and CaCl2 of about 10%.
% and precipitate dicalcium phosphate trihydrate crystals by avoiding the reaction according to the following formula so that Ca/P=1.1 (molar ratio) at room temperature.

NaNH4HPO4+CaCl2+2H2O→CaHP
O4・2H20+NH4Cl+NaClこのリン酸二石
灰三水塩結晶から母液を分離除去してから、この結晶に
水を加えてスラリー濃度約10%にするとともにリン酸
、塩酸、硝酸等の無機酸を加えてリン酸二石灰三水塩投
入後のpHが4.4以下に調整する。
NaNH4HPO4+CaCl2+2H2O→CaHP
O4.2H20 + NH4Cl + NaCl After separating and removing the mother liquor from the dicalcium phosphate trihydrate crystals, water is added to the crystals to make a slurry concentration of approximately 10%, and inorganic acids such as phosphoric acid, hydrochloric acid, and nitric acid are added to phosphorus. Adjust the pH to 4.4 or less after adding acid dicalcium trihydrate.

こゝで行なうpH調整は無水リン酸二石灰の形状および
Ca/Pモル比を決定づける効果を有し、pH4,4を
超えると無水化はゲル化過程を経て脱水され結晶形は正
方形若しくは長方形となり、pH4,4以下においては
ゲル化過程を通らず脱水されてひし形もしくは平行四辺
形状となる傾向をもつ。
The pH adjustment carried out here has the effect of determining the shape and Ca/P molar ratio of anhydrous dicalcium phosphate; when the pH exceeds 4.4, the anhydrous state is dehydrated through a gelation process, and the crystal shape becomes square or rectangular. , at pH 4.4 or lower, it does not undergo the gelation process and tends to be dehydrated to form a rhombus or parallelogram shape.

更にpH3,4にすることで無水塩のCa/Pモル比は
1.01となりpHが低下するにしたがってCa/Pモ
ル比も低下するが、こゝでpH3,4以下ではひし形状
無水塩を生成させ、pH3,4〜4.4の間では平行四
辺形状となる。
Furthermore, by increasing the pH to 3.4, the Ca/P molar ratio of the anhydrous salt becomes 1.01, and as the pH decreases, the Ca/P molar ratio also decreases; however, below pH 3.4, the diamond-shaped anhydrous salt becomes It forms a parallelogram at pH 3.4 to 4.4.

このようにCa/Pモル比はpHを低下さすことで低下
し無水塩結晶形状を自由に調節できることになる。
In this way, the Ca/P molar ratio is lowered by lowering the pH, and the anhydrous salt crystal shape can be freely adjusted.

この関係を第1表にまとめて示す。This relationship is summarized in Table 1.

この表から判るようにスラリー液のpH4,4以下(酸
濃度11/を以上)で無水化を行えば脱水過程でゲル状
態を全く経由せず、螢光体原料として好適な、結晶形状
はひし形状もしくは平行四辺形状となり、Ca/Pのモ
ル比は1.025以下に調整できる。
As can be seen from this table, if the slurry is dehydrated at a pH of 4.4 or lower (acid concentration of 11/2 or higher), it will not go through a gel state at all during the dehydration process, and the crystal shape will be a diamond, which is suitable as a raw material for phosphor. The Ca/P molar ratio can be adjusted to 1.025 or less.

一方EDTA等を添加してCaキレートを溶出させリン
酸カルシウム中のCa/P比を下げる方法も考えられる
がCa、IP<1.01とするには大量のEDTAを要
し実際的でない。
On the other hand, it is possible to reduce the Ca/P ratio in calcium phosphate by adding EDTA or the like to elute the Ca chelate, but this is impractical as it requires a large amount of EDTA to make Ca, IP<1.01.

一方、リン酸二石灰三水塩の脱水方法には3種類の方法
が考えられ、(1)連続法、(2)昇温式回分法、(3
)一時投入式回分法が挙げられる。
On the other hand, there are three possible dehydration methods for dicalcium phosphate trihydrate: (1) continuous method, (2) temperature-rising batch method, and (3)
) A one-time batch method is mentioned.

(1)の方法はリン酸二石灰三水塩を製造し引きつづき
連続的に脱水装置に供給し脱水する方式であり、(2)
は一旦リン酸二石灰三水塩を製造しこれを分離しバッチ
の脱水槽で所定量の酸を加えた水に三水塩をスラリー化
し昇温させ脱水する方法で、(3)は予め酸を添加し、
脱水温度に保った熱水中にリン酸二石灰三水塩を一時に
添加しスラリー化して脱水する方法を意味する。
Method (1) is a method in which dicalcium phosphate trihydrate is produced and then continuously supplied to a dewatering device for dehydration; (2)
(3) is a method in which dicalcium phosphate trihydrate is first produced, separated, and the trihydrate is slurried in water to which a predetermined amount of acid has been added in a batch dehydration tank, and then heated and dehydrated. Add
This refers to a method in which dicalcium phosphate trihydrate is added all at once to hot water maintained at a dehydration temperature to form a slurry and then dehydrated.

粒径のコントロールは各方法により異るが本発明者等は
それぞれの方法について研究を行なった。
Although particle size control differs depending on each method, the present inventors conducted research on each method.

なお螢光体原料の粒径としては10μ以上が好ましく、
更にその中で状況に応じ適当な粒径範囲を採れることが
望ましい。
The particle size of the phosphor raw material is preferably 10μ or more,
Furthermore, it is desirable to be able to select an appropriate particle size range depending on the situation.

先ず(1)の方法では、三水塩スラリーでの攪拌時間及
び無水化温度が粒径の大小を左右し攪拌時間は短いほど
、無水化温度は低い程粒径犬の無水塩が得られる(第1
図、第2図)。
First, in method (1), the stirring time and anhydration temperature in the trihydrate slurry affect the size of the particle size, and the shorter the stirring time and the lower the anhydration temperature, the larger the particle size of the anhydrous salt obtained ( 1st
Fig. 2).

酸濃度は高い程、ひし形もしくは平行四辺形状に近づく
が無水化温度が80℃以下になると酸濃度に拘らず長方
形状となる。
The higher the acid concentration, the closer the shape becomes to a rhombus or parallelogram, but when the anhydration temperature becomes 80° C. or lower, the shape becomes a rectangle regardless of the acid concentration.

すなわち、ひし形状もしくは平行四辺形状のものを得る
には脱水時のpHを4,4以下(上記酸濃度検討の結果
、判明)、温度を85℃以上として無水化を行なえば良
いといえるが、粒径コントロール範囲が狭く高々11μ
のものが得られるに留まり、回分式の方が粒径コントロ
ールの容易さの点で優れている。
In other words, in order to obtain a diamond-shaped or parallelogram-shaped product, it is sufficient to perform anhydration at a pH of 4.4 or lower (as determined by the acid concentration study above) and a temperature of 85°C or higher during dehydration. Particle size control range is narrow, at most 11μ
However, the batch method is superior in terms of ease of particle size control.

なお第1図と第2図において、×印は三水塩スラリーの
リン酸分はP2O5として1.4?/、lの場合、Δ印
はP2O53,5?/、lの場合、○印はP2O57S
i’/Aの場合を夫夫示している。
In Figures 1 and 2, the x mark indicates that the phosphoric acid content of the trihydrate slurry is 1.4 as P2O5? /, in the case of l, the Δ mark is P2O53,5? /, In the case of l, ○ mark is P2O57S
The case of i'/A is shown here.

(2)の方法では、粒径は昇温時間(昇温速度)、無水
化温度、酸濃度により大きく変化しCa/Pモル比が一
定のものを作るには一定酸濃度とすることが必要で変化
させることができないため酸濃度はその数値により決ま
ってしまう。
In method (2), the particle size varies greatly depending on the heating time (heating rate), anhydration temperature, and acid concentration, and it is necessary to maintain a constant acid concentration to produce a constant Ca/P molar ratio. Since the acid concentration cannot be changed by the value, the acid concentration is determined by that value.

このため昇温時間と反応温度のみが粒径コントロールに
あずかるファクターとなり10μの無水リン酸二石灰を
得るには3〜4分の昇温を必要とするため昇温速度が太
きすぎ常温から90℃前後の反応温度までの急昇温をく
り返すという非経済性、非工業性のため実用的でない(
第3図参照)。
For this reason, only the heating time and reaction temperature are factors that take part in particle size control, and it takes 3 to 4 minutes to raise the temperature to obtain anhydrous dicalcium phosphate of 10μ, so the heating rate is too high and the temperature rises from room temperature to 90. It is not practical due to the uneconomical and non-industrial nature of repeatedly raising the temperature rapidly to the reaction temperature around ℃ (
(See Figure 3).

第3図において、○印は昇温時間2〜3分で温度82〜
83℃の場合、Δ印は昇温時間4〜5分で82〜83℃
の場合、×印は昇温時間6〜8分で82〜83℃の場合
、φ印は昇温時間3分で温度95℃の場合を示す。
In Figure 3, the circle mark indicates a temperature of 82 to 82 with a heating time of 2 to 3 minutes.
In the case of 83℃, the Δ mark is 82 to 83℃ with a heating time of 4 to 5 minutes.
In the case of , the x mark indicates a case where the temperature is 82 to 83°C with a heating time of 6 to 8 minutes, and the φ mark indicates a case where the temperature is 95°C with a heating time of 3 minutes.

(3)の方法による粒径のコントロールは、攪拌時間お
よび無水化温度によって行なうことができ、攪拌時間を
長くする程また無水化温度を高くする程得られる無水リ
ン酸二石灰の粒径は小さくなる。
Particle size can be controlled by method (3) by stirring time and anhydration temperature; the longer the stirring time or the higher the anhydration temperature, the smaller the particle size of the anhydrous dicalcium phosphate obtained. Become.

一方、前記のように結晶形状はpHによって変わり、ゲ
ル化過程を経るpH4,4以上では正方形もしくは長方
形となりゲル化過程を経ない4.4以下ではひし形状も
しくは平行四辺形状となる。
On the other hand, as mentioned above, the crystal shape changes depending on the pH; at a pH of 4.4 or above, which undergoes a gelation process, it becomes a square or rectangle, and at a pH below 4.4, which does not undergo a gelation process, it becomes a rhombus or parallelogram.

第4図は攪拌時間(分)と平均粒径(μ)の関係を示し
ているが、HNO30,9g/l、pH4,5(×印、
攪拌350rpm、95℃)のものはゲル化過程を経て
脱水され、HNO325g/l、pH2,8(○印攪拌
240rpm83℃;・印攪拌350rpm83℃)の
ものはゲル化過程を経ず脱水される。
Figure 4 shows the relationship between stirring time (minutes) and average particle size (μ).
Stirring at 350 rpm, 95°C) is dehydrated through the gelation process, and water with HNO325g/l, pH 2,8 (○, stirring at 240 rpm, 83°C; stirring at 350 rpm, 83°C) is dehydrated without going through the gelation process.

第5図は無水化温度(℃)と平均粒径(μ)の関係を示
し、無水化温度は高い程平均粒径は小さくなることが判
る。
FIG. 5 shows the relationship between anhydration temperature (° C.) and average particle size (μ), and it can be seen that the higher the anhydration temperature, the smaller the average particle size.

なお実験の行なわれた条件はHNO3濃度18.5g/
l、pH3,0,1,5分攪拌350rpmである。
The conditions under which the experiment was conducted were a HNO3 concentration of 18.5 g/
1, pH 3, 0, 1, 5 minutes stirring at 350 rpm.

これらより無水化温度と攪拌時間の調整により無水リン
酸二石灰の平均粒径10〜50μまで自由に調整可能で
あるということができる。
From these results, it can be said that the average particle size of anhydrous dicalcium phosphate can be freely adjusted from 10 to 50 μm by adjusting the anhydration temperature and stirring time.

以上、詳述したようにひし形状の無水リン酸二石灰の製
造を考えた場合一時投入式回分法は最初から無水化温度
が設定でき攪拌時間を変えるだけで希望する粒径のもの
が簡単に得られる事になり、無水化時の酸濃度を変える
ことで結晶形状を自由に変化させることができ、例えば
pH4,4以下でひし形状もしくは平行四辺形状にでき
るなど他の2法に比べきわめてすぐれた方法と云える。
As detailed above, when considering the production of diamond-shaped anhydrous dicalcium phosphate, the one-time batch method allows the anhydration temperature to be set from the beginning, making it easy to obtain the desired particle size by simply changing the stirring time. By changing the acid concentration during anhydration, the crystal shape can be freely changed. For example, it can be made into a rhombus or parallelogram shape at pH 4.4 or lower, which is extremely superior to the other two methods. It can be said that it is a method.

本発明の方法はこのようにリン酸水素アンモニウムナト
リウム四水塩と塩化カルシウムを反応させて得たリン酸
二石灰三水塩を無機酸を添加して三水塩投入後のpHが
44以下となるように調整した〔リン酸二石灰三水塩(
それ自体はpH5,4程度)の投入量に応じ設定された
pHとなるように酸を加えた熱水(pH約3以下)に投
入すればpH4,4以下の設定値に調整可(実施例参照
)〕80℃以上の熱水中に一時に投入しスラリー状(作
業性の点から50重量%以下が好ましい)で攪拌して攪
拌時間を変え脱水する事を特徴とし、好適な平均粒径と
螢光体原料に要求される結晶の厚みが均一で厚く強度的
に大きい堅牢な(10μ以上という平均粒径に由来)無
水リン酸二石灰を製造する方法であり、かつ形状を酸の
添加量の調節でCa/Pモル比と共に自在に選ぶ事がで
きる工業的に極めてすぐれた方法である。
In the method of the present invention, an inorganic acid is added to dicalcium phosphate trihydrate obtained by reacting sodium ammonium hydrogen phosphate tetrahydrate with calcium chloride so that the pH after adding the trihydrate is 44 or less. [Dicalcium phosphate trihydrate (
The pH itself can be adjusted to a set value of 4.4 or less by adding it to hot water (pH about 3 or less) to which an acid has been added so that the pH is set according to the input amount (about 5.4) (Example Reference)] It is characterized in that it is poured into hot water of 80°C or higher at once and stirred in a slurry form (preferably 50% by weight or less from the viewpoint of workability), and then dehydrated by varying the stirring time, and the suitable average particle size is This is a method for producing anhydrous dicalcium phosphate, which has uniform thickness, thick crystals, and is strong and strong (derived from an average particle size of 10μ or more), which is required for the phosphor raw material, and the shape can be changed by adding acid. This is an industrially excellent method in which the amount can be freely selected along with the Ca/P molar ratio.

次に実施例を挙げて不法を更に詳述する。Next, the illegality will be explained in further detail by giving examples.

実施例 湿式リン酸から製造したリン酸水素アンモニウムナトリ
ウム四水塩を再結晶法で精製後、20%溶液としてこれ
に塩化カルシウムを1gCaCl2/100gリン酸水
素アンモニウムナトリウム四水塩溶液の割合で添加し生
成リン酸二石灰三水塩を除去して鉄を除去する。
Example Sodium ammonium hydrogen phosphate tetrahydrate produced from wet phosphoric acid was purified by a recrystallization method, and then calcium chloride was added to it as a 20% solution at a ratio of 1 g CaCl2/100 g sodium ammonium hydrogen phosphate tetrahydrate solution. The produced dicalcium phosphate trihydrate is removed to remove iron.

リン酸水素アンモニウムナトリウム四本塩中に1.5p
pmあった鉄は精製後0.2ppmに減少した。
1.5p in sodium ammonium hydrogen phosphate tetrasalt
Iron, which was pm, was reduced to 0.2 ppm after refining.

同様にツーダニ業で生成する塩化カルシウムを40%溶
液とし、リン酸水素アンモニウムナトリウム四水塩を0
.5gNaNH4HPO4・4H2O/100gCaC
l2溶液の割合で添加し生成するリン酸二石灰三水塩を
除去して脱鉄する。
Similarly, calcium chloride produced in the Tsudani industry was made into a 40% solution, and sodium ammonium hydrogen phosphate tetrahydrate was added to 0% solution.
.. 5gNaNH4HPO4・4H2O/100gCaC
Iron is removed by removing dicalcium phosphate trihydrate which is added at a ratio of 12 solution.

塩化カルシウム中に0.65ppm在ったFeは0.l
ppmまで減少した。
Fe, which was present at 0.65 ppm in calcium chloride, was 0.65 ppm. l
It decreased to ppm.

このように精製したリン酸水素アンモニウムナトリウム
四水塩と塩化カルシウムの溶液を反応させてリン酸二石
灰三水塩を製造した。
Dicalcium phosphate trihydrate was produced by reacting the purified sodium ammonium hydrogen phosphate tetrahydrate with a calcium chloride solution.

即ち、1001のステンレス容器に塩化カルシウム溶液
を濃度CaCl250g/lで401仕込み調合モル比
Ca/P=1.10に達するまでリン酸水素アンモニウ
ムナトリウム四水塩をP2O51,5g/lの濃度で3
0℃にだもってシャワー状で投入しかきまぜながら反応
させ70分で反応を完了させた。
That is, a calcium chloride solution was placed in a 1001 stainless steel container at a concentration of 250 g/l of CaCl, and sodium ammonium hydrogen phosphate tetrahydrate was added at a concentration of 1.5 g/l of P2O until the molar ratio Ca/P=1.10 was reached.
The reaction was carried out at 0° C. while being poured in a shower and stirring, and the reaction was completed in 70 minutes.

生成したリン酸二石灰三水塩を涙過機で分離し、この三
水塩900gを31のステンレス製容器に25g/lの
HNO3を含む95℃の熱水pH2,8,1500グ中
に添加し、スラリー化して攪拌機で25秒〜4分間位の
間で攪拌時間を変えて脱水処理を行なった。
The generated dicalcium phosphate trihydrate was separated using a lacrimal filter, and 900 g of this trihydrate was added to 1,500 g of hot water at 95°C, pH 2.8, containing 25 g/l of HNO3 in a stainless steel container of 31. The slurry was then dehydrated using a stirrer for varying stirring times from 25 seconds to 4 minutes.

なおこのときのスラリー液の温度は83℃にpHは31
に変化した。
The temperature of the slurry liquid at this time was 83°C and the pH was 31.
It changed to

攪拌速度を変えてデータをプロットしたものを第4図に
示す。
FIG. 4 shows plots of data obtained by varying the stirring speed.

この方法では脱水時ゲル化過程を経ず無水化が行なわれ
結晶形状は第6図に示す様なひし形を呈しCa/Pモル
比は1.008であった。
In this method, anhydration was performed without going through a gelation process during dehydration, and the crystal shape was a diamond as shown in FIG. 6, and the Ca/P molar ratio was 1.008.

一方ゲル化工程を経る従来の方法としてHNO3濃度0
.9g/lとした熱水pH4,5中に同様の方法で三水
塩を添加投入し攪拌時間を変えて粒径への影響を調べ第
4図×印プロットで示す。
On the other hand, in the conventional method that involves a gelation process, HNO3 concentration is 0.
.. In the same manner, trihydrate was added to hot water having a pH of 4.5 at a concentration of 9 g/l, and the stirring time was varied to examine the effect on the particle size, which is shown in the x plots in Figure 4.

この場合の形状は第7図に示す様な正方形状ないしは平
行四辺形状でCa/Pモル比は1.019であった。
The shape in this case was a square or parallelogram as shown in FIG. 7, and the Ca/P molar ratio was 1.019.

比較例 実施例と同様にして製造したリン酸二石灰三水塩1.7
kgを温水151と硝酸をHNO325g/lとなるよ
う調整した液を張った301ポリ容器に投入し数分間攪
拌し昇温器にチャージして瞬間的に85℃に昇温し脱水
を行なった。
Comparative Example Dicalcium phosphate trihydrate produced in the same manner as in Example 1.7
kg was put into a 301 polyethylene container filled with 151 kg of warm water and a solution of nitric acid adjusted to 325 g/l of HNO, stirred for several minutes, and charged into a temperature riser to instantaneously raise the temperature to 85°C to perform dehydration.

得られた無水リン酸二石灰はCa/Pモル比は1.00
8で形状はひし形であり平均粒径は7μであり、ひし形
でCa/Pモル比1.025以下のものを得る条件で1
0μ以上の無水リン酸二石灰は製造困難であった(第8
図参照)。
The obtained anhydrous dicalcium phosphate has a Ca/P molar ratio of 1.00.
8, the shape is rhombic and the average particle size is 7μ, and under the conditions of obtaining a diamond-shaped Ca/P molar ratio of 1.025 or less,
It was difficult to produce anhydrous dicalcium phosphate with a diameter of 0 μ or more (No. 8
(see figure).

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面のうち、第1図と第2図はリン酸二石灰三水塩
の脱水を連続法で行なう場合のその平均粒径と攪拌時間
および無水化温度との関係を夫々示すグラフであり、第
3図はリン酸二石灰三水塩の脱水を昇温法で行なう場合
のその平均粒径とHNO3濃度との関係を示すグラフで
あり、第4図と第5図はリン酸二石灰三水塩の脱水を一
時投入式回分法で行なう場合のその平均粒径と攪拌時間
および無水化温度との関係を夫々示すグラフであり、第
6図は本発明の一実施例によって得られた無水リン酸二
石灰の結晶を示す顕微鏡写真(倍率650倍)、第7図
と第8図は同じく比較例で得られたものの顕微鏡写真で
ある。
Of the accompanying drawings, Figures 1 and 2 are graphs showing the relationship between the average particle size, stirring time, and anhydration temperature, respectively, when dicalcium phosphate trihydrate is dehydrated by a continuous method. Figure 3 is a graph showing the relationship between the average particle size and HNO3 concentration when dicalcium phosphate trihydrate is dehydrated by the heating method, and Figures 4 and 5 are FIG. 6 is a graph showing the relationship between the average particle diameter, stirring time, and dehydration temperature when dehydrating aqueous salt by a one-time batch method; FIG. A micrograph (magnification: 650 times) showing crystals of dicalcium phosphate, and FIGS. 7 and 8 are also micrographs of those obtained in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1リン酸水素アンモニウムナトリウム四水塩と塩化カル
シウムとを反応させてリン酸二石灰三水塩を生成させ、
得られたリン酸二石灰三水塩を投入後のpHが44以下
となるように調整した80℃以上の熱水中に一時に添加
しスラリー状で攪拌しながら脱水することを特徴とする
無水リン酸二石灰の製造法。
reacting sodium ammonium hydrogen monophosphate tetrahydrate with calcium chloride to produce dicalcium phosphate trihydrate;
An anhydrous method characterized by adding the obtained dicalcium phosphate trihydrate at once to hot water of 80°C or higher adjusted so that the pH after addition is 44 or less, and dehydrating it in the form of a slurry while stirring. Method for producing dicalcium phosphate.
JP9467377A 1977-08-09 1977-08-09 Production method of anhydrous dicalcium phosphate Expired JPS5811362B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9467377A JPS5811362B2 (en) 1977-08-09 1977-08-09 Production method of anhydrous dicalcium phosphate
DE2834532A DE2834532C3 (en) 1977-08-09 1978-08-07 Process for the production of secondary calcium phosphate
GB7832579A GB2002337B (en) 1977-08-09 1978-08-08 Process of preparing calcium hydrogen phosphate anhydride suitable as material for phosphors
FR7823391A FR2399974A1 (en) 1977-08-09 1978-08-08 PROCESS FOR PREPARING CRYSTALLINE ANHYDROUS CALCIUM HYDROGENOPHOSPHATE SUITABLE AS A CRUDE SUBSTANCE FOR FORMING LUMINESCENT SUBSTANCES BASED ON PHOSPHATE
US05/931,902 US4203955A (en) 1977-08-09 1978-08-08 Process of preparing calcium hydrogen phosphate anhydride suitable as material for phosphors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9467377A JPS5811362B2 (en) 1977-08-09 1977-08-09 Production method of anhydrous dicalcium phosphate

Publications (2)

Publication Number Publication Date
JPS5428797A JPS5428797A (en) 1979-03-03
JPS5811362B2 true JPS5811362B2 (en) 1983-03-02

Family

ID=14116742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9467377A Expired JPS5811362B2 (en) 1977-08-09 1977-08-09 Production method of anhydrous dicalcium phosphate

Country Status (1)

Country Link
JP (1) JPS5811362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025262U (en) * 1983-07-27 1985-02-20 スタンレー電気株式会社 Telephone music box
JPS60167457U (en) * 1984-04-11 1985-11-07 株式会社 エフ・オ−・サンライズ telephone melody device
JPS6135462U (en) * 1984-07-31 1986-03-04 株式会社 創成電子 Telephone melody board switch mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248008B2 (en) * 2006-12-04 2013-07-31 日本化学工業株式会社 Alkaline earth metal hydrogen phosphate, method for producing the same, and phosphor using the alkaline earth metal hydrogen phosphate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025262U (en) * 1983-07-27 1985-02-20 スタンレー電気株式会社 Telephone music box
JPS60167457U (en) * 1984-04-11 1985-11-07 株式会社 エフ・オ−・サンライズ telephone melody device
JPS6135462U (en) * 1984-07-31 1986-03-04 株式会社 創成電子 Telephone melody board switch mechanism

Also Published As

Publication number Publication date
JPS5428797A (en) 1979-03-03

Similar Documents

Publication Publication Date Title
CA1297656C (en) Process of preparing hydroxylapatite
EP0161704B1 (en) Process for the production of water soluble ammonium phosphates
JPH0214283B2 (en)
JPH0369844B2 (en)
US3379541A (en) Alkaline earth metal hydroxylapatites, processes for preparing the same and compositions containing the same
JPS5811362B2 (en) Production method of anhydrous dicalcium phosphate
US2296494A (en) Manufacture of anhydrous di-calcium phosphate
JPS6232125B2 (en)
AU574321B2 (en) Phosphoanhydrite process
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
US1998182A (en) Production of di-sodium phosphate
US4203955A (en) Process of preparing calcium hydrogen phosphate anhydride suitable as material for phosphors
US3384453A (en) Process for preparing highly crystalline alpha strontium acid phosphate
JPS61251511A (en) Production of lithium carbonate powder
JP7300461B2 (en) Method for producing lanthanum carbonate hydrate
JPS5811361B2 (en) Production method of pure anhydrous dicalcium phosphate
US3539291A (en) Preparation of starting materials for phosphate phosphors
JPS6246908A (en) Production of hydroxyapatite
JP2549531B2 (en) Method for producing hydroxyapatite or tricalcium phosphate made from rice bran
JPS5840948B2 (en) 4↓-amino↓-3,5,6↓-trichloro↓-2↓-picolinic acid crystallization method
US2415443A (en) Strontium peroxide and method of making the same
US1984146A (en) Production of disodium phosphate
US3544299A (en) Production of ammonium polyphosphate solutions and diammonium phosphate
US2653857A (en) Preparation of calcium fluoride
JPH0578109A (en) Production of hydroxyapatite