JPS5954946A - Method for detecting leakage from filter filled with silver zeolite - Google Patents

Method for detecting leakage from filter filled with silver zeolite

Info

Publication number
JPS5954946A
JPS5954946A JP57165281A JP16528182A JPS5954946A JP S5954946 A JPS5954946 A JP S5954946A JP 57165281 A JP57165281 A JP 57165281A JP 16528182 A JP16528182 A JP 16528182A JP S5954946 A JPS5954946 A JP S5954946A
Authority
JP
Japan
Prior art keywords
gas
silver zeolite
filter
zeolite
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57165281A
Other languages
Japanese (ja)
Other versions
JPH0310061B2 (en
Inventor
Kiyomi Funabashi
清美 船橋
Megumi Urata
浦田 恵
Jun Kikuchi
菊池 恂
Fumio Kawamura
河村 文雄
Yoshikazu Kondou
賀計 近藤
Shuichiro Sato
修一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57165281A priority Critical patent/JPS5954946A/en
Publication of JPS5954946A publication Critical patent/JPS5954946A/en
Publication of JPH0310061B2 publication Critical patent/JPH0310061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To detect the leakage from an iodine removing filter by using the gas of a material having physical adsorption property, by flowing the gas under the state small holes, which have adsorption activity for the condensating gas of silver zeolite, remain. CONSTITUTION:A treating gas is flowed in an iodine filter housing 1. The treating gas is heated by a heater 2. The ratio between steam pressure P and saturated steam pressure Ps in an atmosphere is made to be 0.2 or less. Under this state aeration is performed for a specified time period, e.g., for 0hr when the silver zeolite does not absorb the water and about 10hr when the silver zeolite absorbs the water to the extent of 0.11cm<2>/g. Thereafter Freon is introduced from a Freon generator 4 together with a carrier gas such as air. After the introduction is stabilized, part of the aeration gas is introduced to a Freon concentration measuring device 5 from the upstream side and downstream side of a silver zeolite filled filter 3, the Freon concentration is measured, and the leakage rate is computed.

Description

【発明の詳細な説明】 〔発明のオリ用分野〕 本発萌は、銀ゼオライトを充填したフィルタのリーク検
出方法に関するものである。□〔従来技術〕     
 □ 原子力発電所などの原子カプラントにおいては、環境保
全の立場から、放射性ガス、特に放射性ヨウ素の放出全
防止するために、除去烏率96%以上の高性能なヨウ素
除去フィルタが設置されている。  −□ とのヨウ素除去フィルタの性能全維持するためには5.
高性岬なヨウ素、吸着材を用いることは言、う 。
DETAILED DESCRIPTION OF THE INVENTION [Original Field of the Invention] The present invention relates to a leak detection method for a filter filled with silver zeolite. □ [Conventional technology]
□ In nuclear power plants and other nuclear power plants, high-performance iodine removal filters with a removal rate of 96% or more are installed in order to completely prevent the release of radioactive gases, especially radioactive iodine, from the standpoint of environmental protection. -□ In order to maintain the full performance of the iodine removal filter, 5.
The use of high-quality iodine adsorbents is a must.

までもないが、高性能なヨウ素吸着材を用いた場合で尾
J装置化の際に・こ吸着材の充填層に輌□1m匁〜 □
いし14層部が存在したシ5.フィ、ルタ枠やガスケッ
トなどにバイパスリニク路□が存在すると、フィルタ装
置全体の性iよ篠下する。−のため、ヨウ素除去フィル
タの設置時および設置後に定期的にリーク検査をする必
要がある。そして、午のヨウ素除去フィルタには吸着材
、とじて添着炭が用いられ、そのリーク検出には添着炭
に:物理成層するフレオンが用いられていた。    
′ 一方、近年、ヨウ素除去フィルタに従来の添着炭に替わ
る高性能、長寿声のヨウ素吸着材、として銀ゼオライト
ヲ用いる試十がイさ□れて龜る゛。しかし、銀ゼ些うイ
トヲ、空填、シ飽つ県除去フィルタのリーク検出にイレ
オイを用いる場合には、辿′ボの大気条件におシるフ、
レオ/の吸着力が小さいため、フィルタの出口濃度が高
くなり、フィルタのリーク検出は不可能であった。  
   ・〔発明の目的〕 ・本発明は、銀ゼオライト’x吸着材とするヨウ素除去
フィルタのリーク検出全物理吸着性物質のガニ ” ’
Kを’JIJ’lxで実施可能とすることを目的とする
もの・である。
Needless to say, when a high-performance iodine adsorbent is used, when converting to a tail J device, the packed bed of this adsorbent will have a load of ~1 m momme.
5. The 14th layer of the stone was present. If a bypass line □ exists in the filter frame or gasket, the performance of the entire filter device will deteriorate. - Therefore, it is necessary to conduct regular leak tests during and after installing the iodine removal filter. In addition, an adsorbent, or impregnated charcoal, was used for the iodine removal filter, and for leak detection, Freon, which is physically stratified, was used for the impregnated charcoal.
On the other hand, in recent years, attempts have been made to use silver zeolite as an iodine adsorbent with high performance and longevity in place of conventional impregnated carbon in iodine removal filters. However, when using it to detect leaks in filters that remove filters that are empty, empty, or empty, it is important to
Due to the small adsorption power of Rheo/, the concentration at the outlet of the filter was high, making it impossible to detect leaks from the filter.
・[Object of the invention] ・The present invention is a method for detecting leakage in an iodine removal filter using silver zeolite'x adsorbent.
The purpose is to make it possible to implement K with 'JIJ'lx.

□〔発明の概要〕 本発明は銀ゼオライトラ吸着材として充填してなるヨ・
つ累・除去フィルタのリークを検出する方法□にお込て
、前記銀ゼオライト上凝縮性ガスに対する成層活性を有
するyial孔が残存する状態で物理吸着性物質のガス
W=気させること全特徴とするも本発明ば、□銀ゼオラ
ーtl’トi着−とするヨウ素除去フプルタのリーク検
出にフレオン省用いる場曾に、フレオンの吸着力の低下
する原因が、銀ゼオライトに凝縮性ガスでやる水蒸気が
吸着すると7しすンの吹ン冒サイトがうずめられてしま
うことに基づいている点全明らかにし、その影響の排除
には、例えば、銀ゼオライト1g当り、□凝縮、性ガス
の吸着誉が凝縮液体として0.11cm3(水゛の場合
O9i′1g)以下、□又は′□様蛍□オライド吸着材
に通気するガス中の凝縮性ガスの蒸気圧Pに対する凝縮
性ガス、の飽和蒸、気圧Psの比P/Ps’i0.2以
下にして、その影響全排除してフレオン腎よるリーク検
出全可能ならしめたものでやる。
□ [Summary of the invention] The present invention provides silver zeolite packed as an adsorbent.
In the method □ for detecting leakage in a build-up/removal filter, all the characteristics are as follows: gas of the physisorptive substance W = vaporized in a state where yial pores having stratification activity against condensable gas remain on the silver zeolite. However, according to the present invention, when Freon is used to remove iodine using silver zeolite to detect leaks, the cause of the decrease in the adsorption power of Freon is water vapor applied to silver zeolite with a condensable gas. This is based on the fact that when silver zeolite is adsorbed, 7 sulfur-blown sites are buried, and in order to eliminate this effect, for example, it is necessary to The condensed liquid is 0.11 cm3 (O9i'1 g in the case of water) or less, □ or '□-like phosphor □ The saturated vapor pressure of the condensable gas, relative to the vapor pressure P of the condensable gas in the gas vented to the olide adsorbent, The Ps ratio P/Ps'i is set to 0.2 or less to completely eliminate its influence and to make it possible to completely detect leaks using Freon kidneys.

以下、検討結果につ諭て説明する。The study results will be explained below.

ヨウ素吸着材として用いら些る銀ゼオライトは、結晶性
のゼオライトNa20 :A、t20a :m5i02
 :nl(20(ここで、m、、nはゼすライトのタイ
でによって大まる値で、Nタイプの場合には、m冊2.
5±0.5、n = 6.2〜8である。)劣、ベース
とし、このベースのNa全Agと置き換炙たも?である
。ゼオライトはこのように、’NakAg々どの他の金
属と置窄することがアき、る9力に木き彦特徴の一つで
、種々の置換品が触媒などに広、く用吟られているが、
他の大きな特徴と、して、ゼオライト中に結晶水として
取vhまれだ水が乾燥なグで除去された後の孔が均一な
孔径4有してい、る点があげられる。この孔は、細孔て
、フンオンガスなど種々のガスの吸着サイトとカるが、
孔径が小さく(人オーダー)、均一であるため吸着ガス
の分子径によって吸着性が異なり、所謂、分子ふるい、
(モビキュラー・シーブ)として作用する。
Silver zeolite that is rarely used as an iodine adsorbent is crystalline zeolite Na20:A, t20a:m5i02
: nl (20 (where m, , n is a value that increases depending on the tie of Zesulite, and in the case of N type, m books 2.
5 ± 0.5, n = 6.2-8. ) Inferior, as a base, and replace this base with all Na and Ag? It is. Zeolite thus has the ability to be mixed with other metals such as NakAg, which is one of the unique characteristics of zeolite, and various substitutes have been widely used in catalysts and other applications. There are, but
Another major feature is that the pores have a uniform pore size of 4 after the water collected as crystal water in the zeolite is removed by drying. These pores serve as adsorption sites for various gases such as pores and fluorine gases.
Because the pore size is small (on the order of a person) and uniform, the adsorption properties vary depending on the molecular size of the adsorbed gas, so it is called a molecular sieve.
(Mobicular sieve).

銀ゼオライトによるヨウ累除去は、ヨウ素全化学的に固
定するAgをゼオライトのNaとの置換性を利用して、
ゼオライト上に確着して行なわれる。そして、リーク検
出に用いられるフレオンの吸着は、結晶水の除去された
後の孔の吸着性を利用して行なわれる。しかし、結晶水
が除去された後の孔は、種々の凝縮性ガス全吸着するた
め、凝縮性ガスが多量に存在する場合には孔がうずめら
れてしまい、フンオンガス着されなくなる。特に、凝縮
性のガ子が水蒸気である場合、:例えば、一般大気中に
水蒸気が多量に含まれている場合には、ゼオライト中に
も水蒸気が吸着されて結晶水として強固に吸着される。
Iodine removal using silver zeolite utilizes the ability of zeolite to replace Ag, which chemically fixes iodine, with Na in zeolite.
It is carried out by fixing it on zeolite. Freon adsorption used for leak detection is performed by utilizing the adsorption properties of the pores after the crystal water has been removed. However, since the pores after the crystal water has been removed completely adsorb various condensable gases, if a large amount of condensable gases are present, the pores are buried and no gases are deposited on the pores. In particular, when the condensable gas is water vapor: for example, when the general atmosphere contains a large amount of water vapor, water vapor is also adsorbed into the zeolite and is strongly adsorbed as crystal water.

従って、一般大気中でヨウ素除去フィルタのリーク検出
を行なうことはできない。
Therefore, leak detection of the iodine removal filter cannot be performed in the general atmosphere.

そこで、銀ゼオライトに対する凝縮性ガスの吸着性を、
水蒸気について実験的に求めた、第1図はその結果を示
すもので、横軸には雰囲気中の水蒸気圧(p)7飽η泊
水蒸気圧(九)が、縦軸に□■ ぽ−ゼオライトに対する水の平衡’m=l、i□−3水
/g吸着材)が示しで名り’、’A癲Mゼ□オ□ライ臂
の場合含水し、Bi′比1lfi2モた込に□−着炭の
場合1示し、Cが廃電所内雰囲′気□の範囲ヲ余してい
る。tゼオライトに対す迩水δ粟ml−着量:はP′/
P′s□が大きくなると共に増加する傾向に□あるが、
pZPs力IK O,2ま去は急層な増力i、□0.2
.fM上で1(2))や□例な増加になっている。との
P’/ p” s□が0.2以下の吸水は、ゼオライト
の持つ人オーダーの細孔、すなわち、吸着活性を有する
細孔□におけ名水あ吸着で漬るため、P’ / P’ 
s系0’、 2以上の場合は、i々のガスの吸着サイド
となる細孔が□水でうず込られて、他のガスが吸着され
なくなること全示しでおり、この結果、フレオンなどの
他めガスヲ吸着させるためには、凝縮性ガスのP / 
P”’s 系”O’、 2以下すなわち、:第1図めD
の範囲内になるように、:換言すれば、水の吸着量がO
’、 11 cm” / g” (0,’l 1水/g
吸着材)以下と力るよ;”<、mlすiば食いことにな
る。            ′   ゛   □〔発
明の実施例〕     □ 以下、□実施捗りについて説明するす □第21癲−実施例を実施す□る装置のフローを示すも
めで、1はヨウ素フィルタノミウ□ジンク、′2はヒー
ター、3ば銀ゼオライト□充填フィルタ、4はフレオン
発生器、5はフレオンi雇測定器で、ヨウ素フ猪ルタハ
ウジング1中の処理勇スめ入口側にヒーター2が、処理
ガスの出i側に銀ゼ穿うイト充填□フィルタ3が設置さ
れ、ま泥ヨ□つ素フィルタハウジ□ング1中の上床側□
にはフレオン発生器4からの配管が接続されJさらに、
銀ゼオライト□充填フィルタ3の上流側お上び下流狽i
]’からフレ第1ンa□度測定□器5につながる絵管が
接続されている。
Therefore, the adsorption of condensable gas to silver zeolite is
Figure 1 shows the experimental results for water vapor, where the horizontal axis shows the water vapor pressure (p) in the atmosphere, and the vertical axis shows the water vapor pressure (p) in the atmosphere. Equilibrium of water for 'm = l, i -3 water/g adsorbent) is a well-known example, 'A epilepsy Mze □ Oh □ If the arm is hydrated, Bi' ratio 1 lfi 2 mota □ - In the case of carbonization, 1 is shown, and C is in the range of the atmosphere inside the waste power station. The amount of water δ millet applied to t zeolite is P'/
There is a tendency to increase as P′s□ increases, but
pZPs force IK O, 2 is a sudden increase in force i, □0.2
.. On fM, there is an increase of 1 (2)) or □. Water absorption with P'/p'' s□ of 0.2 or less is due to absorption of famous water in the human-order pores of zeolite, that is, pores with adsorption activity, and P'/P. '
When the s system is 0', 2 or more, the pores on the adsorption side of each gas are filled with □water, and other gases are no longer adsorbed.As a result, freon and other gases are In order to adsorb other gases, the condensable gas P/
P"'s system "O', less than or equal to 2, that is: 1st figure D
In other words, the amount of water adsorbed is within the range of O
', 11 cm"/g"(0,'l 1 water/g
゛ □ [Embodiments of the invention] □ Below, □ Implementation progress will be explained □ 21st - Implementation of the embodiments □This is a diagram showing the flow of the equipment. 1 is the iodine filter □zinc, 2 is the heater, 3 is the silver zeolite □filter, 4 is the Freon generator, 5 is the Freon meter, and the iodine filter housing. A heater 2 is installed on the inlet side of the processing gas in the chamber 1, a filter 3 filled with silver zet is installed on the output side of the process gas, and a filter 3 is installed on the upper floor side of the filter housing 1.
The piping from the Freon generator 4 is connected to J. Furthermore,
Silver zeolite □Upstream and downstream of filled filter 3
]' A picture tube is connected to the first frame a□ degree measuring device 5.

この装置め1)−り検出を行うには、処理ガス全ヨウ素
ライル夛ハウジング1内に流シ、ヒーター2′によって
処理ガス察後述□する(2)式□に則っぞ加蔗してP/
”’P’s全0.2以〒とする。どのままの状態で、所
定の時間、例えば、銀ゼオラオトカ÷吸水しそいない□
場合□は0、銀ゼ芽ライトがo、11g/g吸着材1で
吸水している場合には約10時簡程度通気した後、フレ
オン発生器4から空気などのキャリアガスとともにフレ
オンを導入する。導入が安定するのを待って、銀ゼオラ
イト充填フィルタ側から通気ガスの一部をフレオ ン濃度測定器5に導Lフレオンの濃度誉測定し、下式よ
よつア、−2率ヶ算ヵ、!−6゜  1□    。
1) To perform the detection using this device, the process gas is flowed into the Lyle housing 1 containing all iodine, and the process gas is detected using the heater 2'.
``'P's total should be 0.2 or more.In any condition, for a specified period of time, for example, silver zeolaotka ÷ water absorption is about to occur□
In case □ is 0, silver zegerite is o, 11 g/g If water is absorbed by adsorbent 1, after aeration for about 10 hours, Freon is introduced from Freon generator 4 together with carrier gas such as air. . After waiting for the introduction to stabilize, a part of the ventilation gas is introduced from the silver zeolite-filled filter side to the Freon concentration measuring device 5, and the concentration of L Freon is measured using the following formula. ! -6° 1□.

・□・、・・・、f・・・ω フレオン濃度測定器5としてはECD(電子捕i検出器
)付ガスクロマトグラフが好適である。1・次に、処理
ガスの加熱条件を、水蒸気圧と温度との関係を用いて説
明する。第3図は水−気圧と:温度との関係を示すもの
で、横軸、縦軸渥は、それぞれ、温度(C)、水蒸気圧
(m”rn、、Hg )が示してあり、P/ P s 
= 1 、 ”’0.7 、l 0.5め場合が示しで
ある。例えば、処理りスが、3’、、OcでP’/Ps
あった場合には、処理ガスが30 C% P / P 
s 二0.5の場合の水蒸気圧は’16 m m)i 
gであるから、(9) これ’fe P / :l)s二〇、2以下とするよう
なP8は8’Q m m )(g以上となる。そして□
、Pg”180m’mHg以上にするためには、47′
c以上、すな□わち、温度上昇ΔTが17′:C以上に
揺るようにカロ熱すればよいことになる。また、処理ガ
スが3゜C、P /”’P s = 0.7の条件(発
電所内一般芽囲気最犬値)の場合は、同様に算出すると
必要な温度上昇ΔTは23C以上となり、その他の場合
も同様な手順で算出できる。
・□・, ..., f...ω As the freon concentration measuring device 5, a gas chromatograph with an ECD (electron capture detector) is suitable. 1. Next, the heating conditions for the processing gas will be explained using the relationship between water vapor pressure and temperature. Figure 3 shows the relationship between water pressure and temperature. Ps
= 1, ``'0.7, l 0.5th case is shown.For example, when the process is 3',,Oc, P'/Ps
If there was, the processing gas was 30 C% P/P
The water vapor pressure in the case of s 20.5 is '16 m m)i
Since (9) this'fe P / :l)s20, P8 which makes it less than 2 is 8'Q m m )(g or more.And □
, Pg"47' to make it 180m'mHg or more.
In other words, it is sufficient to heat the temperature so that the temperature rise ΔT is 17':C or more. In addition, if the processing gas is 3°C and the conditions are P/''Ps = 0.7 (maximum value of general ambient air in the power plant), the required temperature rise ΔT will be 23C or more when calculated in the same way, and other It can be calculated using the same procedure in the case of .

この必要な温度上昇ΔTffi得るだめの最小のヒータ
ー容量は、下式で算出できる。
The minimum heater capacity to obtain this required temperature increase ΔTffi can be calculated using the following formula.

W(kJ/s、kW] :2.5X10−’、Δ’[’−F    ・・川・・
・・(2)ここで、Wはヒーター容量、0.92 Ck
 J/m8c:]は空気の比熱、Fは処理ガスの゛流量
である。
W (kJ/s, kW): 2.5X10-', Δ'['-F... River...
...(2) Here, W is the heater capacity, 0.92 Ck
J/m8c:] is the specific heat of air, and F is the flow rate of the processing gas.

(2)式を用いると、通気ガスの条件が300゜P /
 P s = 0.5 (D場合にはW=4.25X1
0−3F’ 。
Using equation (2), the ventilation gas condition is 300°P/
P s = 0.5 (W = 4.25X1 in case of D
0-3F'.

30C,P/Ps =0.7(D場合にはW−(10) 5.75X10−3Fとなる。     、   。30C, P/Ps = 0.7 (W-(10) in case of D It becomes 5.75X10-3F.            .

従って、この方法ヲ、用いて5.処理ガスを加熱:すれ
ば、P / P s −= o、 2.昼下とすること
力、1にできる。ので、従来この条件を満尽せず、実姉
てきなかつ牟銀ゼオライ、トを充填したフィルタのフレ
オンによるリーク検出が可能と、なる。
Therefore, using this method, 5. Heating the processing gas: then P/Ps −= o, 2. If it's afternoon, you can do it at 1. Therefore, it is now possible to detect leaks using freon from filters filled with Kinakatsu Mugin Zeolite, which has not been able to satisfy this condition in the past.

前述の実施例にお緊ては、処理ガスの温度年上げてP/
Ps’i低下おせたが、前段に除湿器を設置しても同様
の効果上、、、得ることができや。々お、銀ゼオライト
の湿1良低減用のガスの流路を別途に設けてフィルタの
リーク検出の必要な時にはこの流路からの通気咳、よっ
て銀ゼオラ、イトの湿度低減を行なってもよい。また、
銀ゼオライトは一度乾燥したもやは、0.1 t、g、
/g吸着材まで吸、水するのには、少なくとも3:時間
以上かかるので、あらかじめ乾燥処理をしておけば、通
気ガスの性状に関係なく、吸水するまでの間にツーオン
によるリーク検出を行うことができる。この転学処理と
は、P / P、s = 0.2以下のガスを流すこと
、あるいはオーブン等による乾燥を言う。なお、通常市
販、の。
In the above example, it is possible to raise the temperature of the processing gas to
Although the Ps'i was reduced, the same effect could be obtained by installing a dehumidifier in the front stage. Alternatively, a gas flow path for reducing the humidity of the silver zeolite may be provided separately, and when it is necessary to detect leakage from the filter, ventilation may be carried out from this flow path, thereby reducing the humidity of the silver zeolite. . Also,
The haze of silver zeolite once dried is 0.1 t, g,
/g It takes at least 3 hours for the adsorbent to absorb water, so if you dry it in advance, you can detect leaks with two-on until water is absorbed, regardless of the properties of the ventilation gas. be able to. This school transfer process refers to flowing a gas of P/P, s = 0.2 or less, or drying using an oven or the like. In addition, it is usually commercially available.

(11) 銀ゼオライトは約40(1m;で乾燥されているので、
そのまま使用すれば、仰等の操作な:しに最初のリーク
検出は行うことができ、る。
(11) Since silver zeolite is dried at about 40 m (1 m),
If used as is, the first leak detection can be performed without any manual operation.

ま冬、前述の実、流側では凝縮性ガスとして、水Ω場合
について述べたが、、他の油などの有機物ガスの場合に
も同様、の効果が得られ、またリーク検出に用いるガス
とし:て)、レオンの場合について述べたが、CCt4
 、CHC4aな、、ど他の物理吸着性物質のガスの場
合にも同様の効果が得られる。
As a matter of fact, above, we talked about the case of water as a condensable gas on the flow side, but the same effect can be obtained with other organic gases such as oil, and it can also be used as a gas for leak detection. :te), I mentioned Leon's case, but CCt4
, CHC4a, etc. Similar effects can be obtained with other physically adsorbable gases.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本、発明は、銀ゼオライトヲ吸着、材とす
るヨウ素除去フィ/L/夕のリーク検出、全物理吸着性
物質のガスを用いて実施可能とするもので、産業上の効
果の大なるものである。   。
As described above, the present invention enables the adsorption of silver zeolite, the detection of leaks in iodine removal materials, and the use of gases of all physically adsorbable substances, and has industrial effects. It is a big thing. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、銀ゼオライトおよび添着炭の吸水量と水のP
 / P sとの関係を示す線図、第2図は、本発明の
竺ゼオライトス充填したフィルタのり、り検出方法の一
実施例を実施する装置のフロ7図、第3図は、水蒸気圧
と温度との関係を示す線図で(12) ある。 ■・・・ヨウ素フィルタハウジング、2・・・ヒーター
、3・・・銀ゼオライト充填フゴルタ、4・・・フレオ
ン発生器、訃・・フレオン濃臀測定器。 、代理人 弁理士 ち崎博、男 、      (ほか1.名) (13) 第 I  図 0   0204   0、li    (1810、
仰和水薫気圧(I’s、)
Figure 1 shows the water absorption of silver zeolite and impregnated carbon and the P of water.
/ P s, FIG. 2 is a flow diagram of an apparatus for carrying out an embodiment of the zeolite-filled filter glue detection method of the present invention, and FIG. 3 is a diagram showing the relationship between water vapor pressure and water vapor pressure. This is a diagram (12) showing the relationship between and temperature. ■...Iodine filter housing, 2...Heater, 3...Fugorta filled with silver zeolite, 4...Freon generator, and...Freon concentration measuring device. , agent Patent attorney Hiroshi Chisaki, male (1 other person) (13) Part I Figure 0 0204 0, li (1810,
Surprising water pressure (I's,)

Claims (1)

【特許請求の範囲】 1、銀ゼオライト全吸着材として充填しでなるヨウ素除
去フィルタのリークを検出する方法において、前記銀ゼ
オライトの凝縮性ガスに対する吸層活性全有する細孔が
残存する状態で物理吸着性物質のガスを通気きせること
金荷徴とする銀ゼオライトを充填したフィルタのリーク
検出方法。□  ■2、前記凝縮性ガスが水蒸気で、該
水蒸気め凝縮した水の吸着量が該銀ゼオライト1g当り
0.11g以下に保たれた状態で、ガス全通気させる特
許請求の範囲第1′項記載の銀ゼオ〉イトヲ充積したフ
ィルタのリーク検出方法。   ′ 3、前記水の吸着量が前記銀ゼオライト1g当90.1
1g以下に保たれた状態が、相対湿度が20′%以下の
ガスを通気して得られる特許請求の範囲第2項記載の泌
ゼオライトを充填□したフィルタのリーク検出方法。 4、前記相対湿度が20%以下のガスが、前記銀ゼオレ
イト充填レイルタの前段に設けられた式%式% ここで、Wはヒータ容量(kW) Fは銀ゼオライト充填フィルタに通気 jるガスの流量(m3/h) で算出される容量以上のヒータによる加熱で得られる特
許請求の範囲第3項記載の銀ゼオライトラ充填したフィ
ルタのリーク検出方法。
[Claims] 1. In a method for detecting leakage in an iodine removal filter filled with silver zeolite as an adsorbent, physical A method for detecting leaks in filters filled with silver zeolite, in which the gas of an adsorbent substance is aerated. □ 2. The condensable gas is water vapor, and the gas is fully vented while the adsorption amount of water condensed by the water vapor is maintained at 0.11 g or less per 1 g of the silver zeolite.Claim 1' A leak detection method for a filter filled with silver zeo. ' 3. The adsorption amount of the water is 90.1 per 1 g of the silver zeolite.
A leak detection method for a filter filled with secreted zeolite according to claim 2, wherein the state maintained at 1 g or less is obtained by aerating gas with a relative humidity of 20'% or less. 4. The gas with a relative humidity of 20% or less is provided at the front stage of the silver zeolite-filled filter. Here, W is the heater capacity (kW), and F is the amount of gas vented to the silver-zeolite-filled filter. The leak detection method for a filter filled with silver zeolite according to claim 3, which is obtained by heating with a heater having a capacity higher than that calculated by the flow rate (m3/h).
JP57165281A 1982-09-21 1982-09-21 Method for detecting leakage from filter filled with silver zeolite Granted JPS5954946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165281A JPS5954946A (en) 1982-09-21 1982-09-21 Method for detecting leakage from filter filled with silver zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165281A JPS5954946A (en) 1982-09-21 1982-09-21 Method for detecting leakage from filter filled with silver zeolite

Publications (2)

Publication Number Publication Date
JPS5954946A true JPS5954946A (en) 1984-03-29
JPH0310061B2 JPH0310061B2 (en) 1991-02-12

Family

ID=15809345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165281A Granted JPS5954946A (en) 1982-09-21 1982-09-21 Method for detecting leakage from filter filled with silver zeolite

Country Status (1)

Country Link
JP (1) JPS5954946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155456A (en) * 2005-12-02 2007-06-21 Takemasa Kamimoto Dpf evaluation apparatus
JP2012103119A (en) * 2010-11-10 2012-05-31 Japan Environment Research Co Ltd Removal effect measurement system
JP2012103120A (en) * 2010-11-10 2012-05-31 Japan Environment Research Co Ltd Removal effect measurement system
JP2012127739A (en) * 2010-12-14 2012-07-05 Japan Environment Research Co Ltd Removal efficiency measurement system
WO2016143764A1 (en) * 2015-03-12 2016-09-15 ラサ工業株式会社 Filler for filter vent and filter vent device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155456A (en) * 2005-12-02 2007-06-21 Takemasa Kamimoto Dpf evaluation apparatus
JP2012103119A (en) * 2010-11-10 2012-05-31 Japan Environment Research Co Ltd Removal effect measurement system
JP2012103120A (en) * 2010-11-10 2012-05-31 Japan Environment Research Co Ltd Removal effect measurement system
JP2012127739A (en) * 2010-12-14 2012-07-05 Japan Environment Research Co Ltd Removal efficiency measurement system
WO2016143764A1 (en) * 2015-03-12 2016-09-15 ラサ工業株式会社 Filler for filter vent and filter vent device
KR20170113641A (en) * 2015-03-12 2017-10-12 라사 인더스트리즈, 리미티드 Filler for filter vents, and filter vent device
JPWO2016143764A1 (en) * 2015-03-12 2017-12-28 ラサ工業株式会社 Filter vent filler and filter vent device
US10434494B2 (en) 2015-03-12 2019-10-08 Rasa Industries, Ltd. Filtration material for filtered venting, and filtered venting device

Also Published As

Publication number Publication date
JPH0310061B2 (en) 1991-02-12

Similar Documents

Publication Publication Date Title
TWI697357B (en) Chemical filter
US3890121A (en) Noble gas absorption process
Chen et al. Gaseous formaldehyde removal: A laminated plate fabricated with activated carbon, polyimide, and copper foil with adjustable surface temperature and capable of in situ thermal regeneration
JPS5954946A (en) Method for detecting leakage from filter filled with silver zeolite
Obruchikov et al. Removal of radioactive methyliodide from the gas stream with a composite sorbent based on polyurethane foam
Li et al. Unburned carbon from fly ash for mercury adsorption: II. Adsorption isotherms and mechanisms
TWI278341B (en) Regeneration process for electric current-conducting adsorbents loaded with organic substances
Nishikawa et al. Sorption behavior of tritium to isotropic graphite
US3507051A (en) Regeneration process
Tanaka et al. Removal of tritiated water vapor by adsorption on molecular sieves-effects of co-existing H2O
CN104815614A (en) Preparation method of supported ferric activated carbons as well as condition and device applying supported ferric activated carbons to absorb methylbenzene
Ampelogova et al. Carbon-fiber adsorbent materials for removing radioactive iodine from gases
CA1165303A (en) Impregnated charcoal for removing radioactive molecules from gases
Fedorov Investigation and improvement of cryogenic adsorption purification of argon from oxygen
Bhomick et al. Biomass-derived activated carbon for removal of 222Rn from air
Malara et al. Evaluation and mitigation of tritium memory in detritiation dryers
Naritomi et al. Method for improving the collecting performance of iodine samplers under high relative humidity
CN104759254A (en) Preparation method of chromium-loaded active carbon as well as condition and device of methylbenzene adsorption using chromium-loaded active carbon
CN110624501A (en) Adsorbent for strengthening radon removal and adsorption purification device
JPS57174120A (en) Purifying method of waste gas
Maeck et al. Application of Metal Zeolites to Radioiodine Air Cleaning Problems
Pi et al. Adsorption behavior of Gadolinium (III) from aqueous solution by D418 resin.
Furuichi et al. Tritium desorption behavior from soil exposed to tritiated water
RU2346347C1 (en) Silica gel-based sorbing agent for radioiodine recovery
Underhill et al. Factors affecting the adsorption of xenon on activated carbon