JPS5954205A - Iron oxide magnetic thin-film - Google Patents
Iron oxide magnetic thin-filmInfo
- Publication number
- JPS5954205A JPS5954205A JP16413482A JP16413482A JPS5954205A JP S5954205 A JPS5954205 A JP S5954205A JP 16413482 A JP16413482 A JP 16413482A JP 16413482 A JP16413482 A JP 16413482A JP S5954205 A JPS5954205 A JP S5954205A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- iron oxide
- oxide magnetic
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高密度磁気記録用媒体、特に磁包テイスクの媒
体として好適な酸化鉄磁性薄膜に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an iron oxide magnetic thin film suitable as a high-density magnetic recording medium, particularly as a magnetic envelope-task medium.
順化鉄磁性1q膜は磁褒ディスクの素材として用いられ
ており、従来次のように製造されている。The conditioned iron magnetic 1q film is used as a material for magnetic disks, and is conventionally manufactured as follows.
1ず基板上にa−Fe203を主成分とする薄膜を反応
スパックリング法等の公知の方法により厚さ1μm以下
に形成する。次いで、このα−Fe203を主成分とす
る薄j夙f:H2等の還元雰囲気中で約300℃ に加
熱し、Pe3o4を主成分とする薄膜に還元する。引@
続き、乙のFe3O4を主成分とする薄膜を大気中の酸
化雰囲父で約300℃に加熱し、γ−Fe20. を
主成分とする薄力泉を得る。このγ−Fe2O3薄膜を
磁気ディスク用として用いる場合、上記基板としては表
面のアルマイト処理されたAt合金基板が現在最も多く
使用されている。アルマイト処理するのは表面を硬化し
て耐ヘッドクラツシユ性を高めるためである。このアル
マイト被覆At合金基板は力l熱式れると、アルマイト
層とAt合金素地との熱膨張差に基つく歪を生ずる。こ
の歪により誘発妊れるディスク表面の租れは320℃以
上になると急激に謂太し、最悪の場合にはアルマイト被
覆にクラックが発生する。クランク等のディスク底面の
欠陥は記録信号の欠落や信号対/44f: 叶比の劣化
をもたらす。従って、均一で高品質の該酸化鉄磁性薄膜
を得るためには、その全製造工程を少なくとも300℃
以下に保つ必要がある。First, a thin film containing a-Fe203 as a main component is formed on a substrate to a thickness of 1 μm or less by a known method such as a reactive sputtering method. Next, a thin film containing α-Fe203 as a main component is heated to about 300° C. in a reducing atmosphere such as H2 to reduce it to a thin film containing Pe3o4 as a main component. Pull @
Next, the thin film containing Fe3O4 as the main component was heated to about 300°C in an oxidizing atmosphere in the air to form γ-Fe20. Obtain a weak spring whose main ingredient is . When this γ-Fe2O3 thin film is used for a magnetic disk, an At alloy substrate whose surface is alumite-treated is currently most commonly used as the substrate. The purpose of alumite treatment is to harden the surface and improve head crush resistance. When this alumite-coated At alloy substrate is subjected to thermal processing, distortion occurs due to the difference in thermal expansion between the alumite layer and the At alloy base. The cracking on the disk surface induced by this strain increases rapidly at temperatures above 320° C., and in the worst case, cracks occur in the alumite coating. Defects on the bottom of the disk, such as the crank, result in missing recording signals and deterioration of the signal pair/44f ratio. Therefore, in order to obtain a uniform and high quality iron oxide magnetic thin film, the entire manufacturing process must be carried out at a temperature of at least 300°C.
Must be kept below.
媒体製造工程中、ヌパッタ工程ではマグネトロンスパツ
タカ式を用いたジ、あるいは150X/lT11nの高
速j夙形成を採用すれば基板温度を300℃以下に保つ
ことができる。また重化工程でもFe3O4薄膜を大気
中300℃、2時間」以上7111熱すること(′こよ
りγ−Fe2O3薄膜へ転化させることが可能である1
、しかし、これらのり)合と外なり還元工程においてケ
ユ従来加熱渦農が上記基板の耐熱限界近くになる0例え
ばCOを添加したα−Fe203薄膜を還元する場合の
加熱処理温度は310℃付近である。Coを磁性薄j摸
に冷加するのは保磁力を増大させるためであり、その冷
力11量は通常6原子%以下である。同様に磁性薄膜の
角形比の向上を図るためにTiを通常5原子%以下添加
する不具合を生ずるので、従来は5原子%以下のCuを
添加して還元可能な温度を引き下げる技術が開発されて
いるo (J、 AppL phys+ vol、 5
3+&L1982、ppz5s6〜2560./Iケ公
昭55−14522特公昭55−14523.Q¥公昭
56−33850゜特公昭56−17818.%公昭5
6−23296等) o L 7:P シCu添力11
による還元温度の低下は225℃が限界であジ逆にCo
、 Tr 、 Cu等の添加元素の研加量を増大すると
1−Fe 20.薄膜の飽和磁化が低下1−1再生出力
が15(′Fするという新たな問題が生じる。例えば、
Co、’l’iおよびCuを数原子%づつ複合添加した
γ−Fe2O3膜においては飽和a化が33000au
ssに低下する。従ってCuの添加量はできる限り少な
くしなければならず、還元処理γ11.へ度を十分に引
き下げることはできなかった。During the media manufacturing process, the substrate temperature can be maintained at 300° C. or lower by employing a magnetron sputtering method or a high speed 150X/lT11n formation in the nupatting process. In addition, in the heating process, it is possible to convert the Fe3O4 thin film into a γ-Fe2O3 thin film by heating the Fe3O4 thin film in the atmosphere at 300°C for more than 2 hours.
However, in the reduction process, the heat treatment temperature is close to the heat resistance limit of the above-mentioned substrate. be. The purpose of cooling Co into a magnetic thin film is to increase the coercive force, and the amount of the cooling force 11 is usually 6 atomic % or less. Similarly, in order to improve the squareness ratio of a magnetic thin film, Ti is usually added at 5 atomic % or less, which causes problems, so conventionally a technology has been developed to lower the reducible temperature by adding 5 atomic % or less of Cu. There is o (J, AppL phys+ vol, 5
3+&L1982, ppz5s6-2560. /Ikeko Sho 55-14522 Special public Sho 55-14523. Q¥KoSho 56-33850゜Special Kosho 56-17818. % Kosho 5
6-23296 etc.) o L 7:P Si Cu addition 11
The limit for the reduction temperature reduction due to Co is 225°C;
1-Fe20. A new problem arises in that the saturation magnetization of the thin film decreases and the 1-1 reproduction output increases to 15 ('F).For example,
In the γ-Fe2O3 film to which Co, 'l'i, and Cu are added in combination in several atomic %, the saturation a is 33,000 au.
decreases to ss. Therefore, the amount of Cu added must be as small as possible, and the reduction treatment γ11. I wasn't able to lower my degree sufficiently.
このように従前の酸化鉄磁性IN、膜の製造方法におい
ては300℃nU彼の高温で還元を進めなければならな
いため、磁2テイスク用として用いられるアルマイト被
覆At合金基板にクラックが発生し、記録信号の欠落や
信号対雑音比が低下するh!−λがあった〇
一方、α−Fe203 を主成分とする?tV膜を還
元してFejOaTh主成分とする博B%とする場合、
還元反応は膜表藺から進行するため、該薄膜が厚いと膜
下層部分が還元せず、この未還元部分が最終的に得らh
るr Fe2O3全主成分とする薄膜中に残留する。As described above, in the conventional manufacturing method for iron oxide magnetic IN and film, reduction must proceed at a high temperature of 300°C, which causes cracks to occur in the alumite-coated At alloy substrate used for magnetic recording. Signal dropout and signal-to-noise ratio drop h! -λ was present.On the other hand, α-Fe203 is the main component? When reducing the tV membrane to form B% containing FejOaTh as the main component,
Since the reduction reaction proceeds from the membrane surface, if the thin film is thick, the lower layer of the membrane will not be reduced, and this unreduced portion will be the final product.
It remains in the thin film whose main component is Fe2O3.
このため、酸化鉄磁性薄膜は厚さが増大するにi’t=
ない飽オll磁化が減少するという欠点があり、従前で
は飽和イ市化が大きく、膜厚の大きな酸化鉄磁性薄膜は
イ4iられなかった。Therefore, as the thickness of the iron oxide magnetic thin film increases, i't=
This has the disadvantage that the magnetization decreases when saturation occurs, and in the past, saturation was large and a thick iron oxide magnetic thin film could not be produced.
本発明は還元反応を促進する元素を酸化′A41B性薄
膜に炉別することにより、j17元反応の進行する温#
、範四ケ引き下げ、篩品りjの1V化鉄イ1θ性薄膜を
提供することを目的とするものであって、その結成はα
−Fe203を主成分とする薄膜を還元雰囲気中で加熱
してFe s 04を主)j〜分とする薄膜に還元する
工程を経てイitられる酸化鉄磁性薄ちの少なくとも一
種を添加元素として含有することを%徴とする0
以下、本発明の詳細な説明する。In the present invention, by separating the element that promotes the reduction reaction into an oxidized A41B thin film, the temperature at which the J17 element reaction proceeds can be reduced.
The purpose is to provide a 1V iron 1θ thin film with a sieving quality of 1V, and its formation is α
- Contains at least one kind of iron oxide magnetic thin film as an additive element, which is obtained by heating a thin film mainly composed of Fe203 in a reducing atmosphere to reduce it to a thin film mainly composed of Fe204. The present invention will be described in detail below.
本発明では還元反応を促進する元素としてPd。In the present invention, Pd is used as an element that promotes the reduction reaction.
Au 、 P t 、 Ilu 、 Ag 、 Rh
あるいはIrを薄膜中に添加しており、これらの元素
が還元反応を促進する理由としては、これらの元素がい
ずれもVlll族あるいはIb 族に属しFeよりも%
%陰性度が大きく酸素との親木ロカが小さいためと考え
られる。Au, Pt, Ilu, Ag, Rh
Alternatively, Ir is added to the thin film, and the reason why these elements promote the reduction reaction is that these elements belong to the Vllll group or the Ib group and have a lower concentration than Fe.
This is thought to be because the % negativity is large and the parent tree loca with oxygen is small.
即ち、l?cよジも電7□陰性度の大さなCuの添加ぽ
、J −Fe、20.7>らFe3O4への瓜元温度を
低温側へ拡大し、■ゝeよりも1を更陰性度のl」・さ
なTiの泳方1」はしを元y+、i度を島7fl:A
it川へ拡大する効果のあることが確認賂れている。ま
た、Feと同じ電気11−3性度であるC0の癌7Jl
+は返元反応に7・1して影へ・?がない。That is, l? c Yojimo electron 7 □ Addition of Cu with large negativity, J -Fe, 20.7 > Expand the temperature to lower the temperature of Fe3O4, and change the negativity by 1 from e. ``Sana Ti's swimming style 1'' The edge is the original y+, the i degree is the island 7fl:A
It has been confirmed that it has the effect of expanding the river. In addition, C0 cancer 7Jl, which has the same electrical power as Fe, has an electric power of 11-3.
+ is 7.1 to the return reaction and to the shadow? There is no.
従って以上の結果から本発明で取り上げたVln族。Therefore, based on the above results, the Vln group was selected in the present invention.
II)族の元素は表−1に示されるようにFeよりも大
きな屯包陰性度を有するから逓元描展を低温側へ拡大す
ることができると考えられるのである・本発明の還元膜
Iiを低温側へ拡大する/A来が従nIJのCuの冷加
に比べ大きいのも、本発明で取り上げた曹1族、Ib涙
の元素の電2陰性厘がCt+よりも犬さいからと考えら
れる。As shown in Table 1, group II) elements have larger tunic negativity than Fe, so it is thought that the diffusion effect can be extended to the low temperature side.Reduced film Ii of the present invention Expanding to the low-temperature side/The reason why A is larger than that of conventional nIJ Cu cooling is thought to be because the electron 2 negativity of the Ca 1 group and Ib elements taken up in this invention is smaller than that of Ct+. It will be done.
次に実施例を示す。Next, examples will be shown.
実施例1
α−Fe203を主成分とする薄膜全第1図に示す装置
により形成しiこ。即ち図示するよりにスパッタ室1内
にはターゲット3として直径200喘 の98原子96
−2原子%Co合金板表−1
Rh ’ 2.2が設けられる
と共に影ターゲット3上には泳方11元素板4として幅
5 mm + 長さ5mm、J!lさ5閣のAuの板が
4.d数11.′;]載I5芒れている。この添加元素
板4の1+a述夕をJ冑ンがこすることでゆ刀IJ量の
41MhIriが白J北である。スパッタ番)、17J
1には基板2として外径210ynのアルマイト被覆合
金基板が上記ターゲット3に対向して設けられており、
膜形成を均−Cてするために回転するようにス辷ってい
る0このようなスパッタ室1を真窒抽:2系6により纜
圧し、ガス導入系7から50%02−50%Ar・儀合
ガスを室内に導入し圧力3X3−3′rorr のス
パッタ雰四2を形成した○更に高周波マグネトロンスパ
ッタリング法により高周波電ンj1デ5から基板2.タ
ーゲット3出1へ−t)、 3 kwのスパッタ1低圧
をかけて、基板2上へ庁さα14 II m、のα−F
e203を主成分とする薄11<=7を形成し夜5、才
だ、比較するために添7Jl1元素(i・J、4として
Ct+の仮を使用した場合、およびターゲット上へは添
加元素板4を置かな力1つだ%i合等についてもa−F
c20. ’ic主成分とするイセ膜を形成した。上記
の方法によって形fik サt’t、 fC34!i(
項〕a Fe2O3i’JJ膜t1膜上1\
の水をバブリングした[(2気流中で100℃から35
0 ℃の温度範囲で3時間加熱し、Fe、(J4を主成
分とする膜が形成でれる温度範囲(以後適正還元温度範
囲と呼ぶ)を1jli・jべた。この結果を第21≧こ
1に示す。この揚台のF”c、04脱の同定には、膜の
電気抵抗を端子間隔が5開の2醐子法で測足した。抵抗
が103から10Ωの範囲(第2図中りの範囲)のムを
元膜はFe3O4を主成分として2す、Dよりも高抵抗
の還元膜はa−Fe2U4 とFe、04の7昆合4j
J、Dよジも低抵抗の還元膜はFe、04とFeの混合
物であることが、電子脚回七r1(「u化?l!l+定
、メヌバウアー効果で114尾等からも確認された。第
2し1甲、Cは2 )、=子%のCOを′ざむFe合金
ターゲットのみを使用した場合、b t;]:硝加元索
板としてCu板を用い、金属元素の比率で1原子%のC
uを添加した場合、aは添加元素板としてAuを用い金
属元素の比率で06原子%のAIJを泳方nした場合に
ついて、還元r晶1jJ−と゛亀気団4抗の関係を示し
ている。無融加の場合Cに2ける適正還元γ品度イ・ρ
(i;Mはアルマイト措枡AA合金基板の11Of熱限
昇温度1:′J近の300℃刀1ら325℃である。Example 1 A thin film containing α-Fe203 as a main component was formed using the apparatus shown in FIG. That is, as shown in the figure, there are 98 atoms 96 with a diameter of 200 mm as the target 3 in the sputtering chamber 1.
-2 atomic % Co alloy plate Table-1 Rh' 2.2 is provided and on the shadow target 3 there is a swim direction 11 element plate 4 with a width of 5 mm + length of 5 mm, J! The Au board of the 5th cabinet is 4. d number 11. ';] It has 5 awns. By rubbing the 1+a description of this additive element plate 4 with J-kun, 41MhIri of the amount of IJ is white J-Kita. sputter number), 17J
1 is provided with an alumite-coated alloy substrate having an outer diameter of 210 yn as a substrate 2 facing the target 3,
In order to uniformly form a film, the sputtering chamber 1, which is rotated and slid, is pressurized with real nitrogen extraction system 6, and 50% 02-50% Ar is supplied from gas introduction system 7. - A sputtering gas was introduced into the chamber to form a sputtering atmosphere 42 with a pressure of 3X3-3'rorr. ○Furthermore, a high frequency magnetron sputtering method was used to sputter the substrate 2. Apply a low pressure of 3 kW sputtering 1 to the target 3 and apply a low pressure of 3 kW to the substrate 2.
Form a thin layer 11<=7 with e203 as the main component. There is only one force without putting 4. Also for %i combination etc. a-F
c20. A rocky film containing 'ic as the main component was formed. By the above method the form fik sat't, fC34! i(
Term] a Fe2O3i'JJ film t1 1\ of water was bubbled on the film [(2 from 100℃ to 35℃ in air flow)
It was heated in a temperature range of 0 °C for 3 hours, and the temperature range (hereinafter referred to as the appropriate reduction temperature range) in which a film containing Fe, (J4) could be formed was determined as 1jli·j. To identify the F"c and 04 resistance of this lifting platform, the electrical resistance of the membrane was measured using the two-pin method with a terminal spacing of 5. The resistance ranged from 103 to 10Ω (in Figure 2). The original film is mainly composed of Fe3O4, and the reduced film with higher resistance than D is a-Fe2U4 and Fe, 04 7 combination 4j.
J, D also confirmed that the low-resistance reduced film is Fe, a mixture of 04 and Fe. .Second Section 1A, C is 2), = When using only a Fe alloy target that dissipates % of CO, b t; 1 atomic % C
When u is added, a shows the relationship between the reduced r crystal 1jJ- and the turtle air mass 4 when Au is used as the additive element plate and AIJ with a metal element ratio of 06 atomic % is used. In the case of no fusion, the appropriate reduction γ quality in C2 is ρ
(i; M is 325°C from 300°C near 1:'J, which is the thermal limit temperature of the alumite AA alloy substrate.
−)7XCuを1原子%蔭訓し1c揚合すに2ける適正
;R7c温ハ(範囲は260℃から320℃までと低温
π(11へ拡大(−2また、不発ヴ」のAuを(16原
子%添加した場合aにおける適正還元温度範囲は175
℃から250℃までと更に低崗1111へ推移した。こ
の浜り朱から明らかηように本発明で1史用するh偶力
IJ元章のAu¥icuよシイ)少ない泳方n量でもa
、−Fe203薄膜71)らF e 304 illl
気膜還元を促進する効果が大きい。引き絖き、適正還元
処理によυ作製式れた3セ11頬のFe3O4を主成分
とするftl腹を大ヌ中で300’Cに3時1ト(1加
熱してγ−Fe20.を主成分と−する博力晃へhp化
させた。上記酸化は電子線回」J[2よびメスバウアー
効果の也1j定により確認した。得られたγ−F”e、
、Ox #mの飽牙[1磁化については、入・(IQ力
11〕揚合Cが3300 Gauss、1原子%のCu
を重加した礪合すが3300 Gauss 、およびα
6BX子タロのAuを’lai )Juした場合aが3
700Gau s sであつン辷00の4占果7J為ら
、本発明のγ−Fe203月奨は良文畦のAuが角Σ刃
口てれたため、従来のCu添カロ、無冷却のγ−Fe、
、Oj族に比’ji2 L 177Iい飽和磁化を有す
ることが判る。この理由は次のように考えられる。微粒
子のj’ F”e203の飽第11磁化は約5200
0aussであるのに苅し、反応スパッタリングと熱処
理によって作製した従来ノア−Fc203薄rhhの1
’6p Inイ1仔化Q、1約3 (1’00〜330
0 Gaussである。このようにγFe2す3君シ、
膜が低飽牙11(磁化である原因は、膜が多孔質である
ことや、還元が川、sjシ方向に不均一であり、膜のF
沿に非磁性体てめるa −Fe 203が原子%添加し
た場合しや;(jii、削加の場合Cに比べ商い飽和磁
化を有するのはa、 −1’e 20s膜からFe30
4I)気への還元が[足並され、適正還元温度範囲が低
温側へ拡大された結果、膜の厚さ方向にも均一なI・”
8304朕が形成され、残留a −F’e 203 1
1−1が減少するからと11ト定される。-) Appropriate for 1 atomic % of 7 When adding 16 atomic%, the appropriate reduction temperature range for a is 175
℃ to 250℃, and further changed to low temperature 1111. It is clear from this beach vermilion that the present invention uses a couple IJ Motoaki's Au\icu) even with a small swimming style and amount.
, -Fe203 thin film 71) et al. Fe 304 illll
It is highly effective in promoting gas membrane reduction. The FTL abdomen, which is mainly composed of Fe3O4, of 3 cells and 11 cheeks, which were prepared by pulverizing and appropriate reduction treatment, was heated in a large pot at 300'C for 3 hours and 1 hour to form γ-Fe20. The oxidation was confirmed by the electron beam cycle and the Mössbauer effect.The obtained γ-F"e,
, for Ox #m saturation [1 magnetization, the input/(IQ force 11] C is 3300 Gauss, 1 atomic% Cu
3300 Gauss, and α
If 6BX child Taro's Au is 'lai)Ju, a is 3
700 Gauss s and 00 mm, 4 fortunes 7J et al. The γ-Fe 20 March recommendation of the present invention has a good textured Au with a corner Σ edge, so the conventional Cu-added γ-Fe and uncooled γ-Fe ,
, it can be seen that it has a saturation magnetization that is higher than that of the Oj group. The reason for this is thought to be as follows. The 11th saturation magnetization of fine particles j'F”e203 is approximately 5200
Conventional Noah-Fc203 thin rhh 1 fabricated by reactive sputtering and heat treatment despite having 0auss
'6p Ini 1 offspring Q, 1 about 3 (1'00~330
0 Gauss. In this way, γFe2,
The reason why the film has low magnetization is that the film is porous, the reduction is uneven in the direction, and the F of the film is low.
In the case where atomic % of a -Fe 203 is added to the non-magnetic material along the edge;
4I) As a result of the reduction to Qi being more consistent and the appropriate reduction temperature range being expanded to the lower temperature side, I
8304 朕 is formed, residual a −F'e 203 1
Since 1-1 decreases, 11 points are determined.
fi J、−スパッタリングによって形成芒れるα−F
6,0 、 薄R莫は微量jな精品からル兄つでおり
、X勝目折り電子I¥iR回折で組成を1i114べt
もブロードなピークが得られるのみで、還元処理後に微
量に残留するα−Fe、、U3相の同定 は困難である
がα−Fe、、03 相単体の飽オ]1磁化めるいtl
、に他の従来例との比軟から上記推定が得られるO
実施例
ターゲットとして98原子%Fe−2JQ千%CO合金
板を用い削加元素としてkg 、 Att 、 i’d
。fi J, - α-F formed by sputtering
6,0, Thin R is a brother of a very small amount of fine material, and its composition can be determined by X-fold electron I\iR diffraction.
However, only a broad peak is obtained, and it is difficult to identify the α-Fe, U3 phase that remains in trace amounts after the reduction treatment.
The above estimation can be obtained from the comparative softness with other conventional examples.The example target is a 98 atomic% Fe-2JQ 1,000% CO alloy plate, and the machining elements are kg, Att, i'd.
.
Pt 、 ILh 、 I r 、 ILu あるい
はUs ケ’t4−2に示すような金屑元素のみの比率
で含むγ−Fe203jjケを作製した。スパッタリン
グの条件はスパッタ雰四免が8 X I Q”−31”
orr 、スパッタ′市力がlkwである他は実施例
1と同様である。熱処理条件も実施例1と同様である。A γ-Fe203jj containing only a proportion of gold scrap elements as shown in Pt, ILh, Ir, ILu or Us was prepared. The sputtering conditions are 8 x IQ”-31” sputtering atmosphere.
The process is the same as in Example 1 except that the sputtering power is lkw. The heat treatment conditions are also the same as in Example 1.
表−2には上記方法により作製された酸化鉄磁性薄/I
Qの飽和イ1修化を示す。同表に示されるようにいずれ
の元素の泳方1]畑れた薄1(〆も34.00 Gau
ss、IJ上の冒い飽和磁化を有し、これらの飽和磁化
は従来用いられてきたCo−1−Cu あるいはCo
−1−Cu+’l’i ’f’1合rz 刀nγ−F
’ez03月K O飽%−[1磁化が約3300 Ga
ussであるのに比1(支)しても100 Gauss
以上も旨い。才た、表−2に示す本〉6明の試料の還元
温j斐いう“れも225℃以下であジ従来のCu深方力
1ではフネh(できな〃1つだ低温化が果たゼた。Table 2 shows the iron oxide magnetic thin/I produced by the above method.
Indicates the saturation of Q. As shown in the same table, each element's swimming method 1] Hatareta Usui 1 (〆 is also 34.00 Gau
ss, IJ, and these saturation magnetizations are different from the conventionally used Co-1-Cu or Co.
-1-Cu+'l'i 'f'1 combination rz sword nγ-F
'ez0MarK O saturation% - [1 magnetization is approximately 3300 Ga
Even though it is USS, it is 100 Gauss even if the ratio is 1 (branch).
All the above are delicious. The reduction temperature of the sample shown in Table 2 is below 225°C. Tazeta.
管にOsを添加した胤合には飽1オ11磁化の増大はか
りでなく、保イ戯力が増加1″′るというl特徴もある
。即ち、[eに2原子%COを添加しただけの従来(7
) r −Fe2Ua /j’Xl1nO仙′、磁力は
6500eでべ5つkが、7!、膜にOsを0.55i
子%添加した」→)@にij 9000e XO,83
ノ負子%添力11シたjノ4合には110 U Oe
、 2.13原子9g添加した場合にに18000e’
に保イ1θ力がIi、x゛7大した。When Os is added to the tube, there is also a characteristic that not only the magnetization increases, but also the retention force increases by 1''. Conventional (7)
) r -Fe2Ua /j'Xl1nOsen', the magnetic force is 6500e and k is 7! , 0.55i of Os on the film
→) @ ij 9000e XO, 83
No negative % addition 11 shi j no 4 is 110 U Oe
, 18000e' when adding 9g of 2.13 atoms
The 1θ force maintained at Ii,x゛7 increased.
火 力10 例 3
ターゲットとして98バ1j−1%Fe−2原子%CO
合金枦を1[1い、異方(4例2と同じ条件でItuを
最大4.6原子%゛まで添加したγ−F c 203
を主成分とする41拠を形成した。第31ン1に、H,
u冷加量とγ−Fe2O3を主成分とするイ1.11凡
の胞10イ漫化の関係を示す。1.u冷加量が3原子%
以下表−2
の範囲ではILuが無添加の試料の飽和磁化よりも高い
飽和磁化が得られるが、3原子%以上の硝加量では飽和
値化が減少した。依って、Ruの硝7JII量を3原子
%以−1・とすると飽和磁化の増大という効果がイ(t
られ好ましい。第3図中には適正還元温度の最低温度も
示す。従来Cuを脩加した場合にはCu添加量を増加さ
せても適正還元温度は225℃以下にはならなかったが
本発明のように1(11全添刀口した場合にはその添加
量の範囲を(14原子%以上とすitば、還元温度を2
25℃以下とすることができる。Thermal power 10 Example 3 98 bar 1j-1%Fe-2 atomic%CO as target
γ-F c 203 with an alloy rod of 1[1] and anisotropic (4.4 with Itu added up to 4.6 at% under the same conditions as in Example 2)
A total of 41 bases were formed, with the main component being 31st N1, H,
The relationship between the amount of u cooling and the 10-imaging of A1.11 cells whose main component is γ-Fe2O3 is shown. 1. u cooling amount is 3 atomic%
In the range shown in Table 2 below, a saturation magnetization higher than that of the sample without ILu added was obtained, but the saturation value decreased when the amount of nitrate was 3 at % or more. Therefore, if the amount of Ru 7JII is 3 at% or more, the effect of increasing the saturation magnetization increases (t
It is preferable. FIG. 3 also shows the minimum temperature of the appropriate reduction temperature. Conventionally, when Cu was added, the appropriate reduction temperature did not become lower than 225°C even if the amount of Cu added was increased. (If it is 14 atomic % or more, the reduction temperature is 2
The temperature can be 25°C or lower.
同様に、AuあるいはPtを振方1した場合も3原子%
以下の添7IO量で従来よジも高飽オ[1磁化のγ−F
e2O3を主成分とするYl、7膜が形成できた。Similarly, when Au or Pt is oriented 1, 3 atomic%
With the following additive 7IO amount, even the conventional one has a high saturation power [1 magnetization of γ-F].
A Yl 7 film containing e2O3 as a main component was formed.
Ag、 Rh あるいはIrを振力(1した場合は2
原子%以下の添加量で、またPdi%加の場合には4原
子%’ D)下の副刃1世で従来よりも高飽和磁化のγ
−Fe 203 を主成分とする薄膜が形成できたO
実施例4
ターゲットとしてCo((2原子%、Tiを2原子%添
加した合金板を用い、実施例1と同じ条件でAuが最大
a4原子%まで振力1]されたγ−Fe20B薄膜を形
成した。他のスパッタリング条件と熱処理条件は実施例
1と同様である。第4図にAuvA)JIl 縦と7−
Fe2Q3 を主成分とする薄膜の飽和磁化の関係を示
す。Coのみを添加したターゲットを用いた場合と同様
に、Au添加量を3原子%以下とすると、AI’ 2.
IL4疾加試料よりも飽和磁化が増大する。逆にAll
笛3原子先以上添加すると飽和る8化は低下する。第4
図中にtま適正還元温度の下限もめわせて示す。同図に
示されるようにAllを添加した磁性薄膜は従来のCu
添加が225℃ までしか還元温度を低下させることが
できないのと異な!llそれ以上に還元温度を下げる効
果がある。Vibration force of Ag, Rh or Ir (if 1, then 2
At an addition amount of atomic% or less, or 4 atomic% in the case of adding Pdi%
- A thin film containing Fe 203 as the main component was formed. Example 4 Using an alloy plate to which Co ((2 atomic %) and Ti 2 atomic % were added as a target, under the same conditions as Example 1, Au A γ-Fe20B thin film was formed with a vibration force of up to 1%.Other sputtering conditions and heat treatment conditions were the same as in Example 1.
The relationship between the saturation magnetization of a thin film whose main component is Fe2Q3 is shown. As in the case of using a target to which only Co is added, if the amount of Au added is 3 atomic % or less, AI' 2.
The saturation magnetization increases compared to the IL4-loaded sample. On the contrary, All
When more than 3 atoms are added, the saturation of octogenation decreases. Fourth
The lower limit of the appropriate reduction temperature is also shown in the figure. As shown in the figure, the magnetic thin film doped with All is different from that of conventional Cu.
This is different from the fact that addition can only lower the reduction temperature to 225℃! It has the effect of lowering the reduction temperature even more than that.
実施例5
を用い、他は実施例1と向じ条件で酸化物薄膜を形成し
た。この酸化物薄膜中にlLuは金属元素のみの比率で
0.5原子%含まれていることを化学分析で41(li
Mgした。この酸化物、(膜のyfi正還元温度の1限
は200℃と低く、また最終的に倚られたγ−1・”C
2(J、、薄膜の飽和磁化は3500 Gaussであ
る。なお、本実施例の条件でスパッタリング券囲勿とし
て純Arを用いた場合にもtb −Fc203 を主成
分とする薄膜tよ形成可能であり引き和Cき瓜元および
酸化熱処理を施すことで、飽第1」磁化が3500 G
aussのγ−Fe2O3を主成分とする薄膜を得た。An oxide thin film was formed using Example 5 under the same conditions as Example 1 except for the following conditions. Chemical analysis revealed that this oxide thin film contains 0.5 at% of lLu as a metal element only (41(li)
Mg. This oxide, (the first limit of the yfi positive reduction temperature of the film is as low as 200℃, and the final
2 (J), the saturation magnetization of the thin film is 3500 Gauss. Note that even if pure Ar is used as the sputtering material under the conditions of this example, it is possible to form a thin film containing tb -Fc203 as the main component. By subjecting it to a magnetization and oxidation heat treatment, the magnetization reaches 3500 G.
A thin film containing γ-Fe2O3 as a main component was obtained.
この時の熱処理条件は芙hIQ例1に等しいC1実施例
6
ターゲットとして98原子%Fe−21Q子%Co合金
板を用い、添加元素板としてILu仮を用い、実施例1
と同じ条件でγ−■・’e2Ug薄膜を形成した。R1
1が金属元素比率でα5原子%姉加された]侍、Fe5
(Jt#がイ(tられる適止還元温度範囲は200℃〜
275℃へと低下し、しかもγ−Fe2O3N&膜の飽
和磁化は3900 Gaussと著しく向−ヒした。又
、この γ−Pe、、03薄形へは保磁カフ(lQOe
、、角形比α8と他の磁気特性も1・遼れた1直を示し
、高記録密度用媒体として適した特性を有する。The heat treatment conditions at this time were the same as those of FuhIQ Example 1. Example 6: Using a 98 atomic% Fe-21Q% Co alloy plate as the target and using ILu temporary as the additive element plate, Example 1
A γ-■·'e2Ug thin film was formed under the same conditions as described above. R1
1 was added by α5 atomic % in the metal element ratio] Samurai, Fe5
(The appropriate reduction temperature range for Jt# is 200℃~
The temperature decreased to 275°C, and the saturation magnetization of the γ-Fe2O3N film significantly decreased to 3900 Gauss. Also, this γ-Pe,,03 thin type has a coercive cuff (lQOe
,, The squareness ratio α8 and other magnetic properties also show a sharp 1-square, and have characteristics suitable as a medium for high recording density.
以上、実施例に是ついて具体的に説明したように 本発
明の酸化鉄磁性薄j臭は低温凰で過充反応を、16行系
ぜて製造することができるため、基板としてアルマイl
−力yaqjAz、合金基板を使用する鳩舎でもアルマ
イト被僚にクランク哨が発生するjσtがなく、良好な
磁槃テイスクを製造することができる01だ、低温度で
還元反応が進む結未、膜厚方向に均質な砲性薄aが形成
芒れ、飽和磁化が増大するという利点もある1、更にO
5を添加元素とずれは、保磁力を増大はぜることも再能
である。As described above in detail in the examples, the iron oxide magnetic thin film of the present invention can be produced by carrying out a supercharge reaction in a low-temperature oven in 16 rows.
- Power yaqjAz, even in pigeonholes that use alloy substrates, there is no jσt that causes cranks to occur on alumite workers, and it is possible to manufacture good magnetism. There is also the advantage that a homogeneous gun-like thin a is formed in the direction, increasing the saturation magnetization.
It is also possible to increase the coercive force by adding 5 to the added element.
第1図〜第4図は本発明に係り、第1図はスパッタ装置
ガの概略図、第2図Cj、還元湿度(℃)に対する膜の
電気抵抗(Ω)の関係を表すグラフ、第3図はRu添泳
方量(原子%)に対する飽和(・磁化((jauss
)および最低]■:6正還元温還元((℃)の間係を表
−tグラフ、絹4図vl、Au泳方[1h4(原子96
)に対するN31和磁化(KGauss ) kよび最
低適正岨元Y、l、、X度(℃)との194保をり(す
グラフである0
図 面 中、
1はヌパツタ竿、
2は基板、
3はターゲット、
4は象加元索板、
5は尚周波重分、
66′ユ具窒排気系、
7はガヌ褥大系、
aは2%Co+0.6%A、u (D添加すれり薄膜、
bは2%Co +l 9(、Cuの添加された薄膜、L
−は2%(?0の撥力IIされたンちlル4、Dは適止
還元温度範囲である。
手続袖市書
昭!1158年6 、+19; Fi!1’、i’
:i’「I ’+長官殿J、 1(fiの表示
昭和57+1 特 許 願第 164134シシ
昭Tll il′部 ゛[
リ 第 7J2゛′明0名称
酸化鉄磁性薄膜
:31:111i 、”%・す・′)に′1田との関係
を特許出願人
4 代理人
〜 1.、、−
ペ補正の対象
明細書の「発明の詳細な説明」及び[−図面の簡単な説
明Jの各「j並びに図面
7、補正の内容
(7−1) 明細書の「発明の詳細な説艷の記載7次
の通シに補正する。
(イ) 明細■第3ページ下から4 ?J目から→占−
テ3行目にかけて記載した「ンスパツタ方弐【用いたり
、あるいu: 150 A/minの高速膜形成葡採用
すt]−は基板温度ケ・・・」金[ン7、 バッタ方式
葡採用することによって膜形成速度が150 A/mi
n と高速の場合でも基板温度葡・・・」と補正する。
(o) 明細套第6ペー ジ下から5行目に1己載し
k r Au r P ’ 、Ru + Ay、・・J
’f r Au 、P t r 、lj+t l □
s 。
AJ、・・・」と補正する。
(ハ) 明細l弔8ベーン下から4行目に暦己載した「
厚さ5 rt+m J ’(1,1厚さ0.5 rtn
q Jと補正する。
に)明細書第9ページ第7行目から同ページ12行目に
かけて記載した「力3X3−L″(ll’rの・・・薄
膜全形成した。」葡[力3 X 10−Torrのスパ
ッタ芥囲気葡形成した0
ここで混合ガスの組成は90チAr −10チ0、から
100%02までの範囲、丑たスノくツタ雰囲気圧力は
2 X l O=’l”orr以上8 X 10−2T
orr以下の範囲内であハ、ば、本実施例に示すような
還元反応盆促進する効果が得られる。更に高周波マクネ
トロンスパッタリング2 iCヨt)高周波電詠5から
基板2.ターゲット3間へ0、3 KWのスパッタ電力
會かけて、基板2上へ厚さ0.14μmのα−Fet
Us k主成分とする薄膜全形成した。
ターゲットへ加える電力の最大値は2.5Kwの場合で
あったが、この場合もAuiスパッタ膜へ添加すること
によって還元反応が促進式れる効果は本実施例と同様に
得られる。」と補正する。
(ホ) 明細噛第19ページ第4行目に記載した[適し
た特性葡有する。Jの後に次の文章r加える。「又、こ
の0.5原子%Ru添加糸γ−P′e2O3薄膜磁気デ
ィスク表面の耐摩耗特性は、従来用いられて@ 7jC
o 十Ti −1−Cu添加糸r−Fet03膜より大
幅に向上1〜た。第5図に示す摩耗試験器勿用い、周速
1m/secで回転]〜でいるディスク面上に直径3岨
の八lIn −Znフェライト球全押しつけ、]、 0
00回転した後のディスク面上のキズの深さ會測定する
ことで、ディスク表面の耐摩耗特性が評価できる。第6
図にはフェライト球の荷重と摩耗キズ深さの関係葡示す
。図中eで示される曲線は本実施例によυ作製された2
/Jit子多CQ+0.5原子嘱Ru征加γ−Fe2
og薄膜であり、fで示をれる曲線は2原子%’Co
+ 2 IQ子%Ti+1.5原子チCu 添加γ−
Fe20s薄膜である。Co + ’I’i +Cu添
加γ−rI″e20.薄膜はターゲット母祠として2原
子%CO+2M子%Ti+1.5原子%Cu疾加Fe
板上用い、他の製造条件は実施例1と同様にして作製
した。第6図から明らかなように、CO+■え11添加
γ−Fe203薄膜(e)は、従来用いられてきたCo
+ Ti 十Cu添加γ−Fe203薄膜(f)に比
較し、同一荷重での摩耗キズ深さが約1桁少なく、耐摩
耗特性が向上している。ディスク表面の耐摩耗特性の向
上は浮上へ゛ノド奮起動あるいは停止時にヘッドと媒体
が接触する形式のいわゆるノ・−ドディスクにおける耐
ヘツドクラツシユ特性全改善する効果が大きい。
実施例7
ターゲットとして98原子%Fe ”=−2原子%CO
合金板を用い、添加元素板としてRu板とAu板金用い
、実施例]と同じ条件でγ−Fez Os薄膜全形成し
た。luが金属元素比率で0.7原子チ、Allが金属
元素比率で0.3原子係添加された時、Fe304薄膜
が得られる適正還元温度範囲は175℃〜275℃と低
温側へ拡大し、しかもγ−1i’et Us薄膜の飽和
磁化は4000 Gaussと尚い値tボした・」(7
−2) 明細1.の「図面の1111単な説明」の記
載7次の通りに補正する。
(イ) 明細書第20ページ弔4行目から同次−(ジ5
行目にかけて記載した「・・・グラフである。」ケ[グ
ラフ、第5図は摩耗試験器の略図、第6図はフェライト
球何重(9f)に文・jするカー〕耗キズ深さくμ・n
2の関係?示すグラフである・」と補正する。
(ロ) 明細書第20ページ第17行目に;it、 i
i戊した「Dは適正還元温度範囲である。」?「Dは適
正還元温度範囲、」と梢1i jlEし、この後に次の
文章全力口える0
[8はディスク、
9はモーター、
10i1′:Iフェライト球、
11Jま バイ・ 、
12はイdr爪計・
13はアーム、
14は微動台、
eは2’%Co−1−0.5 % Ru の添)Jll
されたン舎:膜、fは2%CO+2係’I’i+1.5
係C1lのざΣ力[]さオ]、た薄膜である。」
7−3) 添付別紙の第51閾及び科↓6区1會j良力
日する0
8、添イ寸書類の目録Figures 1 to 4 relate to the present invention; Figure 1 is a schematic diagram of the sputtering apparatus; Figure 2 Cj is a graph showing the relationship between the electrical resistance (Ω) of the film and the reduction humidity (°C); The figure shows saturation (・magnetization ((jauss
) and lowest] ■: 6 positive reduction Temperature reduction ((°C)
) for N31 sum magnetization (KGauss) k and the lowest suitable slope Y, l, X degrees (℃). is the target, 4 is the elephant cable plate, 5 is the frequency superimposition, 66' is the nitrogen exhaust system, 7 is the Ganu large system, a is 2%Co + 0.6%A, u (D addition) thin film,
b is 2%Co + l 9 (, Cu-doped thin film, L
- is 2% (? 0 repulsive force II), D is the appropriate reduction temperature range.
: i'"I' + Mr. Secretary J, 1 (Fi Indication Showa 57+1 Patent Application No. 164134 Shishi Showa Tll il' Part ゛[
7J2゛'mei0 name
Iron oxide magnetic thin film: 31:111i, ``%・S・') Relationship with '1' Patent applicant 4 Agent ~ 1.,, - ``Detailed description of the invention'' of the specification subject to the amendment and [-Brief Description of the Drawings J and Drawing 7, Contents of Amendment (7-1) "Detailed Description of the Invention 7" of the Specification shall be amended as follows. (A) Specification ■4 from the bottom of the 3rd page ?From the Jth → Fortune-
``Inspatuta method 2 [Using or u: 150 A/min high-speed film formation method]-'' written in the 3rd line indicates the substrate temperature...'' By doing so, the film formation rate was increased to 150 A/mi.
Even in the case of n and high speed, the substrate temperature...'' is corrected. (o) Write one name on the 5th line from the bottom of the 6th page of the detailed statement: k r Au r P', Ru + Ay,...J
'f r Au , P t r , lj+t l □
s. AJ..." he corrected. (c) The calendar was written on the 4th line from the bottom of the 8th vane of the details.
Thickness 5 rt+m J' (1,1 thickness 0.5 rtn
Correct it as q J. 2) "Force 3X3-L"(ll'r...thin film was completely formed.) described from line 7 to line 12 on page 9 of the specification [sputtering force 3X10-Torr] Here, the composition of the mixed gas ranges from 90% Ar -10% to 100%02, and the atmospheric pressure is 2 X l O='l''orr or more 8 X 10 -2T
If it is within the range of orr or less, the effect of promoting the reduction reaction basin as shown in this example can be obtained. Furthermore, high frequency McNetron sputtering 2 iC Yot) From high frequency electromagnetic wave 5 to substrate 2. A sputtering power of 0.3 KW is applied between the targets 3 and a 0.14 μm thick α-Fet is deposited onto the substrate 2.
A thin film containing Usk as the main component was completely formed. The maximum value of the electric power applied to the target was 2.5 Kw, but in this case as well, the effect of promoting the reduction reaction by adding it to the Au sputtered film can be obtained in the same way as in this example. ” he corrected. (e) It has suitable characteristics listed on page 19, line 4 of the specification. Add the following sentence r after J. "Also, the wear resistance properties of this 0.5 atomic% Ru-added yarn γ-P'e2O3 thin film magnetic disk surface are
o It was significantly improved from 1 to 1 compared to the Ti-1-Cu added yarn r-Fet03 membrane. The abrasion tester shown in Fig. 5 was not used, and eight lIn-Zn ferrite spheres with a diameter of 3 cm were fully pressed onto the disk surface rotating at a circumferential speed of 1 m/sec.
By measuring the depth of scratches on the disk surface after 00 rotations, the wear resistance characteristics of the disk surface can be evaluated. 6th
The figure shows the relationship between the load on the ferrite ball and the depth of wear scratches. The curve indicated by e in the figure is 2
/Jit child CQ + 0.5 atomic force Ru addition γ-Fe2
og thin film, and the curve indicated by f is 2 atomic%'Co
+ 2 IQ element % Ti + 1.5 atoms Ti Cu addition γ-
It is a Fe20s thin film. Co + 'I'i + Cu addition γ-rI''e20. The thin film is made of 2 at.% CO + 2 M at.% Ti + 1.5 at. % Cu addition Fe as a target matrix.
A plate was used, and the other manufacturing conditions were the same as in Example 1. As is clear from FIG. 6, the CO+■E11-doped γ-Fe203 thin film (e)
+Ti Compared to the Cu-added γ-Fe203 thin film (f), the depth of wear scratches under the same load is about one order of magnitude smaller, and the wear resistance is improved. Improving the wear resistance of the disk surface has a great effect on completely improving the head crash resistance of so-called node disks in which the head and the medium come into contact when the node starts or stops flying. Example 7 98 atomic% Fe''=-2 atomic% CO as target
A γ-Fez Os thin film was entirely formed using an alloy plate, a Ru plate and an Au sheet metal as additive element plates, and under the same conditions as in Example]. When Lu is added with a metal element ratio of 0.7 atoms and All is added with a metal element ratio of 0.3 atoms, the appropriate reduction temperature range for obtaining a Fe304 thin film expands to the lower temperature side, from 175°C to 275°C. Moreover, the saturation magnetization of the γ-1i'et Us thin film was 4000 Gauss, which is an even greater value.'' (7
-2) Details 1. Description 7 of "1111 Simple Explanation of Drawings" shall be amended as follows. (a) Same as above from line 4 of page 20 of the specification - (ji 5
``This is a graph.'' written on the first line. [Graph, Figure 5 is a schematic diagram of the abrasion tester, Figure 6 is the number of ferrite balls (9f) and the depth of wear scratches. μ・n
The relationship between 2? This is a graph that shows the correct result. (b) On page 20, line 17 of the specification; it, i
``D is the appropriate reduction temperature range.''? ``D is the appropriate reduction temperature range,'' Kozue said, and after this, he said the following sentence with all his might. 0 [8 is the disk, 9 is the motor, 10i1': I ferrite bulb, 11 J is bye, 12 is the idler nail. Total: 13 is the arm, 14 is the fine movement table, e is 2'%Co-1-0.5% Ru) Jll
Temperature: Membrane, f is 2% CO + 2 'I'i + 1.5
It is a thin film that has the force of the relation C1l. 7-3) Attached attachment No. 51 Threshold and Department
Claims (1)
で加熱してFen O4を主成分とする薄膜に遠フシす
る工程を経て得られる酸化鉄磁性薄膜のうちの少なくと
も一種を添加元素として含有することを特徴とする酸化
鉄磁性薄膜。 (2、特許請求の範囲第1項において、前記薄膜が金属
元素のみの比率で4.01@子%以下のPdを添加元素
として含有することを特徴とする酸化鉄磁性薄膜。 (、a、l 4′¥♂「請求の範囲第1項において、
ハ11記薄族が金属元素のみの比率で8.0原子%以下
のA u 。 Pt、f(uあるいはO5のいずれかを添加元素として
官有することを特徴とする酸化鉄磁性薄膜。 (4)特許請求の範囲第1項において、前記薄膜が金属
元素のみの比率で2.0 h=子子板以下Ag。 R11あるいはIrのいずれかを硲那元素としてざ有す
ることを特徴とする酸化鉄磁性薄膜。[Claims] ■ An iron oxide magnetic thin film obtained by heating a thin film mainly composed of α-Fe203 in a reducing atmosphere to form a thin film mainly composed of FenO4. An iron oxide magnetic thin film characterized by containing at least one kind of additive element. (2. In Claim 1, the iron oxide magnetic thin film is characterized in that the thin film contains Pd as an additive element in a proportion of only the metal element of 4.01% or less. (, a, l 4′¥♂ “In the first claim,
C. A u of 8.0 atomic % or less in the proportion of only metal elements in the 11th thin group. An iron oxide magnetic thin film characterized by containing either Pt, f(u or O5) as an additive element. (4) Claim 1, wherein the thin film has a ratio of only metal elements of 2.0. h = Ag below Ag. An iron oxide magnetic thin film characterized by containing either R11 or Ir as an element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16413482A JPS5954205A (en) | 1982-09-22 | 1982-09-22 | Iron oxide magnetic thin-film |
US06/532,978 US4544612A (en) | 1982-09-22 | 1983-09-16 | Iron oxide magnetic film and process for fabrication thereof |
DE19833334324 DE3334324A1 (en) | 1982-09-22 | 1983-09-22 | IRON OXIDE MAGNETIC FILM AND METHOD FOR THE PRODUCTION THEREOF |
NL8303258A NL192897C (en) | 1982-09-22 | 1983-09-22 | Gamma-Fe2O3 magnetic film for magnetic recording medium, and method for its manufacture. |
US06/730,549 US4642245A (en) | 1982-09-22 | 1985-05-06 | Iron oxide magnetic film and process for fabrication thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16413482A JPS5954205A (en) | 1982-09-22 | 1982-09-22 | Iron oxide magnetic thin-film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5954205A true JPS5954205A (en) | 1984-03-29 |
JPS616527B2 JPS616527B2 (en) | 1986-02-27 |
Family
ID=15787385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16413482A Granted JPS5954205A (en) | 1982-09-22 | 1982-09-22 | Iron oxide magnetic thin-film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5954205A (en) |
-
1982
- 1982-09-22 JP JP16413482A patent/JPS5954205A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS616527B2 (en) | 1986-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4232071A (en) | Method of producing magnetic thin film | |
US5232566A (en) | Underlayer doping in thin film magnetic recording media | |
Inagaki et al. | Ferrite thin films for high recording density | |
JPS5954205A (en) | Iron oxide magnetic thin-film | |
JPS6122852B2 (en) | ||
TWI400698B (en) | Method for ordering an alloy and method for making a perpendicular magnetic recording medium therefrom | |
Sedov et al. | Magnetic moments of iron atoms in Invar Fe–Ni alloys | |
US20100124673A1 (en) | High density magnetic recording film and method for manufacturing the same by using rapid thermal annealing treatment | |
US20110171494A1 (en) | Discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy | |
GB1213686A (en) | Improvements in magnetic films having a predetermined coercivity and method of forming | |
JPS62208412A (en) | Magnetic recording medium and its production | |
JPH03273525A (en) | Production of magnetic recording medium | |
JPS60138736A (en) | Production of magnetic recording medium | |
JPS61246914A (en) | Magnetic recording medium and its production | |
JP2996553B2 (en) | Soft magnetic alloy thin film | |
JPS6353721A (en) | Preparation of thin oxide film | |
JP2629505B2 (en) | Perpendicular magnetic recording medium and method of manufacturing the same | |
KR0164459B1 (en) | Cobalt ferrite magnetic thin film and its manufacturing method | |
JP3242102B2 (en) | Magnetic powder and method for producing the same | |
JPS5952810A (en) | Manufacture of iron-oxide magnetic thin film | |
JPS5957412A (en) | Manufacture of magnetic recording medium | |
JPS5820732A (en) | Preparation of magnetic thin film of oxide | |
JPS6353714A (en) | Magnetic recording medium | |
Bykov et al. | Radiation damage in thin nickel and iron films after helium-ion irradiation | |
JPS6364623A (en) | Magnetic recording medium |