JPS5953827B2 - Automatic sampling device and method - Google Patents

Automatic sampling device and method

Info

Publication number
JPS5953827B2
JPS5953827B2 JP14533280A JP14533280A JPS5953827B2 JP S5953827 B2 JPS5953827 B2 JP S5953827B2 JP 14533280 A JP14533280 A JP 14533280A JP 14533280 A JP14533280 A JP 14533280A JP S5953827 B2 JPS5953827 B2 JP S5953827B2
Authority
JP
Japan
Prior art keywords
sample solution
sample
suspension
sampling
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14533280A
Other languages
Japanese (ja)
Other versions
JPS5768781A (en
Inventor
勲 遠藤
輝行 長楝
一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP14533280A priority Critical patent/JPS5953827B2/en
Publication of JPS5768781A publication Critical patent/JPS5768781A/en
Publication of JPS5953827B2 publication Critical patent/JPS5953827B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、固形物などを含む懸濁液より清澄試料溶液を
自動的にサンプリングする装置及び方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus and method for automatically sampling a clear sample solution from a suspension containing solids and the like.

微生物工業において、培養液中の微生物の代謝産物の状
態、例えば、濃度、…、成分等を測定することは微生物
の代謝反応を有効に利用しかつ系外から反応を制御する
上で極めて重要であることは言うまでもない。
In the microbial industry, it is extremely important to measure the status of microbial metabolites in the culture solution, such as concentration, composition, etc., in order to effectively utilize the metabolic reactions of microorganisms and to control the reactions from outside the system. It goes without saying that there is.

すなわち、培養液中より自動的に試料をサンプリングし
、これを分析、測定することができれば工業上極めて寄
与するところが大きい。
That is, if it were possible to automatically sample a sample from a culture solution and analyze and measure it, it would greatly contribute to industry.

しかしながら、培養液中には、微生物の菌体あるいは培
地中の不溶解物(固形物)が存在し、懸濁液の状態にな
つているため、培養液をそのまま測定試料溶液として、
ガスクロマトグラフや液クロマトグラフに用いることは
できない。
However, the culture solution contains microorganism cells or undissolved matter (solid matter) in the medium, and is in a suspension state.
It cannot be used for gas chromatographs or liquid chromatographs.

従来、これらの装置に用いるためには、一定量の培養液
を取出し、一旦濾過または遠心分離等の固液分離操作を
行つて得られた清澄溶液を試料溶液として用いていた。
しかしながら、このような方法では濾過及び遠心分離等
の操作の際、試料溶液中の成分組成が変化する恐れがあ
つたり (例えば、アルコ′−ル醗酵などの場合)、実
際の培養液中における濃度、聞、成分と、試料溶液の測
定値の間に時間的すれを生じ、好ましくない。このよう
な事情により、当該分野においては、自動的に懸濁液中
の不溶解物を除去して、試料溶丁液をサンプリングする
装置及びその方法の開発が望まれていた。
Conventionally, in order to use these devices, a clear solution obtained by removing a certain amount of culture fluid and performing a solid-liquid separation operation such as filtration or centrifugation was used as a sample solution.
However, with this method, there is a risk that the component composition in the sample solution may change during operations such as filtration and centrifugation (for example, in the case of alcohol fermentation), and the actual concentration in the culture solution may change. However, this is not preferable since there is a time lag between the measured values of the components and the sample solution. Under these circumstances, there has been a desire in the field to develop an apparatus and a method for automatically removing insoluble matter from a suspension and sampling a sample welding solution.

すなわち、上記の如く自動的に清澄試料溶液を採取する
ことができれば、これを各種自動分析装置に直結するこ
とにより、試料採取から分析までを一貫して完全に自動
化することができる。本発明者らは、上記の主旨に鑑み
、本発明の自動サンプリング装置及びその方法を開発し
、本発明を完成するに至つたものである。
That is, if a clear sample solution can be automatically collected as described above, by directly connecting it to various automatic analyzers, it is possible to completely automate the entire process from sample collection to analysis. The present inventors have developed the automatic sampling device and the method thereof of the present invention in view of the above-mentioned subject matter, and have completed the present invention.

本発明は、上記培養液はもちろん、廃液処理装置内の廃
液、河111.海水、湖沼水からの試料溶液等、固形物
を含むあらゆる種類の溶液から固形物を実質的に含まな
い溶液をサンプリングするのにも利用できることは言う
までもない。
The present invention is applicable not only to the above-mentioned culture fluid, but also to waste fluid in a waste fluid treatment device, river 111. It goes without saying that it can also be used to sample solutions that are substantially free of solids from all types of solutions containing solids, such as sample solutions from seawater, lake water, and marsh water.

以下に、本発明を説明する。The present invention will be explained below.

すなわち本発明は、懸濁液より清澄試料溶液をサンプリ
ングする方法において、液循環装置を用いて前記懸濁液
を、前記懸濁液液面下に配置されている第1P過筒の多
孔質部分を通過せしめて清澄試料溶液となし、該清澄試
料溶液を第1試料溶液流通管により試料サンプリングセ
ルに導き、該試料サンプリングセル内で所定量の前記清
澄試料溶液をサンプリングし、残余の前記清澄試料溶液
を第2試料溶液流通管により第2P過筒に導き、該第2
P過筒の多孔質部分を通過せしめて前記懸濁液中に戻す
ことを特徴とする自動サンプリング方法及びこれを実施
するための装置に関するものである。
That is, the present invention provides a method for sampling a clear sample solution from a suspension using a liquid circulation device to transfer the suspension to a porous portion of a first P tube disposed below the surface of the suspension. The clarified sample solution is introduced into a sample sampling cell through a first sample solution flow tube, a predetermined amount of the clarified sample solution is sampled in the sample sampling cell, and the remaining clarified sample is The solution is introduced into the second P tube through the second sample solution flow pipe, and the second
The present invention relates to an automatic sampling method characterized in that the sample is passed through a porous portion of a P-tube and returned to the suspension, and an apparatus for carrying out the method.

次に、本発明の一実施態様、すなわち、培養液を用いて
、試料を自動的にサンプリングする装置及び方法につい
て添付図面によつて説明する。
Next, one embodiment of the present invention, that is, an apparatus and method for automatically sampling a sample using a culture solution will be described with reference to the accompanying drawings.

第1図は、本発明の試料サンプリング装置をガスクロマ
トグラフ装置に連結した場合を示すフロ.−シートであ
り、第2図は、多孔質部を有する淵過筒及び試料液流通
管とを有する試料溶液採取手段を培養槽上ぶたに取付け
た断面図を示し、又第3図は試料サンプリングセルの断
面図である。試料溶液採取手段の沢過筒3,3″は、液
面下・−にあつて濾過作用を行う多孔質部分11,1「
と、液面上にあつて沢過筒内を気密、液密に保持する平
滑部分12,12″とから成る。この濾過筒3,3″の
多孔質部分11,11″は種々の材質から作ることがで
き、例えば、セラミツタス、金ζ属、合成樹脂、高分子
微粉体、繊維あるいは金網を焼結させて得られる管又は
この管を表面処理したものを用いることができる。平滑
部分12,]2″は多孔質部分11,1「と一体のもの
でも、フまた、別の材料から作られていてもよい。
FIG. 1 is a flowchart showing a case where the sample sampling device of the present invention is connected to a gas chromatograph device. - A sheet, FIG. 2 shows a cross-sectional view of a sample solution collection means having a porous part and a sample solution flow pipe attached to the culture tank top lid, and FIG. 3 shows a sample sampling means. FIG. 3 is a cross-sectional view of a cell. The filter cylinder 3, 3'' of the sample solution collection means has a porous portion 11, 1'' that is below the liquid surface and performs a filtration action.
and smooth portions 12, 12'' which are above the liquid level and keep the inside of the filter tube airtight and liquid-tight.The porous portions 11, 11'' of the filter tubes 3, 3'' are made of various materials. For example, a tube obtained by sintering ceramitus, metal ζ, synthetic resin, fine polymer powder, fiber, or wire mesh, or a surface-treated tube can be used.Smooth portion 12, ]2'' may be integral with the porous portion 11,1'' or may be made of another material.

多孔質部分の孔径及び空隙率は、採取する懸濁物質の粒
径によつて適宣選択してやればよい。例えば、微生物が
懸濁している培養液の場合には0.5μ程度、それより
小さな粒体が懸濁している場合にはさらに孔径の小さい
ものを選べばよい。まず、淵過筒の多孔質部分全体を懸
濁液中に沈める。
The pore size and porosity of the porous portion may be appropriately selected depending on the particle size of the suspended solids to be collected. For example, in the case of a culture solution in which microorganisms are suspended, a pore size of about 0.5 μm may be selected, and in the case of suspended particles smaller than that, a pore size even smaller may be selected. First, the entire porous portion of the tube is submerged in suspension.

濾過筒3内にしみ込んだ試料溶液を、ポンプ5で吸い上
げると、淵過筒3内の圧力が低下する。従つて、培養槽
内の培養液は、自然に淵過筒3内に吸い込まれる。この
時、菌体、酵素あるいは培地中の不溶解物は、多孔質部
分11の孔を通過することができない。すなわち、固形
物はこの多孔質部分11により沖過される。さらに、沢
過された清澄試料溶液は、ポンプ5により試料液流通管
4を通つて、試料サンプリングセル6に流入する。その
際セル内の試料溶液容量22は、試料溶液の滞留が起こ
らないように適宣選択すればよい。試料溶液の一部は、
セル6で吸入針7″によりサンプリングされ、その他の
試料溶液は、試料溶液流通管4″を通つて、他方の濾過
筒3″に流入する。この際、試料溶液はポンプ5により
強制的に循環させられているので、淵過筒3″内の圧力
が高くなり、多孔質部分1「を通過して自然に培養槽1
内へ戻される。なお、本発明方法は、一方の淵過筒のみ
から試料の流入を行うだけでなく、交互に他方の濾過筒
からも試料の流入を行うことを特徴としている。
When the sample solution that has seeped into the filter tube 3 is sucked up by the pump 5, the pressure inside the filter tube 3 decreases. Therefore, the culture solution in the culture tank is naturally sucked into the tube 3. At this time, bacterial cells, enzymes, or undissolved substances in the medium cannot pass through the pores of the porous portion 11. That is, solid matter is passed through this porous portion 11. Furthermore, the filtered clear sample solution flows into the sample sampling cell 6 through the sample liquid distribution tube 4 by the pump 5. At this time, the sample solution volume 22 in the cell may be appropriately selected so that the sample solution does not stagnate. A part of the sample solution is
The sample solution is sampled by the suction needle 7'' in the cell 6, and the other sample solution flows into the other filter cylinder 3'' through the sample solution distribution tube 4''.At this time, the sample solution is forcibly circulated by the pump 5. As a result, the pressure inside the tube 3'' increases, and it passes through the porous part 1'' and naturally flows through the culture tank 1.
taken back inside. The method of the present invention is characterized in that the sample is not only introduced through one filter tube, but also alternately from the other filter tube.

すなわち、一方の淵過筒のみを使用していると、菌体、
酵素あるいは培地中の不溶解物等の固形物が多孔質部分
の孔をふさぎ目づまりを起こし、試料の吸い込みが極め
て悪くなり測定に支障をきたすようになる。このため、
二個の淵過筒を交互に使用し、交互に吸い込み、流出の
操作を行うことにより、目づまりを解消(洗浄)するこ
とができるのである。そのため、試料サンプリングセル
の試料溶液流出入口16,16″は第3図に示されてい
るように同じ高さに配置されている。このように本発明
によれば、一方の多孔質部分より吸い込みを行つている
間、他方の多孔質部分は流出する清澄試料溶液によつて
洗浄されているのである。
In other words, if only one tube is used, bacterial cells,
Enzymes or solid substances such as undissolved substances in the culture medium block the pores of the porous portion and cause clogging, making it extremely difficult to absorb the sample and impeding measurement. For this reason,
Clogging can be cleared (cleaned) by alternately using two filter tubes and alternately performing suction and outflow operations. Therefore, the sample solution inlets 16 and 16'' of the sample sampling cell are arranged at the same height as shown in FIG. During this process, the other porous portion is being washed by the flowing clear sample solution.

また、試料溶液流通管4,4″に圧力測定手段、たとえ
ば水銀マノメータ(図には示されていない)を連結して
おくことにより、多孔質部分の目づまり状態を知ること
ができる。
Furthermore, by connecting a pressure measuring means, such as a mercury manometer (not shown) to the sample solution flow tubes 4, 4'', it is possible to know the clogging state of the porous portion.

この圧力が所定値を越えたときに、ポンプを反転させて
試料溶液の流れの方向を逆向きにするようにプログラム
することもできる。なお、試料サンプリングセル6に流
入した試料溶液は、例えば、次のような方法により分析
・測定が行われる。
The pump can also be programmed to reverse and reverse the direction of sample solution flow when this pressure exceeds a predetermined value. Note that the sample solution that has flowed into the sample sampling cell 6 is analyzed and measured, for example, by the following method.

すなわちセル6内の試料溶液は、自動的にインジエクシ
ヨン・アンプル7に打込針を兼ねた吸入針7″で一定量
吸入される。
That is, a fixed amount of the sample solution in the cell 6 is automatically aspirated into the injection ampoule 7 using an inhalation needle 7'' which also serves as an injection needle.

アンプル7は、スライド式になつており、ガスタロマト
グラフ装置の試料打込口(ベント)9まで移動して自動
的に打込まれ、試料溶液を分析・測定する。このような
操作をあらかじめプログラムしておけば、試料のサンプ
リングから分析・測定までを一貫して完全に自動化する
ことができる。
The ampoule 7 is of a sliding type, and is moved to a sample inlet (vent) 9 of the gas chromatograph apparatus and is automatically inserted to analyze and measure the sample solution. If such operations are programmed in advance, it is possible to completely automate everything from sample sampling to analysis and measurement.

かくして、本発明により、懸濁液から極めて効率よくか
つ迅速に試料を自動サンプリングする装置及びその方法
が提供される。
Thus, the present invention provides an apparatus and method for automatically sampling a sample from a suspension very efficiently and rapidly.

【図面の簡単な説明】 第1図は、本発明の自動サンプリング装置をガスクロマ
トグラフ装置に連結した場合の概略図面であり、第2図
は試料採取手段の断面図であり、第3図は、試料サンプ
リングセルの断面図である。 1・・・・・・培養槽、2・・・・・・培養液、3,3
″・・・・・・淵過筒、4,4″・・・・・・試料溶液
流通管、5・・・・・・ポンプ、6・・・・・・試料サ
ンプリングセル、7・・・・・・インジエクシヨン・ア
ンプル、7″・・・・・・吸入針、8・・・・・・ガス
タロマトグラフ装置本体、9・・・・・・試料打込口、
]0・・・・・・レコーダ、11,1「・・・・・・多
孔質部分、12,12″・・・・・・平滑部分、13・
・・・・・培養槽上ぶた、14・・・・・・ゴム栓、1
5・・・・・・袋ナツト、16・・・・・・試料溶液流
出入口、17・・・・・・セルホルダ、18・・・・・
・0リング、19・・・・・・シリコン栓、20・・・
・・・注入針導入口、21・・・・・・袋ナツト、22
・・・・・・試料溶液。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of the automatic sampling device of the present invention connected to a gas chromatograph device, FIG. 2 is a sectional view of the sample collection means, and FIG. FIG. 2 is a cross-sectional view of a sample sampling cell. 1...Culture tank, 2...Culture solution, 3,3
″...passing tube, 4,4″...sample solution flow tube, 5...pump, 6...sample sampling cell, 7... ...Injection ampoule, 7''...Suction needle, 8...Gastaromatography device main body, 9...Sample inlet,
]0... Recorder, 11, 1 "... Porous part, 12, 12"... Smooth part, 13.
...Culture tank top lid, 14...Rubber stopper, 1
5...Bag nut, 16...Sample solution inlet, 17...Cell holder, 18...
・0 ring, 19... Silicone stopper, 20...
... Injection needle introduction port, 21 ... Bag nut, 22
...Sample solution.

Claims (1)

【特許請求の範囲】 1 懸濁液より清澄試料溶液をサンプリングする方法に
おいて、液循環装置を用いて前記懸濁液を、前記懸濁液
の液面下に配置されている第1濾過筒の多孔質部分を通
過せしめて清澄試料溶液となし、該清澄試料溶液を第1
試料溶液流通管により試料サンプリングセルに導き、該
試料サンプリングセル内で所定量の前記清澄試料溶液を
サンプリングし、残余の前記清澄試料溶液を第2試料溶
液流通管により第2濾過筒に導き、該第2濾過筒の多孔
質部分を通過せしめて前記懸濁液中に戻すことを特徴と
する自動サンプリング方法。 2 試料溶液の流れを反転せしめることを特徴とする特
許請求の範囲第1項記載の方法。 3 懸濁液が微生物の培養液である特許請求の範囲第1
項または第2項記載の方法。 4 下端部が閉じられた多孔質部分を有する第1及び第
2濾過筒と、試料サンプリングセルと、前記第1及び第
2濾過筒と前記試料サンプリングセルとをそれぞれ連結
している第1及び第2清澄試料溶液流通管と、清澄試料
溶液の流路に設けられている液循環装置とから成ること
を特徴とする自動サンプリング装置。 5 前記第1及び第2清澄試料溶液流通管に圧力計が連
結されている特許請求の範囲第4項記載の装置。
[Scope of Claims] 1. In a method of sampling a clear sample solution from a suspension, the suspension is transferred to a first filter cylinder disposed below the surface of the suspension using a liquid circulation device. The clarified sample solution is made to pass through the porous part, and the clarified sample solution is passed through the first
A sample solution is introduced into a sample sampling cell through a sample solution distribution tube, a predetermined amount of the clarified sample solution is sampled within the sample sampling cell, and the remaining clarified sample solution is introduced into a second filtration column through a second sample solution distribution tube. An automatic sampling method characterized in that the sample is returned to the suspension by passing through a porous portion of a second filter cylinder. 2. The method according to claim 1, characterized in that the flow of the sample solution is reversed. 3 Claim 1 in which the suspension is a culture solution of microorganisms
or the method described in paragraph 2. 4. First and second filter cylinders each having a porous portion with a closed lower end, a sample sampling cell, and first and second filter cylinders connecting the first and second filter cylinders and the sample sampling cell, respectively. 2. An automatic sampling device comprising: a clear sample solution distribution tube; and a liquid circulation device provided in a clear sample solution flow path. 5. The apparatus according to claim 4, wherein a pressure gauge is connected to the first and second clarified sample solution flow tubes.
JP14533280A 1980-10-17 1980-10-17 Automatic sampling device and method Expired JPS5953827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14533280A JPS5953827B2 (en) 1980-10-17 1980-10-17 Automatic sampling device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14533280A JPS5953827B2 (en) 1980-10-17 1980-10-17 Automatic sampling device and method

Publications (2)

Publication Number Publication Date
JPS5768781A JPS5768781A (en) 1982-04-27
JPS5953827B2 true JPS5953827B2 (en) 1984-12-27

Family

ID=15382713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14533280A Expired JPS5953827B2 (en) 1980-10-17 1980-10-17 Automatic sampling device and method

Country Status (1)

Country Link
JP (1) JPS5953827B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593342U (en) * 1982-06-29 1984-01-10 大起理化工業株式会社 Soil solution sampling device
JPS59141036A (en) * 1983-01-14 1984-08-13 Norin Suisansyo Nogyo Kankyo Gijutsu Kenkyusho Soil water or soil gas sampling tube
JPS6083945U (en) * 1983-11-15 1985-06-10 東亜電波工業株式会社 Reaction tank sample solution collection device
US4678639A (en) * 1984-03-02 1987-07-07 The Perkin-Elmer Corporation Apparatus for periodically monitoring the composition of a plurality of samples
US4683207A (en) * 1984-12-05 1987-07-28 Eli Lilly And Company Culture monitoring system
JPS63140935A (en) * 1986-12-04 1988-06-13 Rikagaku Kenkyusho Device and method for sampling liquid sample
JPH0283445U (en) * 1989-08-30 1990-06-28
US8342043B2 (en) * 2009-01-05 2013-01-01 Velcon Filters, Llc System for collecting a fluid sample

Also Published As

Publication number Publication date
JPS5768781A (en) 1982-04-27

Similar Documents

Publication Publication Date Title
US3539300A (en) Body fluid collector and separator having improved flow rate
EP0915964B1 (en) Method for quantitation of microorganism contamination of liquids and apparatus therefor
CA2085741C (en) Liquid specimen container and attachable testing modules
EP1299170B1 (en) Method for withdrawing and filtering partial volumes of process fluid
US6905594B2 (en) Filter apparatus and methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
CN207689188U (en) Micro- plastics acquisition system in a kind of seawater
JP2001522042A (en) Method for mixing and separating particulate matter from fluid sample and particulate matter from fluid sample, and apparatus therefor
KR20090038430A (en) Chromatography columns, systems and methods
US4426295A (en) Cell suspension chamber process
JP2957262B2 (en) Microfiltration method and apparatus
JPS5953827B2 (en) Automatic sampling device and method
JPH0142727B2 (en)
US6423237B1 (en) Method and apparatus for manually separating particulate matter from a liquid specimen
US6418799B1 (en) Sampling apparatus
CN216639471U (en) Particulate matter capturing system
CN206350950U (en) A kind of wastewater suspended substance Multi-stage module filter
JPH0692930B2 (en) Separation membrane performance tester
CN213813004U (en) Rapid filtering device for micro-plastic in water sample
JPS641628Y2 (en)
CN212091716U (en) Intermediate product deep layer filtration system
CN220878397U (en) Full-automatic tangential flow filtration system
CN210103942U (en) Device for conveniently collecting exfoliated cells in large amount of body fluid
JPH03147778A (en) Sampling device of culture tank
GB2238003A (en) Sampling water
JPH0612330B2 (en) Photometer measuring device of effluent from centrifugal extractor.