JPS5953703B2 - Method for measuring minority carrier lifetime in semiconductors - Google Patents

Method for measuring minority carrier lifetime in semiconductors

Info

Publication number
JPS5953703B2
JPS5953703B2 JP10223280A JP10223280A JPS5953703B2 JP S5953703 B2 JPS5953703 B2 JP S5953703B2 JP 10223280 A JP10223280 A JP 10223280A JP 10223280 A JP10223280 A JP 10223280A JP S5953703 B2 JPS5953703 B2 JP S5953703B2
Authority
JP
Japan
Prior art keywords
minority carriers
lifetime
minority carrier
carrier lifetime
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10223280A
Other languages
Japanese (ja)
Other versions
JPS5727043A (en
Inventor
俊樹 伊藤
邦彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP10223280A priority Critical patent/JPS5953703B2/en
Publication of JPS5727043A publication Critical patent/JPS5727043A/en
Publication of JPS5953703B2 publication Critical patent/JPS5953703B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、半導体中の少数担体寿命測定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the lifetime of minority carriers in a semiconductor.

半導体中の少数担体寿命の測定方法としては、従来、P
N接合の逆方向回復特性やMOSc−を特性等を用いる
接触測定法と、マイクロ波をプローブとして、キセノン
、LED等の光を照射することによつて励起された少数
担体の時間的減衰過程を測定する非接触法とが知られて
いる。
Conventionally, as a method for measuring the minority carrier lifetime in semiconductors, P
A contact measurement method using the reverse recovery characteristics of N-junctions and MOSc- characteristics, etc., and the temporal decay process of minority carriers excited by irradiation with light from xenon, LED, etc. using microwaves as probes. A non-contact method for measuring is known.

ところで、前記非接触少数担体寿命測定系において、試
料に照射したマイクロ波の反射電力変化から少数担体寿
命を測定する場合、本発明者等は少数担体注入光の照射
時間が測定される少数担体寿命に比べて十分短かい場合
、少数担体減衰の初期経過時間が少なくとも少数担体寿
命の数倍程度の時間では、マイクロ波の反射電力変化Δ
P(を)、すなわち得られる信号は次式で与えられるこ
とを見い出した。
By the way, in the non-contact minority carrier lifetime measurement system, when measuring the minority carrier lifetime from the change in the reflected power of the microwave irradiated to the sample, the present inventors can measure the minority carrier lifetime by measuring the irradiation time of the minority carrier injection light. If the initial elapsed time of minority carrier decay is at least several times the minority carrier lifetime, the microwave reflected power change Δ
It has been found that P(), that is, the obtained signal, is given by the following equation.

ΔP(を)4−Π3を −■(1+ ) exp(−−)・・・・・・(1)△
P(O)doτここで、doは励起光源の直径、Dは拡
散定数、τは少数担体寿命である。
ΔP()4-Π3-■(1+) exp(--)・・・(1)△
P(O)doτ where do is the diameter of the excitation light source, D is the diffusion constant, and τ is the minority carrier lifetime.

そこで、この場合できるだけ小さな領域まで少数担体寿
命の測定ができるようにするために、励ノ起光源の直径
doを小さくしていつた場合、(1)式の第2項が無視
できな<なり、得られる信号は非指数関数になつてしま
う。
Therefore, in this case, if the diameter do of the excitation light source is made smaller in order to be able to measure the minority carrier lifetime in as small an area as possible, the second term in equation (1) cannot be ignored and becomes The resulting signal becomes a non-exponential function.

そのため、信号の減衰時定数が少数担体寿命τを表わさ
なくなるという不具合が生じてしまう。1 本発明はこ
のような不具合を解消でき、半導体基体中の少数担体の
寿命を良好に測定できる半導体中の少数担体寿命測定方
法を提案するものである。
Therefore, a problem arises in that the decay time constant of the signal no longer represents the minority carrier lifetime τ. 1. The present invention proposes a method for measuring the lifetime of minority carriers in a semiconductor, which can solve these problems and satisfactorily measure the lifetime of minority carriers in a semiconductor substrate.

すなわち、本発明によれば、励起された少数担フ体の空
間分布が時間的にほとんど変動しないという定常状態が
達成できるまで、励起光の照射をつづけた後、照射を止
め、その後の少数担体の減衰過程を観測することによつ
て、(1)式の第1項に相当する項は常に一定に保たれ
るので、励起光源のi直径を小さくしていつた場合でも
、信号の指数関数性が損われないことになる。
That is, according to the present invention, irradiation with excitation light is continued until a steady state is achieved in which the spatial distribution of excited minority carriers hardly changes over time, and then the irradiation is stopped. By observing the attenuation process, the term corresponding to the first term in equation (1) is always kept constant, so even if the i diameter of the excitation light source is made smaller, the exponential nature of the signal can be confirmed. will not be damaged.

したがつて、得られた信号のを=0の値から1/eに減
衰するのに要した時間が少数担体の寿命に一致し、信号
の減衰時定数から少数担体寿命の直読ができるようにな
る。以下、実施例にしたがつて本発明を説明する。
Therefore, the time required for the obtained signal to decay from the value of = 0 to 1/e matches the lifetime of the minority carrier, and the minority carrier lifetime can be directly read from the signal decay time constant. Become. The present invention will be described below with reference to Examples.

第]図に示すように、マイクロ波に対して透明な試料台
1の上に半導体基体からなる試料1aを載せ、その上側
からLED駆動回路6により照射時間および間隔を可変
にできるLEDlを照射し、試料中に少数担体を励起す
る。一方、試料台の下側からマイクロ波回路4により試
料1aにマイクロ波を照射し、その反射電力変化を検出
し、それをオシロスコープ5によつて観測する。ここで
、マイクロ波回路4はマイクロ波を発振するガン・ダイ
オード4a、そのマイクロ波を伝送する導波管4b、マ
イクロ波を分岐するサーキユレータ4C、およびマイク
ロ波を検波するミキサ・ダイオード4dにより構成され
る。オシロスコープ5に観測される信号は、絞り3の径
DOが大きい場合、LEDの照射時間にかかわらず例え
ば第3図Aに示す実験データのようにほ,ぼ指数関数と
なる。
As shown in Figure 1, a sample 1a made of a semiconductor substrate is placed on a sample stage 1 that is transparent to microwaves, and an LED 1 whose irradiation time and interval can be made variable is irradiated from above by an LED drive circuit 6. , to excite minority carriers in the sample. On the other hand, a microwave circuit 4 irradiates the sample 1a with microwaves from the lower side of the sample stand, detects a change in reflected power, and observes it with an oscilloscope 5. Here, the microwave circuit 4 is composed of a Gunn diode 4a that oscillates microwaves, a waveguide 4b that transmits the microwaves, a circulator 4C that branches the microwaves, and a mixer diode 4d that detects the microwaves. Ru. When the diameter DO of the aperture 3 is large, the signal observed by the oscilloscope 5 becomes an almost exponential function, as shown in the experimental data shown in FIG. 3A, for example, regardless of the LED irradiation time.

この実験データはLED照射時間さ100ns.d0が
5mmの場合で、縦軸が強度、横軸が時間を示す。一方
、絞り3の径DOを小さくしていくと、LEDの照射時
間が短かい場合、従来の方法では例えば第3図Bに示す
ように指数二関数からずれてしまう。この実験データは
LED照射時間さ100ns、径DOが上からDO=0
.7、1、1.5、2mmの場合で、座標は第3図Aと
同様である。次に、本発明にしたがい、第2図に示すL
ED.l駆動回路において、方形波発振回路7の可変抵
抗RVl,RV2を調整してパルス幅と周期を変え、電
流ブースタ8を通してLEDの照射時間を必要なだけ長
くとれば、信号の指数関数からのずれをなくし、得られ
る信号の減衰時定数から少数担体寿命を直読できるよう
にすることができる。
This experimental data shows that the LED irradiation time was 100 ns. When d0 is 5 mm, the vertical axis shows intensity and the horizontal axis shows time. On the other hand, when the diameter DO of the aperture 3 is made smaller, the conventional method deviates from the exponential bifunction as shown in FIG. 3B, for example, if the LED irradiation time is short. This experimental data shows that the LED irradiation time is 100 ns, and the diameter DO is DO = 0 from the top.
.. In the case of 7, 1, 1.5, and 2 mm, the coordinates are the same as in FIG. 3A. Next, in accordance with the present invention, L shown in FIG.
ED. l In the drive circuit, if the pulse width and period are changed by adjusting the variable resistors RVl and RV2 of the square wave oscillation circuit 7, and the LED irradiation time is made as long as necessary through the current booster 8, the deviation of the signal from the exponential function can be reduced. This makes it possible to directly read the minority carrier lifetime from the decay time constant of the obtained signal.

なおR1〜R4は抵抗、0Pは演算増幅器、Dl,D2
はダイオードである。以上述べた実施例では、方形波発
振回路7のパルス幅を変えるために可変抵抗を使用した
が、コンデンサCの代わりに可変コンデンサを使用して
もよい。
Note that R1 to R4 are resistors, 0P is an operational amplifier, Dl, D2
is a diode. In the embodiments described above, a variable resistor was used to change the pulse width of the square wave oscillation circuit 7, but a variable capacitor may be used instead of the capacitor C.

さらに、パルス幅が変えられるすべての方形波発振回路
において実施可能である。
Furthermore, it can be implemented in all square wave oscillator circuits in which the pulse width can be varied.

また、励起光としてはLEDに限られたものではなく、
半導体中に少数担体を発生しうるものであれば、本発明
の効果は何ら損われるものではないマイクロ波の照射領
域として、少数担体を励起する光の照射領域とその輪郭
に沿つて法線方向の外側に少なくとも前記少数担体の拡
散長だけ拡張した領域とを包含するようにし、かつ光の
照射継続時間を少なくとも少数担体の寿命の1倍以上に
して少数担体の空間的分布をほとんど定常状態にするこ
とにより、マイクロ波の反射信号強度がキヤリア濃度の
みの関数となるため、少数担体の寿命をマイクロ波信号
の減衰曲線から直読できるようになるという効果を発揮
する。
In addition, the excitation light is not limited to LEDs,
As long as minority carriers can be generated in the semiconductor, the effects of the present invention will not be impaired in any way. a region extended by at least the diffusion length of the minority carriers, and the duration of light irradiation is at least one times the lifetime of the minority carriers so that the spatial distribution of the minority carriers is almost in a steady state. By doing so, the reflected microwave signal intensity becomes a function only of the carrier concentration, so that the lifetime of minority carriers can be directly read from the attenuation curve of the microwave signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の概略的構成図、第
2図は第]図中LED駆動回路の詳細回路図、第3図A
,Bは実験データを示す図である。 1・・・・・・試料台、2・・・・・・LED(発光ダ
イオード)、3・・・・・・絞り、4・・・・・・マイ
タロ波回路、5・・・・・・オシロスコープ。
Figure 1 is a schematic configuration diagram of an apparatus for carrying out the method of the present invention, Figure 2 is a detailed circuit diagram of the LED drive circuit in Figure 3, and Figure 3A
, B are diagrams showing experimental data. 1...Sample stage, 2...LED (light emitting diode), 3...Aperture, 4...Mital wave circuit, 5... oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] 1 光照射により半導体基体中に少数担体を励起し、そ
の半導体基体にマイクロ波を放射し、その反射波又は透
過波の電力の時間変化から前記少数担体の再結合寿命を
測定する系において、マイクロ波の照射領域として前記
少数担体を励起する光の照射領域とその輪郭に沿つて法
線方向の外側に少なくとも前記少数担体の拡散長だけ拡
張した領域とを包含するようにし、かつ照射する光の照
射継続時間を前記少数担体の寿命の少なくとも1倍以上
にすることを特徴とする半導体中の少数担体寿命測定方
法。
1. In a system in which minority carriers are excited in a semiconductor substrate by light irradiation, microwaves are emitted to the semiconductor substrate, and the recombination lifetime of the minority carriers is measured from the time change in the power of the reflected wave or transmitted wave. The irradiation region of the wave includes the irradiation region of the light that excites the minority carriers and the region extending outward in the normal direction along the contour by at least the diffusion length of the minority carriers, and the irradiation region of the light A method for measuring the lifetime of minority carriers in a semiconductor, characterized in that the duration of irradiation is at least one time longer than the lifetime of the minority carriers.
JP10223280A 1980-07-24 1980-07-24 Method for measuring minority carrier lifetime in semiconductors Expired JPS5953703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10223280A JPS5953703B2 (en) 1980-07-24 1980-07-24 Method for measuring minority carrier lifetime in semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10223280A JPS5953703B2 (en) 1980-07-24 1980-07-24 Method for measuring minority carrier lifetime in semiconductors

Publications (2)

Publication Number Publication Date
JPS5727043A JPS5727043A (en) 1982-02-13
JPS5953703B2 true JPS5953703B2 (en) 1984-12-26

Family

ID=14321893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10223280A Expired JPS5953703B2 (en) 1980-07-24 1980-07-24 Method for measuring minority carrier lifetime in semiconductors

Country Status (1)

Country Link
JP (1) JPS5953703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189835U (en) * 1987-05-28 1988-12-06
JPH02501011A (en) * 1986-11-14 1990-04-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング For example, an indicator device with a liquid crystal cell for automobiles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130810A (en) * 1993-11-08 1995-05-19 Hitachi Ltd Method and apparatus for measuring carrier lifetime

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501011A (en) * 1986-11-14 1990-04-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング For example, an indicator device with a liquid crystal cell for automobiles
JPS63189835U (en) * 1987-05-28 1988-12-06

Also Published As

Publication number Publication date
JPS5727043A (en) 1982-02-13

Similar Documents

Publication Publication Date Title
DE69318845D1 (en) METHOD FOR SHORTENED AGING TESTING OF SEMICONDUCTOR COMPONENTS
US4581578A (en) Apparatus for measuring carrier lifetimes of a semiconductor wafer
US5081414A (en) Method for measuring lifetime of semiconductor material and apparatus therefor
US5153503A (en) Method and apparatus for measuring a carrier lifetime of iv group semiconductor
JPH03278442A (en) Method and device for evaluating surface condition of semiconductor substrate
Carlsson Accurate time-resolved laser spectroscopy on sodium and bismuth atoms
US5164664A (en) Method for the optical measurement of electrical potentials
US5760597A (en) Method of and apparatus for measuring lifetime of carriers in semiconductor sample
JPS5953703B2 (en) Method for measuring minority carrier lifetime in semiconductors
US3461547A (en) Process for making and testing semiconductive devices
JP2635732B2 (en) Optical fiber sensing method
KR930703602A (en) Method for measuring the concentration of minority carriers in semiconductor materials and apparatus therefor
JP3352239B2 (en) Voltage measuring device
US4018535A (en) Device for measuring energy transfer rates during lasing
JPH0512657B2 (en)
JP2002076081A (en) Semiconductor evaluation equipment
SU1689874A1 (en) Device for measuring charge carrier lifetime in semiconductor samples
JPH04168743A (en) Life time measuring instrument
JPS6243552A (en) Apparatus for measuring life time of minority carrier of semiconductor
JPH05157712A (en) Device and method for measuring magnetic resonance phenomenon
EP1290455A2 (en) Apparatus and method for producing an ion channel microprobe
JPH05226445A (en) Non-contact carrier diffusion length measuring device
JPH07260891A (en) Method and apparatus for measuring voltage
JPH0626941A (en) Optical temperature measuring instrument
JPS57206044A (en) Method for checking silicon wafer