JPH05157712A - Device and method for measuring magnetic resonance phenomenon - Google Patents

Device and method for measuring magnetic resonance phenomenon

Info

Publication number
JPH05157712A
JPH05157712A JP3324222A JP32422291A JPH05157712A JP H05157712 A JPH05157712 A JP H05157712A JP 3324222 A JP3324222 A JP 3324222A JP 32422291 A JP32422291 A JP 32422291A JP H05157712 A JPH05157712 A JP H05157712A
Authority
JP
Japan
Prior art keywords
sample
measured
magnetic resonance
measuring
resonance phenomenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324222A
Other languages
Japanese (ja)
Inventor
Katanobu Yokogawa
賢悦 横川
Keizo Suzuki
敬三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3324222A priority Critical patent/JPH05157712A/en
Publication of JPH05157712A publication Critical patent/JPH05157712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a fine region to be analyzed highly accurately by adding a means for casting light to a sample to be measured and a means for measuring resistivity of the sample to be measured to a magnetic resonance equipment. CONSTITUTION:A cavity resonator 2 is installed between poles of an electromagnet 1 and then a sample 3 to be measured is installed within the cavity resonator 2. A laser beam 4 is introduced through a window of the cavity resonator 2 and is converged at an optical system 5, thus enabling a fine region on a surface of the sample 3 to be irradiated. Furthermore, a micro wave is supplied from a micro wave transmitter 7 to the cavity resonator 2 through a waveguide 6 and then non-paired electrons within the sample 3 are turned into an electron spin resonance state by a magnetic field of the microwave and the electromagnet 1. By casting only a specific region with the laser beam 4, induction of carrier is limited to its neighborhood. Then, by detecting a change in life, etc., of a light-induced carrier accompanied by magnetic resonance phenomenon as a change in resistivity of the sample 3, a magnetic resonance only at the irradiated fine region can be detected highly sensitively and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気共鳴現象の測定方法
および測定装置にかかわり、特に、微小領域の磁気共鳴
現象を検出するのに好適な測定方法および測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance phenomenon measuring method and measuring apparatus, and more particularly to a measuring method and measuring apparatus suitable for detecting a magnetic resonance phenomenon in a minute region.

【0002】[0002]

【従来の技術】従来の磁気共鳴現象の測定装置、特に、
電子スピン共鳴〔以下、ESR(Electron Spin Resonan
ce)という〕現象の測定装置については、例えば、栗田
雄喜生:電子スピン共鳴入門(昭和50年3月2日発
行)第9項〜第19項(講談社,東京)に解説されてい
る。このESR現象の測定原理は、要約すると以下のと
おりである。
2. Description of the Related Art Conventional measuring devices for magnetic resonance phenomena, in particular,
Electron spin resonance [hereinafter referred to as ESR (Electron Spin Resonan
ce)] is described in, for example, Yukio Kurita: Introduction to electron spin resonance (published March 2, 1975), paragraphs 9 to 19 (Kodansha, Tokyo). The measurement principle of this ESR phenomenon is summarized as follows.

【0003】静磁場中での電子の磁気モーメント(電子
のスピンによる)のエネルギは量子化されて分離した準
位が生じる。この準位間のエネルギに対応する周波数の
交流磁場または電磁波を印加すると、主として共鳴吸収
を起こす。この現象は磁気共鳴と称され、磁気モーメン
トが電子スピンである場合には電子スピン共鳴(ESR)と
言い、核スピンである場合には核磁気共鳴(NMR)と
言われている。そして、電子スピンの磁気共鳴の場合に
は、主としてマイクロ波の領域でこの現象が起こり、例
えば、半導体では、ESRの共鳴周波数,線幅,強度な
どの測定から、バンド構造,結晶の不完全性,緩和機構
等、物質の内部状態に関する重要な情報がえられる。よ
って、現在、例えば半導体の欠陥量の計測などにおいて
重要な役割を果たしている。
The energy of the electron's magnetic moment (due to the electron's spin) in a static magnetic field is quantized to produce discrete levels. When an alternating magnetic field or an electromagnetic wave having a frequency corresponding to the energy between the levels is applied, resonance absorption mainly occurs. This phenomenon is called magnetic resonance, and is called electron spin resonance (ESR) when the magnetic moment is an electron spin, and nuclear magnetic resonance (NMR) when it is a nuclear spin. Then, in the case of magnetic resonance of electron spin, this phenomenon mainly occurs in the microwave region. For example, in semiconductors, the band structure and crystal imperfections are found from the measurement of ESR resonance frequency, line width, intensity, and the like. , Important information about the internal state of the substance such as relaxation mechanism can be obtained. Therefore, it currently plays an important role in, for example, measuring the amount of defects in semiconductors.

【0004】[0004]

【発明が解決しようとする課題】従来の磁気共鳴現象の
測定装置では、被測定試料中の微小な領域のESR現象
の測定が不可能であり、局所的に構造あるいは組成が異
なるような被測定試料への評価が困難であるという問題
があった。
The conventional magnetic resonance phenomenon measuring apparatus cannot measure the ESR phenomenon in a minute region of the sample to be measured, and the structure or composition is locally different. There is a problem that evaluation of the sample is difficult.

【0005】本発明の目的は、従来技術では不可能であ
った微小領域の分析を高感度で行なうことができる磁気
共鳴現象の測定方法とその装置を提供することにある。
An object of the present invention is to provide a method for measuring a magnetic resonance phenomenon and an apparatus therefor capable of highly sensitively analyzing a minute region, which was impossible in the prior art.

【0006】[0006]

【課題を解決するための手段】上述した問題を解決する
手段として、従来の装置構成に加え被測定試料に光を照
射する手段と被測定試料の抵抗率を計測する手段を付加
する。
As means for solving the above problems, in addition to the conventional apparatus configuration, means for irradiating the sample to be measured with light and means for measuring the resistivity of the sample to be measured are added.

【0007】[0007]

【作用】上記手段により、局所的に光照射を行なうこと
で、光照射された領域だけの磁気共鳴現象に伴う光誘起
キャリアの寿命等の変化を抵抗率の変化として検出す
る。これにより、光照射された微小な領域のみの磁気共
鳴を高感度に検出できる。
By locally irradiating light with the above means, a change in the life of the photo-induced carriers or the like due to the magnetic resonance phenomenon of only the light-irradiated region is detected as a change in resistivity. This makes it possible to detect the magnetic resonance of only a minute region irradiated with light with high sensitivity.

【0008】[0008]

【実施例】本発明の実施例を図1および図2を用い説明
する。図1は本発明の基本構成図である。電磁石1の極
間に空洞共振器2が設置されている。この空洞共振器2
中に被測定試料3が設置される。また、空洞共振器2の
窓を介し、レーザ光4が導入される。このレーザ光4は
光学系5により収束され、被測定試料3の表面上に照射
される。さらに、空洞共振器2には、導波管6を介し、
マイクロ波発信器7よりマイクロ波が供給されている。
このマイクロ波と電磁石1の磁場により、被測定試料3
中の不対電子を電子スピン共鳴状態にできる。
Embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a basic configuration diagram of the present invention. The cavity resonator 2 is installed between the poles of the electromagnet 1. This cavity resonator 2
The sample 3 to be measured is installed therein. Further, the laser light 4 is introduced through the window of the cavity resonator 2. The laser light 4 is converged by the optical system 5 and is irradiated onto the surface of the sample 3 to be measured. Further, to the cavity resonator 2 via the waveguide 6,
Microwaves are supplied from the microwave transmitter 7.
By the microwave and the magnetic field of the electromagnet 1, the sample to be measured 3
The unpaired electron inside can be brought into an electron spin resonance state.

【0009】図2は図1中で示した被測定試料3の詳し
い説明図である。ここで示されている被測定試料は単結
晶シリコン基板の上にアモルファスシリコンを付けたも
のである。また、アモルファスシリコン上には真空蒸着
により約10nm厚のアルミ膜が蒸着されている。この
アルミ膜と単結晶シリコン基板間にはリード線が接続さ
れており、アルミ膜と単結晶シリコン基板間の抵抗が測
定できる。
FIG. 2 is a detailed explanatory view of the sample 3 to be measured shown in FIG. The sample to be measured shown here is a single crystal silicon substrate on which amorphous silicon is attached. An aluminum film having a thickness of about 10 nm is vapor-deposited on the amorphous silicon by vacuum vapor deposition. A lead wire is connected between the aluminum film and the single crystal silicon substrate, and the resistance between the aluminum film and the single crystal silicon substrate can be measured.

【0010】通常の電子スピン共鳴装置では被測定試料
3が設置されている空洞共振器に一定振動数のマイクロ
波を供給する。さらに空洞共振器2に電磁石1により適
当な大きさの磁場を印加し、この磁場の大きさをある範
囲で掃引する。このときの空洞共振器2からのマイクロ
波の反射量(あるいは透過量)の変化を磁場の大きさの
関数として出力する。実際には測定の感度を向上させる
ために電磁石1の磁場に加え適当な周波数の振動磁場を
印加している。つまり、この振動磁場に依存するマイク
ロ波の変化を検出する。測定例を図3に示す。このスペ
クトルはアモルファスシリコン中のシリコンのダングリ
ングボンドによるものである。図3のスペクトルは前記
したように振動磁場に依存する信号を検知した結果であ
るため微分波形となっている。
In a usual electron spin resonance apparatus, a microwave having a constant frequency is supplied to the cavity resonator in which the sample 3 to be measured is installed. Furthermore, a magnetic field of an appropriate magnitude is applied to the cavity resonator 2 by the electromagnet 1, and the magnitude of this magnetic field is swept within a certain range. The change in the reflection amount (or transmission amount) of microwaves from the cavity resonator 2 at this time is output as a function of the magnitude of the magnetic field. In practice, an oscillating magnetic field having an appropriate frequency is applied in addition to the magnetic field of the electromagnet 1 in order to improve the measurement sensitivity. That is, the change of the microwave depending on the oscillating magnetic field is detected. A measurement example is shown in FIG. This spectrum is due to dangling bonds of silicon in amorphous silicon. The spectrum of FIG. 3 is a differential waveform because it is the result of detecting the signal that depends on the oscillating magnetic field as described above.

【0011】本発明を実施する場合も上記従来法とほぼ
同じ手順で計測される。ただし、大きく分けて次の二点
で従来法と大きく異なる。まず第一点目は、被測定試料
3に光を照射する点である。これは、被測定試料中にキ
ャリアを誘起させるのが目的である。第二点目は、磁場
の大きさの関数としてマイクロ波電力の変化を検出する
のでなく、被測定試料の抵抗率の変化を検出する点であ
る。
When the present invention is carried out, the measurement is carried out in substantially the same procedure as the above-mentioned conventional method. However, there are two major differences from the conventional method. First, the first point is that the measured sample 3 is irradiated with light. The purpose of this is to induce carriers in the sample to be measured. The second point is that instead of detecting the change in microwave power as a function of the magnitude of the magnetic field, the change in resistivity of the sample under test is detected.

【0012】以下に本発明による測定の原理を説明す
る。固体の電気伝導度σは数1のようにあらわされる。
ここでnおよびpはキャリア(電子および正孔)の密
度、μn およびμp はそれぞれのキャリアの移動度、q
は単位電荷を表す。また、この電気伝導度を真性半導体
(シリコン)に光を照射した時の場合で考えるとキャリ
ア密度は数2の様に表すことができる。ここでn0 ,p
0 は光照射によって単位時間に誘起される伝導電子およ
び正孔の数、τn ,τp は誘起された伝導電子および正
孔の平均寿命を表す。この式から分かるようにキャリア
密度はキャリアの寿命τに関係していることが分かる。
すなわち、電気伝導度はキャリアの寿命に関係している
といえる。
The principle of measurement according to the present invention will be described below. The electric conductivity σ of a solid is expressed as in Equation 1.
Here, n and p are the densities of carriers (electrons and holes), μ n and μ p are the mobilities of the respective carriers, and q
Represents a unit charge. Considering this electric conductivity in the case of irradiating the intrinsic semiconductor (silicon) with light, the carrier density can be expressed as shown in Equation 2. Where n 0 , p
0 is the number of conduction electrons and holes induced per unit time by light irradiation, and τ n and τ p are the average lifetimes of the conduction electrons and holes induced. As can be seen from this equation, the carrier density is related to the carrier life τ.
That is, it can be said that the electric conductivity is related to the life of the carrier.

【0013】[0013]

【数1】 σ=nqμn+pqμp …(数1)## EQU1 ## σ = nqμ n + pqμ p (Equation 1)

【0014】[0014]

【数2】 n=n0τn , p=q0τp …(数2) 真性半導体ではフリーキャリアの濃度が非常に低く、電
気伝導度は小さい、しかし、この真性半導体にバンドギ
ャップエネルギ以上の波長の光を照射するとフリーキャ
リアが多数誘起され電気伝導度が上昇する。普通、温度
および照射する光が一定ならば電気伝導度も一定とな
る。しかし、半導体内に存在する欠陥(不対電子を有す
る欠陥)を電子スピン共鳴状態にすることで、この電気
伝導度を変化させることができる。説明したように電気
伝導度はキャリアの寿命に関係している。つまり、キャ
リアの寿命が変化することで電気伝導度に変化を与える
ことができる。
N = n 0 τ n , p = q 0 τ p (Equation 2) In an intrinsic semiconductor, the free carrier concentration is very low and the electric conductivity is small, but the intrinsic semiconductor has a bandgap energy higher than that. When light of the wavelength is irradiated, a large number of free carriers are induced and the electric conductivity is increased. Usually, if the temperature and the irradiation light are constant, the electric conductivity is also constant. However, this electrical conductivity can be changed by bringing a defect (a defect having an unpaired electron) existing in the semiconductor into an electron spin resonance state. As explained, the electric conductivity is related to the carrier lifetime. That is, it is possible to change the electric conductivity by changing the life of the carrier.

【0015】電子スピン共鳴によるこの電気伝導度の変
化に関しては、詳しくは〔伊達宗行責任編集,共立出版
株式会社発行,実験物理学講座24,電波物性〕の第3
20項から327項に記されている。ここでは、図4を
用いて簡単に説明する。図4は半導体のバンド構造を簡
単に表した物である。図中の伝導帯に存在する電子は光
照射によって価電子帯より誘起されたものである。この
電子(あるいは価電子帯の正孔)により電気伝導が引き
起こされる。この電子はある寿命をもって正孔と再結合
してしまう。再結合はバンドギャップ中の欠陥による準
位Ed を介して行なわれる。この欠陥が測定対象であ
り、従来の電子スピン共鳴装置においてマイクロ波電力
の変化として検出されていたものである。しかし、伝導
帯の電子のスピンの向きと欠陥準位Ed にある不対電子
のスピンの向きが等しい時、伝導帯の電子は欠陥準位へ
の遷移が禁止されるので再結合できず、これら電子のス
ピンの向きが反並行のときには遷移が許され再結合が行
なわれる。よって、欠陥による不対電子のスピンの向き
を磁場とマイクロ波による電子スピン共鳴で反転させれ
ば、非共鳴状態の時に比べ再結合確率が変化し電気伝導
度を変化させることができる。この電気伝導度の変化を
被測定試料に印加する磁場の大きさの関数として出力す
れば、この結果は通常の電子スピン共鳴と同等の情報を
あたえることになる。また、照射する光を光学系により
絞り、特定領域のみ照射するようにすれば、キャリアは
その近辺にしか誘起されない。よって、光が照射された
微小な領域における欠陥の電子スピン共鳴現象の測定が
可能となる。
Details of this change in electrical conductivity due to electron spin resonance are described in [Muneyuki Date, edited by Kyoritsu Shuppan Co., Ltd., Experimental physics course 24, Radio wave physical properties], No. 3.
20 to 327. Here, a brief description will be given with reference to FIG. FIG. 4 is a simplified representation of the semiconductor band structure. The electrons existing in the conduction band in the figure are induced by the valence band by light irradiation. The electrons (or holes in the valence band) cause electrical conduction. These electrons recombine with holes with a certain lifetime. Recombination takes place via the level E d due to defects in the bandgap. This defect is an object to be measured and is detected as a change in microwave power in the conventional electron spin resonance apparatus. However, when the spin direction of the electron in the conduction band is equal to the spin direction of the unpaired electron in the defect level E d , the electron in the conduction band cannot be recombined because the transition to the defect level is prohibited, When the spin directions of these electrons are antiparallel, transitions are allowed and recombination occurs. Therefore, if the spin direction of unpaired electrons due to defects is reversed by electron spin resonance due to a magnetic field and microwaves, the recombination probability changes and the electrical conductivity can be changed compared to when in a non-resonant state. If this change in electrical conductivity is output as a function of the magnitude of the magnetic field applied to the sample to be measured, this result will give information equivalent to ordinary electron spin resonance. Further, if the irradiation light is focused by an optical system so that only a specific area is irradiated, carriers are induced only in the vicinity thereof. Therefore, it is possible to measure the electron spin resonance phenomenon of a defect in a minute area irradiated with light.

【0016】電子スピン共鳴による電気伝導度の変化は
上記した機構以外にも幾つか存在するが(例えば欠陥に
よるキャリアの散乱断面積の変化等)、その詳しい内容
は〔伊達宗行責任編集,共立出版株式会社発行,実験物
理学講座24,電波物性〕の第320項から327項に
記されている。
Although there are some changes in the electric conductivity due to electron spin resonance other than the above mechanism (for example, changes in carrier scattering cross section due to defects), the detailed contents are described in [Muneyuki Date, Responsible Editor, Kyoritsu Published by Publishing Co., Ltd., Laboratory of Experimental Physics 24, Physical Properties of Radio Waves], paragraphs 320 to 327.

【0017】実際の測定結果を図5に示す。この結果は
図1の装置構成で磁場とマイクロ波を供給し、図2のア
モルファスシリコンを評価した結果である。この結果は
光を約2mm径の大きさにしぼり、試料に照射したときの
アルミ電極とバルクシリコン間のアモルファスシリコン
の伝導度変化を磁場の大きさの関数で表示したものであ
る(実際は抵抗12での電圧の変化を検出している)。
図3の通常の電子スピン共鳴装置による測定結果とほぼ
同じ位置(磁場の大きさ)に伝導度の変化がある事が分
かる。このスペクトルは図3のものと異なり、変調磁場
を印加しておらず信号検出も静磁場の大きさに対する伝
導度の大きさでしかおこなっていないので微分波形とな
っていない。ただし、従来装置と同様に静磁場に変調磁
場を印加し、その変調成分に依存する電気伝導度の変化
を検出することで、信号/雑音比の良い計測が可能なこ
とは言うまでもない。
The actual measurement result is shown in FIG. This result is the result of evaluating the amorphous silicon of FIG. 2 by supplying the magnetic field and the microwave with the device configuration of FIG. This result represents the change in conductivity of amorphous silicon between the aluminum electrode and the bulk silicon as a function of the magnetic field when the sample is irradiated with light having a diameter of about 2 mm (actually, the resistance 12 Has detected a change in voltage).
It can be seen that the conductivity changes at almost the same position (magnitude of magnetic field) as the measurement result by the ordinary electron spin resonance apparatus of FIG. Unlike in FIG. 3, this spectrum is not a differential waveform because no modulation magnetic field is applied and signal detection is performed only with the magnitude of conductivity with respect to the magnitude of the static magnetic field. However, it is needless to say that a good signal / noise ratio can be measured by applying a modulating magnetic field to a static magnetic field as in the conventional device and detecting a change in electrical conductivity depending on the modulating component.

【0018】本実施例では測定を室温でおこなっている
が、液体ヘリウムあるいは液体窒素等を用いた冷却装置
で被測定試料を冷却することで、高感度な検出ができる
ことは電子スピン共鳴の原理より言うまでもない。
Although the measurement is carried out at room temperature in this embodiment, the fact that the sample to be measured is cooled with a cooling device using liquid helium, liquid nitrogen or the like makes it possible to carry out highly sensitive detection according to the principle of electron spin resonance. Needless to say.

【0019】[0019]

【発明の効果】本発明により従来の電子スピン共鳴装置
では非常に困難であった微小領域の電子スピン共鳴現象
の測定を可能とし、検出を高感度に行なうことができ
る。
According to the present invention, it is possible to measure an electron spin resonance phenomenon in a minute region, which is very difficult with a conventional electron spin resonance apparatus, and to perform detection with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成の説明図。FIG. 1 is an explanatory diagram of a basic configuration of the present invention.

【図2】本実施例に用いた被測定試料の説明図。FIG. 2 is an explanatory diagram of a sample to be measured used in this example.

【図3】従来装置によるアモルファスシリコンの測定例
の説明図。
FIG. 3 is an explanatory diagram of a measurement example of amorphous silicon by a conventional device.

【図4】本発明の原理の説明図。FIG. 4 is an explanatory diagram of the principle of the present invention.

【図5】本発明による測定結果の特性図。FIG. 5 is a characteristic diagram of measurement results according to the present invention.

【符号の説明】[Explanation of symbols]

1…電磁石、2…空洞共振器、3…被測定試料、4…
光、5…光学系、6…窓、7…マイクロ波発振器、8…
導波管、9…試料ホルダ、10…増幅器、11…定電圧
電源、12…抵抗。
1 ... Electromagnet, 2 ... Cavity resonator, 3 ... Sample to be measured, 4 ...
Light, 5 ... Optical system, 6 ... Window, 7 ... Microwave oscillator, 8 ...
Waveguide, 9 ... Sample holder, 10 ... Amplifier, 11 ... Constant voltage power supply, 12 ... Resistor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01R 33/30 9118−2J G01N 24/10 S 9118−2J Z 9118−2J H ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G01R 33/30 9118-2J G01N 24/10 S 9118-2J Z 9118-2J H

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】エネルギを分離させたスピン系に、その分
離幅もしくは分離幅近傍のエネルギに相当する電磁波を
供給する手段を設けた磁気共鳴装置において、磁気共鳴
状態におけるスピン系をもった被測定試料の電気伝導度
変化を検出する手段を備えたことを特徴とする磁気共鳴
現象の測定装置。
1. A magnetic resonance apparatus provided with means for supplying an electromagnetic wave corresponding to the separation width or energy in the vicinity of the separation width to a spin system with separated energy, to be measured with the spin system in a magnetic resonance state. An apparatus for measuring a magnetic resonance phenomenon, comprising a means for detecting a change in electrical conductivity of a sample.
【請求項2】請求項1において、スピン系のエネルギを
分離させる手段が、磁場印加手段である磁気共鳴現象の
測定装置。
2. A magnetic resonance phenomenon measuring apparatus according to claim 1, wherein the means for separating the energy of the spin system is a magnetic field applying means.
【請求項3】請求項1または2において、前記被測定試
料のスピン系の分離幅もしくは分離幅近傍のエネルギに
相当する電磁波を供給する手段が、マイクロ波もしくは
ラジオ波領域の電磁波を供給する手段である磁気共鳴現
象の測定装置。
3. The means for supplying an electromagnetic wave corresponding to the separation width of a spin system of a sample to be measured or energy in the vicinity of the separation width according to claim 1, or a means for supplying an electromagnetic wave in a microwave or radio wave region. An apparatus for measuring the magnetic resonance phenomenon.
【請求項4】請求項1,2または3において、前記被測
定試料への電磁波を供給する手段に、空洞共振器を用い
る磁気共鳴現象の測定装置。
4. The magnetic resonance phenomenon measuring device according to claim 1, wherein a means for supplying an electromagnetic wave to the sample to be measured uses a cavity resonator.
【請求項5】請求項1,2,3または4において、前記
被測定試料に被測定試料中にキャリアを誘起する目的
で、光を照射する手段をもった磁気共鳴現象の測定装
置。
5. A magnetic resonance phenomenon measuring apparatus according to claim 1, 2, 3 or 4, further comprising means for irradiating light to the sample to be measured in order to induce carriers in the sample to be measured.
【請求項6】請求項5において、前記光照射手段の光を
適当な大きさに絞って前記被測定試料に照射し、前記被
測定試料の微小な特定領域のみにキャリアを誘起する手
段を設けた請求項1ないし5に記載の磁気共鳴現象の測
定装置。
6. A means for irradiating the sample to be measured with the light of the light irradiating means focused to an appropriate size and inducing carriers only in a minute specific region of the sample to be measured. The measuring device for the magnetic resonance phenomenon according to claim 1.
【請求項7】請求項1,2,3,4,5または6におい
て、前記被測定試料の表面に電極を形成し、この電極と
被測定試料間の電気伝導度を計測する手段をもった磁気
共鳴現象の測定装置。
7. The method according to claim 1, 2, 3, 4, 5 or 6, further comprising means for forming an electrode on the surface of the sample to be measured and measuring the electric conductivity between the electrode and the sample to be measured. Measuring device for magnetic resonance phenomenon.
【請求項8】請求項5または6の前記光照射手段におい
て、微小な領域に絞り込んだ光スポットを被測定試料表
面で二次元的に走査可能な構造である請求項1ないし7
に記載の磁気共鳴現象の測定装置。
8. The light irradiating means according to claim 5 or 6, wherein the surface of the sample to be measured is two-dimensionally scanned with a light spot narrowed down to a minute area.
A measuring device for the magnetic resonance phenomenon according to.
【請求項9】請求項7に記載の被測定試料表面に形成す
る電極は請求項5または6に記載の光が透過できる厚さ
である請求項1ないし8に記載の磁気共鳴現象の測定装
置。
9. An apparatus for measuring a magnetic resonance phenomenon according to claim 1, wherein the electrode formed on the surface of the sample to be measured according to claim 7 has a thickness capable of transmitting the light according to claim 5 or 6. ..
【請求項10】請求項1ないし9において、前記被測定
試料を液体ヘリウムまたは液体窒素を用いた冷却装置に
より冷却可能な磁気共鳴現象の測定装置。
10. An apparatus for measuring a magnetic resonance phenomenon according to claim 1, wherein the sample to be measured can be cooled by a cooling device using liquid helium or liquid nitrogen.
【請求項11】請求項1ないし10において、前記磁場
印加手段の磁場の大きさを適当な速さ及び範囲で走査可
能な構造である磁気共鳴現象の測定装置。
11. The magnetic resonance phenomenon measuring device according to claim 1, which has a structure capable of scanning the magnitude of the magnetic field of the magnetic field applying means at an appropriate speed and range.
【請求項12】請求項1ないし11において、前記磁場
印加手段に加え、前記被測定試料に変調磁場を印加する
ことが可能な磁気共鳴現象の測定装置。
12. A magnetic resonance phenomenon measuring apparatus according to claim 1, wherein, in addition to the magnetic field applying means, a modulation magnetic field can be applied to the sample to be measured.
【請求項13】請求項1ないし12において、請求項7
の電気伝導の変化を検出する手段で、前記変調磁場の振
動数あるいは周期に依存する電気伝導の変化を検出する
ことが可能な磁気共鳴現象の測定装置。
13. The method according to any one of claims 1 to 12, wherein:
A magnetic resonance phenomenon measuring apparatus capable of detecting a change in electric conduction depending on a frequency or a cycle of the modulating magnetic field by means for detecting a change in electric conduction.
【請求項14】エネルギを分離させたスピン系に、その
分離幅もしくは分離幅近傍のエネルギに相当する電磁波
を供給する手段をもつ磁気共鳴装置において、磁気共鳴
状態におけるスピン系を有する被測定試料の電気伝導度
変化を検出手段を備えた磁気共鳴現象の測定方法。
14. A magnetic resonance apparatus having means for supplying an electromagnetic wave corresponding to energy in or near a separation width to a spin system in which energy is separated, in a sample to be measured having a spin system in a magnetic resonance state. A method for measuring a magnetic resonance phenomenon, comprising a means for detecting a change in electrical conductivity.
【請求項15】スピン系のエネルギを分離させる手段
が、磁場印加手段である請求項14に記載の磁気共鳴現
象の測定方法。
15. The method for measuring a magnetic resonance phenomenon according to claim 14, wherein the means for separating the energy of the spin system is a magnetic field applying means.
【請求項16】請求項14または15において、前記被
測定試料のスピン系の分離幅もしくは分離幅近傍のエネ
ルギに相当する電磁波を供給する手段が、マイクロ波も
しくはラジオ波領域の電磁波を供給する手段である磁気
共鳴現象の測定方法。
16. The means for supplying an electromagnetic wave corresponding to the separation width of a spin system of a sample to be measured or energy in the vicinity of the separation width according to claim 14, or a means for supplying an electromagnetic wave in a microwave or radio wave region. Is a method of measuring the magnetic resonance phenomenon.
【請求項17】請求項14,15または16において、
前記被測定試料への電磁波を供給する手段に、空洞共振
器を用いる磁気共鳴現象の測定方法。
17. The method according to claim 14, 15 or 16,
A method for measuring a magnetic resonance phenomenon, wherein a cavity resonator is used as a means for supplying an electromagnetic wave to the sample to be measured.
【請求項18】請求項14,15,16または17にお
いて、前記被測定試料に被測定試料中にキャリアを誘起
するため、光を照射する手段をもつ磁気共鳴現象の測定
方法。
18. The method for measuring a magnetic resonance phenomenon according to claim 14, 15, 16 or 17, further comprising means for irradiating the sample to be measured with light in order to induce carriers in the sample to be measured.
【請求項19】請求項14,15,16,17または1
8において、光を適当な大きさに絞って被測定試料に照
射し、被測定試料の微小な特定領域のみにキャリアを誘
起する手段をもつ磁気共鳴現象の測定方法。
19. A method according to claim 14, 15, 16, 17 or 1.
8. The method for measuring a magnetic resonance phenomenon according to 8, having a means for irradiating a sample to be measured with light reduced to an appropriate size and inducing carriers only in a minute specific region of the sample to be measured.
【請求項20】請求項14,15,16,17,18ま
たは19において、前記被測定試料の表面に電極を形成
し、この電極と被測定試料間の電気伝導度を計測する手
段をもつ磁気共鳴現象の測定方法。
20. The magnetic device according to claim 14, 15, 16, 17, 18, or 19, wherein an electrode is formed on the surface of the sample to be measured, and the electric conductivity between the electrode and the sample to be measured is measured. Method of measuring resonance phenomenon.
【請求項21】請求項18または19の光照射手段で、
微小な領域に絞り込んだ光スポットを被測定試料表面で
二次元的に走査可能な構造である請求項14ないし20
に記載の磁気共鳴現象の測定方法。
21. The light irradiation means according to claim 18 or 19,
21. A structure capable of two-dimensionally scanning a surface of a sample to be measured with a light spot narrowed down to a minute area.
The method for measuring a magnetic resonance phenomenon described in.
【請求項22】請求項20に記載の被測定試料表面に形
成する電極は請求項18または19に記載の光が透過で
きる厚さである請求項14ないし21に記載の磁気共鳴
現象の測定方法。
22. The method for measuring a magnetic resonance phenomenon according to claim 14, wherein the electrode formed on the surface of the sample to be measured according to claim 20 has a thickness capable of transmitting the light according to claim 18 or 19. ..
【請求項23】請求項14ないし22において、前記被
測定試料を液体ヘリウムまたは液体窒素を用いた冷却装
置により冷却可能な磁気共鳴現象の測定方法。
23. The method for measuring a magnetic resonance phenomenon according to claim 14, wherein the sample to be measured can be cooled by a cooling device using liquid helium or liquid nitrogen.
【請求項24】請求項14ないし23において、請求項
15に記載の磁場印加手段で、この磁場の大きさを適当
な速さ及び範囲で走査可能な構造である磁気共鳴現象の
測定方法。
24. A method for measuring a magnetic resonance phenomenon according to any one of claims 14 to 23, wherein the magnetic field applying means according to claim 15 has a structure capable of scanning the magnitude of the magnetic field at an appropriate speed and range.
【請求項25】請求項14ないし24において、前記磁
場印加手段に加え、被測定試料に変調磁場を印加するこ
とが可能な磁気共鳴現象の測定方法。
25. A method for measuring a magnetic resonance phenomenon according to claim 14, wherein a modulation magnetic field can be applied to the sample to be measured in addition to the magnetic field applying means.
【請求項26】請求項14ないし25において、請求項
20に記載の電気伝導の変化を検出する手段で、請求項
25に記載の変調磁場の振動数あるいは周期に依存する
電気伝導の変化を検出することが可能な磁気共鳴現象の
測定方法。
26. In any one of claims 14 to 25, the means for detecting a change in electric conduction according to claim 20 detects a change in electric conduction depending on the frequency or the cycle of the modulating magnetic field according to claim 25. A method of measuring a magnetic resonance phenomenon that can be performed.
JP3324222A 1991-12-09 1991-12-09 Device and method for measuring magnetic resonance phenomenon Pending JPH05157712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324222A JPH05157712A (en) 1991-12-09 1991-12-09 Device and method for measuring magnetic resonance phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324222A JPH05157712A (en) 1991-12-09 1991-12-09 Device and method for measuring magnetic resonance phenomenon

Publications (1)

Publication Number Publication Date
JPH05157712A true JPH05157712A (en) 1993-06-25

Family

ID=18163408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324222A Pending JPH05157712A (en) 1991-12-09 1991-12-09 Device and method for measuring magnetic resonance phenomenon

Country Status (1)

Country Link
JP (1) JPH05157712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051850A (en) * 2005-08-19 2007-03-01 Kentaro Yamaguchi Liquid helium recondensation device and method for analytical superconductive magnet
WO2010041393A1 (en) * 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method
WO2011043042A1 (en) * 2009-10-08 2011-04-14 株式会社日立製作所 Sample holder for electricity-detection electron spin resonance device
JP2011185748A (en) * 2010-03-09 2011-09-22 Jeol Resonance Inc Cavity resonator for esr apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051850A (en) * 2005-08-19 2007-03-01 Kentaro Yamaguchi Liquid helium recondensation device and method for analytical superconductive magnet
WO2010041393A1 (en) * 2008-10-06 2010-04-15 国立大学法人 筑波大学 Electron spin measurement device and measurement method
KR20110079713A (en) * 2008-10-06 2011-07-07 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Electorn spin measurement device and measurement method
US8779766B2 (en) 2008-10-06 2014-07-15 University Of Tsukuba Electron spin measurement device and measurement method
JP5578436B2 (en) * 2008-10-06 2014-08-27 国立大学法人 筑波大学 Electron spin measuring apparatus and measuring method
WO2011043042A1 (en) * 2009-10-08 2011-04-14 株式会社日立製作所 Sample holder for electricity-detection electron spin resonance device
JP2011080884A (en) * 2009-10-08 2011-04-21 Hitachi Ltd Sample holder for electricity-detection electron spin resonance device
US9018954B2 (en) 2009-10-08 2015-04-28 Hitachi, Ltd. Sample holder for electricity-detection electron spin resonance device
JP2011185748A (en) * 2010-03-09 2011-09-22 Jeol Resonance Inc Cavity resonator for esr apparatus

Similar Documents

Publication Publication Date Title
US5025145A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
Vardeny et al. Method for direct determination of the effective correlation energy of defects in semiconductors: optical modulation spectroscopy of dangling bonds
US4286215A (en) Method and apparatus for the contactless monitoring carrier lifetime in semiconductor materials
JPH0731139B2 (en) Non-contact nondestructive inspection method and inspection apparatus for surface layer of test object made of photo-sensitive semiconductor material
US5177351A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
EP0470692A2 (en) Method and apparatus for measuring a deep inpurity level of a semiconductor crystal
US5081414A (en) Method for measuring lifetime of semiconductor material and apparatus therefor
US4087745A (en) Technique for contactless characterization of semiconducting material and device structures
Beck et al. Contactless scanner for photoactive materials using laser‐induced microwave absorption
US11585841B1 (en) Low-frequency atomic electrometry
US6653850B2 (en) Surface passivation method and arrangement for measuring the lifetime of minority carriers in semiconductors
JPH04313085A (en) Optical measuring method for potential
JPH05157712A (en) Device and method for measuring magnetic resonance phenomenon
Petek et al. Time-resolved domain dynamics in thin-film heads
Sheard et al. Non-contacting determination of carrier lifetime and surface recombination velocity using photothermal radiometry
US4569728A (en) Selective anodic oxidation of semiconductors for pattern generation
Grabtchak et al. Contactless microwave study of dispersive transport in thin film CdSe
US4887037A (en) Electron spin resonance spectrometer
KR930703602A (en) Method for measuring the concentration of minority carriers in semiconductor materials and apparatus therefor
Seliger et al. A study of backside laser-probe signals in MOSFETs
RU2395448C1 (en) Method for determination of nanoparticles dimensions and device for measurement of electron paramagnet resonance spectrum
JPH07240450A (en) Method for measuring carrier life
JPH0540100A (en) Apparatus and method for inspecting surface
Mendz et al. Photoconductive resonance in silicon: theory and experiment
US4316147A (en) Apparatus for determining the composition of mercury-cadmium-telluride and other alloy semiconductors