JPH04168743A - Life time measuring instrument - Google Patents

Life time measuring instrument

Info

Publication number
JPH04168743A
JPH04168743A JP29614190A JP29614190A JPH04168743A JP H04168743 A JPH04168743 A JP H04168743A JP 29614190 A JP29614190 A JP 29614190A JP 29614190 A JP29614190 A JP 29614190A JP H04168743 A JPH04168743 A JP H04168743A
Authority
JP
Japan
Prior art keywords
carriers
semiconductor substrate
laser
laser beam
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29614190A
Other languages
Japanese (ja)
Inventor
Kazutaka Ikeda
和隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP29614190A priority Critical patent/JPH04168743A/en
Publication of JPH04168743A publication Critical patent/JPH04168743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To measure life time in an arbitrary semiconductor element pattern by converging a laser beam according to the semiconductor element pattern and then exciting only carriers. CONSTITUTION:A semiconductor substrate 6 is irradiated with microwave through a circulator 2 and carrier exciting laser is pulsated through an oscillator 5 and converged through a controller 15 to be impinged on the substrate 6 with a laser spot diameter corresponding with the magnification power of a variable magnification power lens 13. Carriers are excited at a part on the substrate 6 irradiated with the laser beam and when the laser output is zero, number of carrier reduces through recombination of carriers thus reducing the intensity of reflected microwave fed from a detector 8. Output from the detector 8 and reference pulse wave from an oscillator 5 are fed to a PSD(Phase Sensitivity Detector) 16 where only such component as having same frequency as the pulse wave is amplified and employed by a computor 10 for the measurement of life time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はライフタイム測定器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a lifetime measuring device.

〔従来の技術〕[Conventional technology]

従来のこの種のライフタイム測定は、第3図に示すよう
にマイクロ波発生器1より発生したマイクロ波をサーキ
ュレータ−2を介して半導体基板上に照射し、又、キャ
リア励起用レーサーをパルス波にして半導体基板6上に
照射し、半導体基板G中のキャリアの変化を半導体基板
6からの反射波の出力変化として、検出器8で検出し、
計算機10にライフタイムを算出する機構となっていた
Conventional lifetime measurement of this type involves irradiating microwaves generated from a microwave generator 1 onto a semiconductor substrate via a circulator 2, as shown in FIG. irradiate onto the semiconductor substrate 6, and detect the change in carriers in the semiconductor substrate G as a change in the output of the reflected wave from the semiconductor substrate 6 with the detector 8,
The calculator 10 had a mechanism for calculating the lifetime.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のライフタイム測定器は、レーザースポッ
ト径が固定で半導体基板支持ステージをコントロールす
るユニットおよび半導体基板上を観察する光学系を有し
ていないので、直接半導体基板製造工程中でライフタイ
ムを測定できなく、代用の素子パターンのない専用の半
導体基板で測定しなければならない為、直接に半導体素
子製造工程中の汚染状態をモニタできないという欠点が
あった。
The conventional lifetime measurement device described above has a fixed laser spot diameter and does not have a unit to control the semiconductor substrate support stage or an optical system to observe the semiconductor substrate, so it is possible to measure the lifetime directly during the semiconductor substrate manufacturing process. This method has the disadvantage that it is not possible to directly monitor the contamination state during the semiconductor device manufacturing process because it cannot be measured and must be measured using a dedicated semiconductor substrate that does not have a substitute device pattern.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のライフタイム測定器は、半導体基板中のキャリ
アを励起させるレーザーをパルス波としたレーザービー
ムスポットを、移動する支持ステージに裁置された半導
体基板の表面の一部に照射し、前記半導体基板中のキャ
リアを励起させてキャリアの再結合によるキャリア数の
減少に対応するマイクロ波の反射波強度変化を、前記半
導体基板の上面を観察する光学系によってライフタイム
を測定するライフタイム測定器において、前記レーザー
ビームスポットの径を制御するコントロールユニットを
有して構成されている。
The lifetime measuring device of the present invention irradiates a part of the surface of a semiconductor substrate placed on a moving support stage with a laser beam spot made of a pulsed laser that excites carriers in the semiconductor substrate, and In a lifetime measuring instrument that excites carriers in the substrate and measures the lifetime by an optical system that observes the upper surface of the semiconductor substrate by changing the intensity of reflected microwave waves corresponding to a decrease in the number of carriers due to carrier recombination. , a control unit for controlling the diameter of the laser beam spot.

〔実施例〕〔Example〕

本発明について図面を参照して説明する。 The present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の模式図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

第1図に示すようにマイクロ波をサーキュレータ−2を
介して半導体基板6上に照射し、又、キャリア励起用レ
ーザーをオシレーター5によりパルス波にして、可変倍
率レンズ13の倍率に対応するレーザースポット径にレ
ーザースポット径コントローラ15でしぼって半導体基
板上に照射する。
As shown in FIG. 1, microwaves are irradiated onto the semiconductor substrate 6 through a circulator 2, and a carrier excitation laser is made into a pulse wave by an oscillator 5 to produce a laser spot corresponding to the magnification of the variable magnification lens 13. The laser spot diameter controller 15 narrows down the laser spot to a diameter and irradiates it onto the semiconductor substrate.

半導体基板6上のレーザーが照射された箇所のキャリア
が励起され、レーザー出力の0時に、キャリアの再結合
によりキャリア数が減少し、それに伴ない検波器8のマ
イクロ波反射波強度も減少する。
Carriers on the semiconductor substrate 6 at a location irradiated with the laser are excited, and when the laser output is 0, the number of carriers decreases due to carrier recombination, and the microwave reflected wave intensity of the detector 8 decreases accordingly.

検波器8の出力とオシレータ5よりパルス波の基準波を
P CD (Phase 5ensitivity D
etector)16に入力し、パルス波と同一周波数
のみを増幅し、計算機10にてライフタイムを測定する
The output of the detector 8 and the reference wave of the pulse wave from the oscillator 5 are
detector) 16, amplify only the same frequency as the pulse wave, and measure the lifetime using the calculator 10.

尚、測定までの一連の動作は、光学系のモニタ14が第
2図に示すように位置合わせした後、ステージコントロ
ーラ11により半導体基板6上を観察する光学系とレー
ザー元系の間隔だけ、半導体基板6支持ステージ7を(
1/100)μmの精度で移動させ、測定開始する。
The series of operations up to the measurement is as follows: After the optical system monitor 14 is aligned as shown in FIG. The substrate 6 support stage 7 (
Move with an accuracy of 1/100) μm and start measurement.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、レーザービームスポット
径をコン1〜ロールするユニットと半導体基板支持ステ
ージをコントロールするユニットおよび半導体基板上を
観察する光学系を有することにより、半導体素子製造工
程中に測定する半導体素子パターンに合わせてレーザー
ビームスポット径をしぼり、その箇所のキャリアのみを
励起する事ができ半導体基板上の任意の半導体素子パタ
ーンでライフタイムが測定できるという効果がある。
As explained above, the present invention has a unit that controls the diameter of the laser beam spot, a unit that controls the semiconductor substrate support stage, and an optical system that observes the top of the semiconductor substrate. The laser beam spot diameter can be narrowed down to match the semiconductor element pattern to be used, and only the carriers at that location can be excited, making it possible to measure the lifetime of any semiconductor element pattern on the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の模式図、第2図は半導体基
板上を観察するモニタの画面図、第3図は従来のライフ
タイム測定器の一例の模式図である。 1・・・マイクロ波発生器、2・・・サーキュレータ、
3・・・導波管、4・・・レーザ発生器、5・・・オシ
レータ、6・・・半導体基板、7・・・半導体基板支持
ステージ、10・・・計算機、11・・・ステージコン
トローラ、12・・・対物レンズ、13・・・可変倍率
レンズ、14・・・モニタ、15・・・レーザービーム
スポット径コントローラ、16・・・PSD、17・・
・モニタ画面、18・・・半導体素子パターン、1つ・
・・レーザービームスポット。
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a screen diagram of a monitor for observing a semiconductor substrate, and FIG. 3 is a schematic diagram of an example of a conventional lifetime measuring device. 1...Microwave generator, 2...Circulator,
3... Waveguide, 4... Laser generator, 5... Oscillator, 6... Semiconductor substrate, 7... Semiconductor substrate support stage, 10... Computer, 11... Stage controller , 12... Objective lens, 13... Variable magnification lens, 14... Monitor, 15... Laser beam spot diameter controller, 16... PSD, 17...
・Monitor screen, 18...semiconductor element pattern, 1・
...Laser beam spot.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板中のキャリアを励起させるレーザーをパルス
波としたレーザービームスポットを、移動する支持ステ
ージに裁置された半導体基板の表面の一部に照射し、前
記半導体基板中のキャリアを励起させてキャリアの再結
合によるキャリア数の減少に対応するマイクロ波の反射
波強度変化を、前記半導体基板の上面を観察する光学系
によってライフタイムを測定するライフタイム測定器に
おいて、前記レーザービームスポットの径を制御するコ
ントロールユニットを有することを特徴とするライフタ
イム測定器。
A part of the surface of the semiconductor substrate placed on a moving support stage is irradiated with a laser beam spot made of a pulsed laser that excites carriers in the semiconductor substrate, and the carriers in the semiconductor substrate are excited to become carriers. The diameter of the laser beam spot is controlled in a lifetime measuring device that measures the lifetime of the microwave reflected wave intensity change corresponding to the decrease in the number of carriers due to recombination using an optical system that observes the upper surface of the semiconductor substrate. A lifetime measuring instrument characterized by having a control unit that performs.
JP29614190A 1990-10-31 1990-10-31 Life time measuring instrument Pending JPH04168743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29614190A JPH04168743A (en) 1990-10-31 1990-10-31 Life time measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29614190A JPH04168743A (en) 1990-10-31 1990-10-31 Life time measuring instrument

Publications (1)

Publication Number Publication Date
JPH04168743A true JPH04168743A (en) 1992-06-16

Family

ID=17829682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29614190A Pending JPH04168743A (en) 1990-10-31 1990-10-31 Life time measuring instrument

Country Status (1)

Country Link
JP (1) JPH04168743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484551C1 (en) * 2012-01-31 2013-06-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Measurement method of life cycle of minor charge carriers in silicon
RU2486629C1 (en) * 2012-01-31 2013-06-27 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Method to monitor life time of minority charge carrier in silicon bars

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484551C1 (en) * 2012-01-31 2013-06-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Measurement method of life cycle of minor charge carriers in silicon
RU2486629C1 (en) * 2012-01-31 2013-06-27 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Method to monitor life time of minority charge carrier in silicon bars

Similar Documents

Publication Publication Date Title
JPS642332A (en) Method and device for testing desired area of workpiece by designating the area
JP2010231237A (en) Wavelength conversion method and device thereof
US5196786A (en) Method for inspecting an electronic state of a surface of a semiconductor substrate and an apparatus therefor
WO2019196217A1 (en) Composite laser decontamination device and method for radioactive decontamination of nuclear power plant component
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
JPH04168743A (en) Life time measuring instrument
JPS63151042A (en) Method and apparatus for measuring implanted ion quantity in semiconductor crystal
JP3839762B2 (en) Method and apparatus for controlling laser ablation in solution
JP5389586B2 (en) Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JP2002303597A (en) Device and method for measuring thermal property
JPH0699292A (en) Method and device for laser beam machining
JPS6363945A (en) Stabilization of optical property measurement
JPH102859A (en) Plasma monitoring method
JPH08118047A (en) Laser beam machine
JP3648019B2 (en) Minority carrier lifetime measurement device
JP3916734B2 (en) Laser processing equipment
JPH09210909A (en) Measuring device using laser beam
WO2020230489A1 (en) Non-contact-type wafer thickness measurement device
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor
JPH1076379A (en) Laser beam machine
JPH08271397A (en) Thermal fatigue test method and device thereof
JPH06221923A (en) Spectrophotometric equipment
JP2704651B2 (en) Method and apparatus for analyzing particulate matter
JPH02136765A (en) Optical probing device
JPH0933425A (en) Method for measuring photo-thermal displacement