JPS5953225B2 - Weather-resistant multi-component glass fiber for optical communications - Google Patents

Weather-resistant multi-component glass fiber for optical communications

Info

Publication number
JPS5953225B2
JPS5953225B2 JP54061584A JP6158479A JPS5953225B2 JP S5953225 B2 JPS5953225 B2 JP S5953225B2 JP 54061584 A JP54061584 A JP 54061584A JP 6158479 A JP6158479 A JP 6158479A JP S5953225 B2 JPS5953225 B2 JP S5953225B2
Authority
JP
Japan
Prior art keywords
glass
component
glass fiber
component glass
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54061584A
Other languages
Japanese (ja)
Other versions
JPS55154342A (en
Inventor
国英 沢村
武止 高野
博憲 牧
光男 加曽利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54061584A priority Critical patent/JPS5953225B2/en
Publication of JPS55154342A publication Critical patent/JPS55154342A/en
Publication of JPS5953225B2 publication Critical patent/JPS5953225B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Description

【発明の詳細な説明】 本発明は芯ガラスと被覆ガラスとから成るステップ型の
光通信用多成分系ガラスファイバーの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a step-type multicomponent glass fiber for optical communications, which comprises a core glass and a coated glass.

一般にこの種のガラスファイバーは芯の周囲にクそれよ
りも小さい屈折率を有する被覆層が設けられて成るもの
でファイバーの一端から芯に入射させた光情報を、芯と
被覆との境界面での全反射を利用して芯内に閉じ込めフ
ァイバーの他端へ伝えようとするものである。
Generally, this type of glass fiber has a coating layer around the core that has a refractive index smaller than that of the core.The optical information incident on the core from one end of the fiber is transferred to the interface between the core and the coating. The idea is to use total internal reflection of the signal to confine it within the core and transmit it to the other end of the fiber.

ク ところで従来、光通信用多成分系ガラスファイバー
として例えばNa、020%、Ca09%およびSiO
By the way, conventional multi-component glass fibers for optical communication include Na, 020%, Ca09% and SiO2.
.

71%(いずれも重量比)からなる芯ガラスに、Na2
O22%、CaO3.5%およびSiO274.5%(
いずれも重量比)からなるガラスを被覆したも丁のが用
いられている。
Na2 is added to the core glass consisting of 71% (both by weight)
O22%, CaO3.5% and SiO274.5% (
A type of glass coated with glass consisting of (both weight ratios) is used.

しかしこのガラスファイバーにおいてはアルカリ含有量
が多いため低損失化し易い反面、アルカリ成分が外部に
溶出し易いため耐候性が劣ると云う欠点がある。一方、
ステップ型の光通信用多成分系ガラスフフアイバーの製
造方法は、主として二重ルツボ法が採用されている。
However, since this glass fiber has a high alkali content, it is easy to reduce loss, but on the other hand, the alkali component tends to be eluted to the outside, so it has a disadvantage of poor weather resistance. on the other hand,
The double crucible method is mainly adopted as a method for producing step-type multi-component glass fibers for optical communication.

この方法は同志円状に配置した内管端部及び外管端部の
オリフィスから夫々溶融した芯ガラス、被覆ガラスを同
時に自然流下させ、線引きして光通信用多成分系ガラス
ファイバーを造るものである。この線引き作業に際して
、ガラスの一部に結晶が生じる (失透)と、ガラスフ
ァイバーの光伝送損失の増加、引張り強度の低下を招く
欠点があり、失透がおこらないことが必須条件である。
このようなことから、本発明者は上記欠点を解消するた
めに鋭意研究を重ねた結果、芯材料としてSiO2、ア
ルカリ金属酸化物、CaO、ZnOとBaOからなり、
かつこれら成分値を規定した多成分系ガラスを使用し、
一方、被覆材料としてSiO。
In this method, molten core glass and coating glass are simultaneously allowed to naturally flow down from orifices at the ends of the inner and outer tubes arranged in a circular shape, respectively, and drawn to produce a multi-component glass fiber for optical communications. be. During this drawing process, if crystals form in a part of the glass (devitrification), this has the disadvantage of increasing optical transmission loss and decreasing tensile strength of the glass fiber, so it is essential that devitrification does not occur.
For these reasons, the inventors of the present invention have conducted extensive research to eliminate the above drawbacks, and have found that the core material is made of SiO2, alkali metal oxide, CaO, ZnO, and BaO.
And using multi-component glass with specified component values,
On the other hand, SiO is used as a coating material.

、A1。O。、アルカリ金属酸化物、CaO、MgO、
B2O3およびZnO、Zro3、TiO2の成分から
なり、かつこれら成分値を規定した多成分系ガラスを使
用することによつて(1)被覆用多成分系ガラスが、耐
水性、耐酸性、耐アルカリ性等の耐化学的性質が良好で
、アルカリ溶出が少なく耐候性が優れていること。
, A1. O. , alkali metal oxide, CaO, MgO,
By using a multi-component glass consisting of B2O3, ZnO, Zro3, and TiO2, and with defined values of these components, (1) the multi-component glass for coating has water resistance, acid resistance, alkali resistance, etc. It has good chemical resistance, low alkali elution, and excellent weather resistance.

(高耐候性) 5(
2)芯用多成分系ガラスと被覆用多成分系ガラスが、線
引き工程で失透しないこと、同時に、フアイバの寸法安
定性が優れていること。(3)芯用多成分系ガラスが低
損失であること。
(High weather resistance) 5 (
2) The multi-component glass for the core and the multi-component glass for the coating should not devitrify during the drawing process, and at the same time, the dimensional stability of the fiber should be excellent. (3) The multi-component glass for the core should have low loss.

つまり、散乱損失が低く、溶融し易い(溶融温度1tが
低い)ガラス組成であること。溶融温度が高ければ、使
用するルツボ、雰囲気からの、鉄、銅等の吸収損失の高
い物質の混入並びに散乱欠陥の発生により損失が増加す
る為である。 (低損失)
l((4)芯用多成分系ガラスの膨張係数
が、被覆用多成分系ガラスの膨張係数よりも大きく、且
つ、その差(Δα)が、3X10−6Cn1/Cml・
℃(AtO〜300℃)以下であること。膨張係数の差
が大きいと、フアイバ中でのストレスが高く、信頼性2
.が低下する。(5)芯の屈折率をn1、被覆の屈折率
をN2とした場合、比屈折率差Δn(n1−N2/n1
)が0.002以上であること、等種々の優れた特性を
有する高耐候性低損失多成分系ガラスフアイバを、見い
出2した。
In other words, the glass composition has low scattering loss and is easy to melt (low melting temperature 1t). This is because if the melting temperature is high, the loss increases due to the contamination of substances with high absorption loss, such as iron and copper, from the crucible used and the atmosphere, as well as the occurrence of scattering defects. (low loss)
(4) The expansion coefficient of the multi-component glass for the core is larger than the expansion coefficient of the multi-component glass for the coating, and the difference (Δα) is 3X10-6Cn1/Cml.
℃ (AtO ~ 300℃) or less. If the difference in expansion coefficients is large, the stress in the fiber will be high and reliability will decrease.
.. decreases. (5) When the refractive index of the core is n1 and the refractive index of the coating is N2, the relative refractive index difference Δn(n1-N2/n1
) has been found to be 0.002 or more, and a multi-component glass fiber with high weather resistance and low loss that has various excellent properties.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の光通信用多成分系ガラスフアイバ一は、(4)
重量比にてSlO335〜65%(このうち30%以こ
内はGeO2で置換してもよい)、アルカリ金属酸化物
10〜23%、CaO2〜12%、ZnO5〜20〜、
゛BaO5〜羽%(ただしCaO.BaO.ZnOの合
計量15〜゛弱%)からなる芯用多成分系ガラスと、(
B)重量比にてSK)260〜80%、Al,O,O.
5〜10,%、アルカリ金属酸化物9〜17%、CaO
O〜5%、ZnOlzrO2、TiO,のうちから選ば
れた少なくとも1種0〜7%、MgOO〜4%およびB
2O3lOを超え15%までからなる被覆用多成分系ガ
ラスフアイバ一である。
The multi-component glass fiber for optical communication of the present invention includes (4)
Weight ratio: 335-65% of SlO (up to 30% of this may be replaced with GeO2), 10-23% of alkali metal oxide, 2-12% of CaO, 5-20% of ZnO,
A multi-component glass for the core consisting of 5% to 5% BaO (however, the total amount of CaO.BaO.ZnO is 15% to slightly less than 2%);
B) SK) 260-80% by weight, Al, O, O.
5-10,%, alkali metal oxides 9-17%, CaO
O~5%, at least one selected from ZnOlzrO2, TiO, 0~7%, MgOO~4% and B
Coated multi-component glass fiber consisting of more than 2O3lO up to 15%.

次に、上記芯用多成分系ガラスの各成分値を限定した理
由について述べる。
Next, the reason for limiting the values of each component of the multi-component glass for the core will be described.

(1A)SiO2 SiO2は、ガラス形成酸化物であり、その含有量が、
35wt%未満では、耐水性が低く、一方、その含有量
が65wt%を越えると、所期の屈折率条件を満たすこ
とができないので、好ましくない。
(1A) SiO2 SiO2 is a glass-forming oxide whose content is
If the content is less than 35 wt%, the water resistance will be low, while if the content exceeds 65 wt%, the desired refractive index conditions cannot be satisfied, which is not preferable.

尚このSiO2成分はガラスの溶融温度を下げるため、
GeO2で30wt%を限度に置換してもよい(SiO
2は最低5%となる)。2A)アルカリ金属酸化物 アルカリ金属酸化物は、主に、Na2O、K2O、Li
2Oからなり、網目修飾酸化物として作用する。
In addition, this SiO2 component lowers the melting temperature of glass,
It may be replaced with GeO2 up to 30 wt% (SiO
2 is a minimum of 5%). 2A) Alkali metal oxides Alkali metal oxides are mainly Na2O, K2O, Li
It consists of 2O and acts as a network modifying oxide.

アルカリ金属酸化物の含有量が10.0Wt%未満では
失透し易くなり、一方、23wt%を越えると、耐水性
が低下する。
If the alkali metal oxide content is less than 10.0 wt%, devitrification tends to occur, while if it exceeds 23 wt%, water resistance decreases.

またアルカリ金属酸化物中の構成成分(Na2O、K2
O、Li2O)の配合割合は、要求される芯の物性変化
により適宜調整される。具体的には、粘性を低減させる
場合は、K2Oの比率を低くし、膨張係数を高める場合
は、Li2Oの比率を高くし、更に、屈折率を高める場
合は、Li2Oの比率を高くする。73A)CaOとB
aO,!−ZnOの混合物CaOの配合割合は、2wt
%未満ならば、失透し易く、12Wt%を超えると均一
なガラスが得られ難い傾向が認められるので2〜12w
t%程度に選択する。
In addition, constituent components in alkali metal oxides (Na2O, K2
The blending ratio of O, Li2O) is adjusted as appropriate depending on the required change in the physical properties of the core. Specifically, to reduce the viscosity, the ratio of K2O is lowered, to increase the expansion coefficient, the ratio of Li2O is increased, and further, to increase the refractive index, the ratio of Li2O is increased. 73A) CaO and B
aO,! -The blending ratio of CaO in the ZnO mixture is 2wt.
If it is less than 12wt%, devitrification tends to occur, and if it exceeds 12wt%, it is difficult to obtain a uniform glass.
Select approximately t%.

ZnOの組成比が5wt%未満ならば、失透し易く、2
0Wt%を超えると均一なガラスが得られ難い傾向があ
るので上記範囲内に選ぶ。
If the composition ratio of ZnO is less than 5 wt%, devitrification is likely to occur;
If it exceeds 0 Wt%, it tends to be difficult to obtain a uniform glass, so it is selected within the above range.

またBaOの組成比が、5Wt%未満ならば、所期の屈
折率要求を満たし難く、35Wt%を超えると失透し易
くなるので上記範囲に選ぶ。
Moreover, if the composition ratio of BaO is less than 5 Wt%, it will be difficult to satisfy the desired refractive index requirement, and if it exceeds 35 Wt%, devitrification will easily occur, so the above range is selected.

しかしてこれら、CaO.ZnO、BaOは、特に屈折
率の増加に寄与する成分であり、合計量で15Wt%未
満であると、所期の屈折率要求を満たすことができず、
50wt%を超えると失透し易くなる。
However, these CaO. ZnO and BaO are components that particularly contribute to increasing the refractive index, and if the total amount is less than 15 Wt%, the desired refractive index requirement cannot be met.
If it exceeds 50 wt%, devitrification tends to occur.

望ましい範囲は30〜48wt%である。(4A)その
他 CaOの一部をMgOで置換すること、BaOの一部を
SrOで置換することは、特性の変化をもたらさず、溶
融性を改善するので、好ましいことである。
A desirable range is 30-48 wt%. (4A) In addition, it is preferable to replace part of CaO with MgO and replace part of BaO with SrO because they do not change the properties and improve the meltability.

また、上記被覆用多成分系ガラスの各成分を限定した理
由について述べる。
In addition, the reason for limiting each component of the multi-component glass for coating will be described.

(1B)SiO2 SiO2は被覆の骨格を形成するものであり、その含有
量が60重量%未満では耐水性が低下し、一方80重量
%を超えると、高温粘性が増加し芯ガラスとの粘性差が
増大するので好ましくない。
(1B) SiO2 SiO2 forms the skeleton of the coating, and if its content is less than 60% by weight, water resistance will decrease, while if it exceeds 80% by weight, high temperature viscosity will increase and the viscosity difference with the core glass will increase. is undesirable because it increases

(2B)Al2O3 Al2O3は耐水性並びに失透傾向の改善効果を有する
ものである。
(2B) Al2O3 Al2O3 has the effect of improving water resistance and devitrification tendency.

Al2O3の含有量が0.5重量%未満では所期の効果
が充分達成できず、かといつて10重量%を超えると失
透し易くなるからである。(3B)アルカリ金属酸化物 アルカリ金属酸化物は主にNa2O、K2O、Li2O
からなり、網目修飾酸化物として作用する。
This is because if the content of Al2O3 is less than 0.5% by weight, the desired effect cannot be sufficiently achieved, whereas if it exceeds 10% by weight, devitrification tends to occur. (3B) Alkali metal oxides Alkali metal oxides are mainly Na2O, K2O, Li2O
It acts as a network-modifying oxide.

アルカリ金属酸化物の含有量が9重量%未満では失透し
易くなり、17重量%を超えると耐水性が低下し所期の
要求を満たす被覆が得られない。(4B)CaO CaOは耐水性の向上効果を有するものである。
When the alkali metal oxide content is less than 9% by weight, devitrification tends to occur, and when it exceeds 17% by weight, water resistance decreases and a coating that meets the desired requirements cannot be obtained. (4B) CaO CaO has the effect of improving water resistance.

CaOの含有量が5重量%を超えると失透し易くなり好
ましくない。(5B)MgO MgOは耐風化性の改善化に寄与する。
If the CaO content exceeds 5% by weight, devitrification tends to occur, which is not preferable. (5B) MgO MgO contributes to improving weathering resistance.

MgOが4重量%を超えると、失透するので好ましく,
ない。(6B) B2O3 B2O3は、耐水性の改善、屈折率の増加に寄与する。
If MgO exceeds 4% by weight, devitrification occurs, so it is preferable.
do not have. (6B) B2O3 B2O3 contributes to improving water resistance and increasing refractive index.

しかして、このB2O3成分の組成比は10を超え15
重量%の範囲内で選ばれ15重量%を超えると、被覆ガ
ラスの屈折率が高くなり過ぎて、所期の屈折率差が得ら
れず好ましくない。また、10重量%以下では、高温粘
性を充分に低下し得ず、フアイバ一化しずらい傾向がみ
られる。(7B)ZnO.ZrO2、TiO2 これら成分の添加は、耐水性の改善に効果がある。
Therefore, the composition ratio of this B2O3 component exceeds 10 and 15
If the amount is selected within a range of 15% by weight, the refractive index of the coated glass becomes too high and the desired refractive index difference cannot be obtained, which is not preferable. Moreover, if it is less than 10% by weight, the high temperature viscosity cannot be sufficiently lowered, and there is a tendency that it is difficult to form a fiber. (7B) ZnO. ZrO2, TiO2 Addition of these components is effective in improving water resistance.

しかしてこの成分は1種もしくは2種以上の混合系でも
よいが、その組成比は常に7wt%以内に選択し7%以
上の添加は、脈理が生じる。次に、本発明の実施例を説
明する。
However, the lever component may be one type or a mixture of two or more types, but the composition ratio thereof should always be selected to be within 7 wt%, and addition of 7% or more will cause striae. Next, examples of the present invention will be described.

下記表に示す如く、組成割合が夫々異なる芯用多成分系
ガラス及び被覆用多成分系ガラスを二重ルツボ法により
、800〜1000℃の温度下で線引きして3種の光通
信用多成分系ガラスフアイバ一(芯径80μ、被覆径1
50μ)を得た。
As shown in the table below, three types of multi-component glass for optical communication were obtained by drawing multi-component glasses for cores and multi-component glasses for coating, each having different composition ratios, at a temperature of 800 to 1000°C using the double crucible method. glass fiber (core diameter 80μ, coating diameter 1
50μ) was obtained.

しかして、得られた各光通信用多成分系ガラスフアイバ
一の芯及び被覆における屈折率(n)、熱膨張係数(α
)、耐水性、耐風化性、104、105、106ポイズ
になる温度、並びに失透傾向を調べた。
Thus, the refractive index (n) and thermal expansion coefficient (α
), water resistance, weathering resistance, temperatures at 104, 105, and 106 poise, and devitrification tendency were investigated.

その結果を同表に併記した。なお、耐水性、耐風化性、
及び失透傾向は次のような試験により求めた。
The results are also listed in the same table. In addition, water resistance, weathering resistance,
The devitrification tendency was determined by the following test.

(1)耐水性;目開き0.5mm(7)JIS標準篩に
パスし、目開き0.3mmの同標準篩をパスしない粉末
試料5.0gを、100m1の蒸留水に浸し沸騰浴中で
1時間加熱した後、その溶液を0.01N−HCl溶液
で滴定し、その滴定した量(ml)で耐水性の優・劣を
求める。
(1) Water resistance: 0.5 mm opening (7) 5.0 g of a powder sample that passes a JIS standard sieve but does not pass the same standard sieve with a 0.3 mm opening is immersed in 100 ml of distilled water and placed in a boiling bath. After heating for 1 hour, the solution is titrated with a 0.01N-HCl solution, and the titrated amount (ml) is used to determine the superiority or inferiority of water resistance.

(2)耐風化性;ガラス表面にできるヘイズ(Haze
)を観察し、SK−16よりヘイズのできにくいものを
ASK−16と同程度のものを
ABSK−16よりヘイズのでき易いものを B
と評価する。
(2) Weathering resistance: Haze that forms on the glass surface
), and choose one with less haze than SK-16, and one with the same level of haze as ASK-16.
B
I evaluate it as.

(3)失透傾向;800℃で15時間加熱、並びに11
00℃で15時間加熱して結晶の析出しないものを
a表面に結晶を析出するものを
b表面及び内部に結晶を析出するものを
Cと評価する。
(3) Tendency to devitrify; heating at 800°C for 15 hours and 11
No crystals precipitate when heated at 00℃ for 15 hours.
A that precipitates crystals on the surface.
b Those that precipitate crystals on the surface and inside
Rated C.

しかして本発明に係る多成分系ガラスフアイバは、伝送
損失が850mμの波長での測定で、20dB/m以下
であり、低損失フアイバであつた。
Thus, the multi-component glass fiber according to the present invention had a transmission loss of 20 dB/m or less when measured at a wavelength of 850 mμ, and was a low-loss fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)重量比にてSiO_235〜65%(このう
ち30%以内はGeO_2で置換してもよい)、アルカ
リ金属酸化物10〜23%、CaO2〜12%、ZnO
5〜20%、BaO5〜35%(ただしCaO、BaO
、ZnOの合計量15〜50%)からなる芯用多成分系
ガラスと、(B)重量比にてSiO_260〜80%、
Al_2O_30.5〜10%、アルカリ金属酸化物9
〜17%、CaO0〜5%、ZnO、ZrO_2、Ti
O_2のうちから選ばれた少なくとも1種0〜7%、M
gO0〜4%およびB_2O_310を超え15%まで
からなる被覆用多成分系ガラスとから形成された高耐候
性光通信用多成分系ガラスファイバー。
1 (A) Weight ratio of SiO_235 to 65% (within 30% may be replaced with GeO_2), alkali metal oxide 10 to 23%, CaO2 to 12%, ZnO
5-20%, BaO5-35% (however, CaO, BaO
, (total amount of ZnO 15 to 50%), and (B) SiO_260 to 80% by weight,
Al_2O_30.5-10%, alkali metal oxide 9
~17%, CaO0~5%, ZnO, ZrO_2, Ti
At least one species selected from O_2 0-7%, M
A highly weather resistant multi-component glass fiber for optical communications formed from 0 to 4% gO and a multi-component coating glass comprising more than 15% B_2O_310.
JP54061584A 1979-05-21 1979-05-21 Weather-resistant multi-component glass fiber for optical communications Expired JPS5953225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54061584A JPS5953225B2 (en) 1979-05-21 1979-05-21 Weather-resistant multi-component glass fiber for optical communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54061584A JPS5953225B2 (en) 1979-05-21 1979-05-21 Weather-resistant multi-component glass fiber for optical communications

Publications (2)

Publication Number Publication Date
JPS55154342A JPS55154342A (en) 1980-12-01
JPS5953225B2 true JPS5953225B2 (en) 1984-12-24

Family

ID=13175325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54061584A Expired JPS5953225B2 (en) 1979-05-21 1979-05-21 Weather-resistant multi-component glass fiber for optical communications

Country Status (1)

Country Link
JP (1) JPS5953225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573762A (en) * 1983-06-27 1986-03-04 U.S. Philips Corporation Germanium-free optical fibers having large numerical apertures

Also Published As

Publication number Publication date
JPS55154342A (en) 1980-12-01

Similar Documents

Publication Publication Date Title
US4367012A (en) Optical glass fiber having cover glass of sodium zinc alumino borosilicate
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS60155551A (en) Coating glass for optical fiber
JPS621337B2 (en)
EP0066811A1 (en) Multi-component glass optical fiber for optical communication and glasses therefor
JPS58135151A (en) Optical and ophthalmic glass
JPS5846459B2 (en) Low density flint optical glass
JPS5860641A (en) Glass fiber composition
JPS5930731A (en) High refractive index, low dispersion and low density glass
JPH10167753A (en) Lead-free crown glass
JP2000264675A (en) Glass for optical fiber
JPS6316349B2 (en)
JPS5953225B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS6270245A (en) Optical fiber having environmental resistance
JPS5849499B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS5839782B2 (en) Glass fiber for optical communication
JPS6213293B2 (en)
JPS5953224B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5945617B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5915100B2 (en) Glass fiber for optical communication
JPS5953220B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5812215B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS5812214B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPH1192173A (en) Glass for optical fiber
JPS5953222B2 (en) Weather-resistant multi-component glass fiber for optical communications