JPS5849499B2 - Highly weather resistant multi-component glass fiber for optical communications - Google Patents

Highly weather resistant multi-component glass fiber for optical communications

Info

Publication number
JPS5849499B2
JPS5849499B2 JP53057117A JP5711778A JPS5849499B2 JP S5849499 B2 JPS5849499 B2 JP S5849499B2 JP 53057117 A JP53057117 A JP 53057117A JP 5711778 A JP5711778 A JP 5711778A JP S5849499 B2 JPS5849499 B2 JP S5849499B2
Authority
JP
Japan
Prior art keywords
glass
core
component glass
weight
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53057117A
Other languages
Japanese (ja)
Other versions
JPS54148811A (en
Inventor
光男 加曾利
武止 高野
国英 沢村
博憲 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53057117A priority Critical patent/JPS5849499B2/en
Publication of JPS54148811A publication Critical patent/JPS54148811A/en
Publication of JPS5849499B2 publication Critical patent/JPS5849499B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Description

【発明の詳細な説明】 本発明は芯ガラスと被覆ガラスとから成るステップ型の
光通信用多成分系ガラスファイバーの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a step-type multicomponent glass fiber for optical communications, which comprises a core glass and a coated glass.

一般にこの種のガラスファイバーは芯の周囲にそれより
も小さい屈折率を有する被覆層が設けられて成るもので
ファイバーの一端から芯に入射させた光情報を、芯と被
覆との境界面での全反射を利用して芯内に閉じ込めファ
イバーの他端へ伝えようとするものである。
Generally, this type of glass fiber has a coating layer around the core that has a smaller refractive index than the core, and optical information incident on the core from one end of the fiber is transferred to the interface between the core and the coating. The idea is to use total internal reflection to confine it within the core and transmit it to the other end of the fiber.

ところで従来、光通信用多成分系ガラスファイバーとし
て例えばNa2020%、Ca09%およびSiO27
1%(いずれも重量比)からなる芯ガラスに、Na20
22%、Ca0 3 5%およびSi0274.5%(
いずれも重量比)からなるガラスを被覆したものが用い
られている。
By the way, conventionally, multi-component glass fibers for optical communication, such as Na2020%, Ca09% and SiO27
Na20 is added to the core glass consisting of 1% (both by weight).
22%, Ca03 5% and Si0274.5% (
Both are coated with glass consisting of (weight ratio).

しかしこのガラスファイバーにおいてはアルカリ含有量
が多いため低損失化し易い反面アルカリ成分が外部に溶
出し易いため、耐候性が劣ると云う欠点がある。
However, since this glass fiber has a high alkali content, it is easy to reduce the loss, but on the other hand, the alkali component is easily eluted to the outside, so it has a disadvantage of poor weather resistance.

一方、ステップ型の光通信用多成分系ガラスファイバー
の製造方法は、主として二重ルンボ法が採用されている
On the other hand, the double Rumbo method is mainly adopted as a method for producing step-type multicomponent glass fibers for optical communication.

この方法は同芯円状に配置した内管端部及び外管端部の
オリフイスから夫々溶融した芯ガラス、被覆ガラスを同
時に自然流下させ、線引きして光通信用多成分系ガラス
ファイバーを造るものである。
In this method, molten core glass and coating glass are simultaneously allowed to naturally flow down from orifices at the ends of the inner and outer tubes arranged in concentric circles, and drawn to produce a multi-component glass fiber for optical communications. It is.

この場合、とくに線引き作業温度、つまり芯ガラス、被
覆ガラスの紡糸温度を高くして粘性を低く抑えて(通常
粘度が106〜103ポイズ)、オリフイスからの各ガ
ラスの自然流下を容易ならしめる必要がある。
In this case, it is necessary to raise the drawing temperature, that is, the spinning temperature of the core glass and coating glass, to keep the viscosity low (usually the viscosity is 106 to 103 poise), and to facilitate the natural flow of each glass from the orifice. be.

ところで、従来の芯材料、被覆材料としての各種多成分
系ガラスを二重ルソボ法にて光通信用多成分系ガラスフ
ァイバーを製造する場合、その多成分系ガラスを上述し
た粘度範囲となるように線引き作業温度を高くすると線
引き作業に際してガラスの一部に結晶を生じ易くなり、
この結晶化によって得られたガラスファイバーの光伝送
損失の増加、引張り?度の低下を招く欠点があった。
By the way, when manufacturing a multicomponent glass fiber for optical communication using the double Lusovo method using various multicomponent glasses as conventional core materials and coating materials, the multicomponent glass should be adjusted to have a viscosity within the above-mentioned range. If the drawing temperature is increased, crystals will easily form in some parts of the glass during the drawing process.
Increase in optical transmission loss of glass fiber obtained by this crystallization, tensile? There was a drawback that it led to a decrease in performance.

このようなことから、本発明者は上記欠点を解消するた
めに鋭意研究を重ねた結晶、芯材料としてS i02、
G e O2、Al203、アルカリ金属酸化物、Ca
b,MgO,B203及びSrOとBaOからなり、か
つこれら各組戒分値を規定した多成分系ガラスを使用し
、一方、被覆材料としてSiO2、Al203、アルカ
リ金属酸化物、Cab,MgOB203及びZnO,Z
r02、Ti02のうち一種以上の成分からなり、かつ
これら成分値を規定した多成分系ガラスを使用すること
によって、(1)耐水性、耐酸性、耐アルカリ性等の耐
化学的性質が良好で、アルカリ溶出が少なく耐候性が優
れていること、(高耐候性) (2)芯用多成分系ガラスと被覆用多成分系ガラスが、
線引き工程で失透しないこと、同時に、ファイバの寸法
安定性が優れてL・ること。
For this reason, the present inventor has conducted extensive research to eliminate the above drawbacks, and has used Si02 as a crystal and core material.
G e O2, Al203, alkali metal oxide, Ca
A multi-component glass consisting of b, MgO, B203, SrO, and BaO, with prescribed values for each of these groups, was used, while SiO2, Al203, alkali metal oxide, Cab, MgOB203, and ZnO were used as coating materials. Z
By using a multi-component glass consisting of one or more of R02 and Ti02 and with defined values of these components, (1) it has good chemical resistance such as water resistance, acid resistance, and alkali resistance; (2) The multi-component glass for the core and the multi-component glass for the coating have low alkali elution and excellent weather resistance (high weather resistance).
No devitrification during the drawing process, and at the same time, the fiber has excellent dimensional stability.

(3)芯用多成分系ガラスが低損失であること。(3) The multi-component glass for the core should have low loss.

つまり、散乱損失が低く、溶融し易い(溶融温度が低い
)ガラス組戒であること。
In other words, the glass must have low scattering loss and melt easily (low melting temperature).

溶融温度が高ければ、使用するルソボ、雰囲気からの、
鉄、銅等の吸収損失の高い物質の混入、並びに散乱欠陥
の発生により、損失が増加する為である。
If the melting temperature is high, the rusovo used, from the atmosphere,
This is because the loss increases due to the inclusion of substances with high absorption loss, such as iron and copper, and the occurrence of scattering defects.

(低損失)(4)芯用多或分系ガラスと被覆用多或分系
ガラスとの膨張係数の差(Aα)が、3X10 ’c
rrL/cfrL・℃(atO〜300℃)以下と小さ
いこと。
(Low loss) (4) The difference in expansion coefficient (Aα) between the polypropylene glass for the core and the polypropylene glass for the coating is 3X10'c
Must be small, rrL/cfrL・℃ (atO~300℃) or less.

膨張係数の差が大きいと、ファイバ中でのストレスが高
く、信頼性が低下する。
A large difference in expansion coefficients increases stress in the fiber and reduces reliability.

(5)芯の屈折率をn1、被覆の屈折率をn2とした゛
場合、比屈折率差I n ( nl 〜n2/ nl
)が、0.003以上であること、等種々の優れた特性
を有する高耐候性低損失多成分系ガラスファイバを見い
出した。
(5) When the refractive index of the core is n1 and the refractive index of the coating is n2, the relative refractive index difference I n ( nl ~ n2/ nl
) has been found to be 0.003 or more.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の光通信用多成分系ガラスファイバーは、(4)
重量比にて、(1)SiO225〜65%、G e O
20〜30%、Al2030.5〜7%、アルカリ金
属酸化物10〜20%、CaO1〜7%、SrOとBa
Oの合計量10〜20%、MgOO〜5%及びB203
0〜10%からなる芯用多成分系ガラスと、 (B) 重量比にて、SiO260〜80%、A1O
30.5〜10%、アルカリ金属酸化物9〜17%、C
aOO〜5%、Zn01Zr02、Ti02のうち1種
以上7%以下(0を含まず)、Mg0 0〜4%及びB
2030〜10%からなる被覆用多成分系ガラスと、 から形成されるものである。
The multi-component glass fiber for optical communication of the present invention includes (4)
In terms of weight ratio, (1) SiO2 25-65%, G e O
20-30%, Al2030.5-7%, alkali metal oxide 10-20%, CaO 1-7%, SrO and Ba
Total amount of O 10-20%, MgOO-5% and B203
A multi-component glass for the core consisting of 0 to 10%, (B) SiO260 to 80%, A1O by weight ratio
30.5-10%, alkali metal oxide 9-17%, C
aOO~5%, one or more of Zn01Zr02, Ti02 and 7% or less (not including 0), Mg0 0~4% and B
A multi-component glass for coating consisting of 2030 to 10%.

次に、上記芯用多成分系ガラスの各成分値を限定した理
由について述べる。
Next, the reason for limiting the values of each component of the multi-component glass for the core will be described.

(IA) SiO2 SiO2は芯の骨格を形成する成分であり、その含有量
を25重量%未満にすると、耐水性が低下し、一方その
含有量が65重量%を超えると、他の成分との関係から
高屈折率を有する芯が得られなくなる。
(IA) SiO2 SiO2 is a component that forms the core skeleton, and if its content is less than 25% by weight, water resistance will decrease, while if its content exceeds 65% by weight, it will not interact with other components. This relationship makes it impossible to obtain a core with a high refractive index.

(2A) Ge02 GeO2は屈折率を高め、ガラス溶融温度を下げる成分
であり、30重量%以内含有させる事ができる。
(2A) Ge02 GeO2 is a component that increases the refractive index and lowers the glass melting temperature, and can be contained within 30% by weight.

(3A) A1203 Al203は芯の耐水性の改善化に寄与するものである
(3A) A1203 Al203 contributes to improving the water resistance of the core.

A1203の含有量が0.5重量%未満では耐水性の改
善化を期待できず、一方その含有量が7重量%を超える
と、失透し易くなり好まし《ない。
If the content of A1203 is less than 0.5% by weight, no improvement in water resistance can be expected, while if the content exceeds 7% by weight, devitrification tends to occur, which is not preferable.

(4A) アルカリ金属酸化物 アルカリ金属酸化物は主にNa20,K20,Li20
からなり、網目修飾酸化物として作用する。
(4A) Alkali metal oxides Alkali metal oxides are mainly Na20, K20, Li20
It acts as a network-modifying oxide.

アルカリ金属酸化物の含有量が10重量%未満では失透
し易くなり、一方20重量%を超えると耐水性が低下す
る。
If the alkali metal oxide content is less than 10% by weight, devitrification tends to occur, while if it exceeds 20% by weight, water resistance decreases.

この場合、アルカリ金属酸化物中の構成成分(Na20
,K20、Li20)の配合割合は要求される芯の物性
変化により適宜調整される。
In this case, the constituents in the alkali metal oxide (Na20
, K20, Li20) are adjusted as appropriate depending on the required changes in the physical properties of the core.

具体的には粘性を低減させる場合は、アルカリ金属酸化
物中のK20の比率を低くし、膨張係数を高くさせる場
合は、Li20 の比率を高くし、さらに屈折率を高め
る場合は、Li20の比率を高くする。
Specifically, to reduce the viscosity, lower the K20 ratio in the alkali metal oxide, to increase the expansion coefficient, increase the Li20 ratio, and to further increase the refractive index, lower the Li20 ratio. make it higher.

(5A) CaO CaOは耐水性の向上効果を有するものである。(5A) CaO CaO has the effect of improving water resistance.

CaOの含有量が1重量%未満では、耐水性の向上化が
十分達成できず、一方その含有量が7重量%を越えると
、失透し易くなり好ましくない。
If the CaO content is less than 1% by weight, sufficient improvement in water resistance cannot be achieved, while if the content exceeds 7% by weight, devitrification tends to occur, which is undesirable.

(6A) SrO,Ba0 これらSrO,BaOは屈折率増加、失透防止の効果を
有するものである。
(6A) SrO, Ba0 These SrO and BaO have the effect of increasing the refractive index and preventing devitrification.

これらの合計量が10重量%未満では、所期の効果を充
分達成できず、一方20重量%を超えると芯に脈埋が発
生して好ましくない。
If the total amount is less than 10% by weight, the desired effect cannot be sufficiently achieved, while if it exceeds 20% by weight, veins will occur in the core, which is not preferable.

(7A) MgO MgOは耐風化性の改善化に寄与する。(7A) MgO MgO contributes to improving weathering resistance.

MgOが5重量%を越えると、失透し易くなるので好ま
しくない。
If MgO exceeds 5% by weight, devitrification tends to occur, which is not preferable.

(8A) B203 B203は耐水性の改善、屈折率の増加に寄与する。(8A) B203 B203 contributes to improving water resistance and increasing refractive index.

B203が10重量%を越えると、得られた芯に分相な
起こし、散乱し損失が増加するので好ましくない。
If B203 exceeds 10% by weight, phase separation occurs in the obtained core, scattering occurs, and loss increases, which is not preferable.

また、上記被覆用多成分系ガラスの各成分を限定した理
由は次の通りである。
Moreover, the reason for limiting each component of the multi-component glass for coating is as follows.

(1B) SiO2 Si02は被覆の骨格を形成するものであり、その含有
量が60重量%未満では耐水性が低下し、一方80重量
%を超えると、高温粘性が増加し芯ガラスとの粘性差が
増大するので好ましくない。
(1B) SiO2 Si02 forms the skeleton of the coating, and if its content is less than 60% by weight, water resistance will decrease, while if it exceeds 80% by weight, high temperature viscosity will increase and the viscosity difference with the core glass will increase. is undesirable because it increases

(2B) Al203 Al203は耐水性の改善効果を有するものである。(2B) Al203 Al203 has the effect of improving water resistance.

Al203の含有量が0.5重量%未満では所期の効果
が充分達成できず、かといって10重量%を越えると失
透し易くなるからである。
This is because if the content of Al203 is less than 0.5% by weight, the desired effect cannot be sufficiently achieved, whereas if it exceeds 10% by weight, devitrification tends to occur.

(3B) アルカリ金属酸化物 アルカリ金属酸化物は主にNa20,K20、Li20
からなり、網目修飾酸化物として作用する。
(3B) Alkali metal oxides Alkali metal oxides are mainly Na20, K20, Li20
It acts as a network-modifying oxide.

アルカリ金属酸化物の含有量が9重量%未満では失透し
易くなり、17重量%を超えると耐水性が低下し所期の
要求を満たす被覆が得られない。
If the alkali metal oxide content is less than 9% by weight, devitrification tends to occur, and if it exceeds 17% by weight, the water resistance decreases and a coating that satisfies the desired requirements cannot be obtained.

(4B) CaO CaOは耐水性の向上効果を有するものであるが5重量
%を超えると失透し易くなり好ましくない。
(4B) CaO CaO has the effect of improving water resistance, but if it exceeds 5% by weight, it tends to devitrify, which is not preferable.

(5B) MgO MgOは耐風化性の改善化に寄与する。(5B) MgO MgO contributes to improving weathering resistance.

MgOが4重量%を超えると、失透するので好ましくな
い。
If MgO exceeds 4% by weight, devitrification occurs, which is not preferable.

(6B) B203 B203は耐水性の改善、屈折率の増加に寄与する。(6B) B203 B203 contributes to improving water resistance and increasing refractive index.

B203が10重量%を超えると、被覆ガラスの屈折率
が高くなり過ぎて、初期の屈折率差が得られず好ましく
ない。
If B203 exceeds 10% by weight, the refractive index of the coated glass becomes too high, making it impossible to obtain an initial refractive index difference, which is not preferable.

(7B) Zn01Zr02、Ti02これら成分の
添加は、耐水性の改善に効果がある。
(7B) Zn01Zr02, Ti02 Addition of these components is effective in improving water resistance.

しかしてこれらの成分は1種もし《は2種以上の混合系
で用いてもよいが7%以上の添加は、脈埋が生じ易いの
で7%以下に(0を含まず)選ばれる。
However, these components may be used alone or in a mixed system of two or more, but if they are added in an amount of 7% or more, vein embedding is likely to occur, so the amount is selected to be 7% or less (not including 0).

次に、本発明の実施例を説明する。Next, examples of the present invention will be described.

下記第1表〜第5表に示す如く、組成調合が夫夫異なる
芯用多成分系ガラス及び被瑣用多成分系ガラスを二重ル
ンボ法により、850〜950℃の温度下で線引きして
13種の光通信用多成分系ガラスファイバー(芯径80
μ、被覆径150μ)を得た。
As shown in Tables 1 to 5 below, multi-component glass for the core and multi-component glass for the substrate, which have different compositions, were drawn at a temperature of 850 to 950°C by the double Rumbo method. 13 types of multi-component glass fiber for optical communication (core diameter 80
μ, coating diameter 150 μ) was obtained.

しかして、得られた各光通信用多成分系ガラスファイバ
ーの芯及び被覆における屈折率(n)、熱膨張係数α)
、耐水性、耐風化性、10’、1o5、106ポイズに
なる温度、並びに失透傾向を調べた。
Thus, the refractive index (n) and thermal expansion coefficient α) of the core and coating of each of the obtained multi-component glass fibers for optical communication
, water resistance, weathering resistance, temperatures at 10', 1o5, and 106 poise, and devitrification tendency were investigated.

その結果を同第1表〜第4表に併記した。なお、耐水性
、耐風化性、及び失透傾向は次のような試験により求め
た。
The results are also listed in Tables 1 to 4. In addition, water resistance, weathering resistance, and devitrification tendency were determined by the following tests.

(1)耐水性;目開き0. 5 mmのJIS標準篩に
パスし、目開き0.3關の同標準篩にパスしない粉末試
料5.1’を、100mlの蒸留水に浸し沸騰湯浴中で
1時間加熱した後、その溶液を0.01NHCI溶液で
滴定し、その滴定した量( ml )で耐水性の優・劣
を求める。
(1) Water resistance; opening 0. Powder sample 5.1' that passed through a 5 mm JIS standard sieve but did not pass through a 0.3-mesh standard sieve was immersed in 100 ml of distilled water and heated in a boiling water bath for 1 hour. is titrated with a 0.01N HCI solution, and the water resistance is determined based on the titrated amount (ml).

(2)耐風化性;ガラス表面にできるヘイズ( Haz
e )を観察し、 と評価する。
(2) Weathering resistance: Haze that forms on the glass surface
Observe e) and evaluate.

(3)失透傾向; SOO℃で15時間加熱、並びに1
100℃で15時間加熱して と評価する。
(3) Tendency to devitrify; Heating at SOO℃ for 15 hours and 1
Evaluation is made after heating at 100°C for 15 hours.

しかして本発明に係る多成分系ガラスファイバ・一は伝
送損失が850mnの波長での測定で、20dB/km
以下であり低損失フイバーであった。
However, the multi-component glass fiber according to the present invention has a transmission loss of 20 dB/km when measured at a wavelength of 850 mn.
It was a low loss fiber.

尚、上記組成のガラスは、二重ルソボ法以外での製法、
例えば、ロンド・イン・チューブ法で紡糸しても、高耐
候性低損失ファイバーが得られる。
In addition, the glass with the above composition can be manufactured by a method other than the double Lusovo method,
For example, high weather resistance and low loss fibers can be obtained by spinning using the rond-in-tube method.

以上詳述した如く、本発明によれば低損失で、耐水性、
耐風化性などの耐化学的性質が良好で、とくに被覆から
のアルカリ溶出が少なく耐候性に優れ、かつ寸法安定性
に優れ、しかも線引き作業時の失透傾向を防止でき、性
能、耐用寿命、損失を著しく改善して光通信用多成分系
ガラスファイバーを提供できるものである。
As detailed above, according to the present invention, there is low loss, water resistance,
It has good chemical resistance properties such as weathering resistance, has excellent weather resistance with little alkali elution from the coating, and has excellent dimensional stability.Moreover, it can prevent devitrification during wire drawing, and has excellent performance, service life, and It is possible to provide a multi-component glass fiber for optical communication with significantly improved loss.

Claims (1)

【特許請求の範囲】 1(7! 重量比にてSiO225〜65%、GeO
20〜30%、AI2030.5〜7%、アルカリ金属
酸化物10〜20%、CaOl〜7%、SrO,BaO
の合計量10〜20%、B203、O〜10%およびM
g0 0〜5%からなる芯用多成分系ガラスと、 (B) 重量比にて、SiO260〜80%、AI2
030.5〜10%、アルカリ金属酸化物9〜17%、
CaOO〜5%、ZnO, ZrO2、TiO2のうち
から選ばれた少なくとも1種7%以下(但し0を含まず
)、Mg0 0〜4%およびB2030〜10%から
なる被覆用多成分系ガラスとから形成された高耐候性光
通信用多成分系ガラスファイバー
[Claims] 1 (7! Weight ratio: SiO2 25-65%, GeO
20-30%, AI2030.5-7%, alkali metal oxide 10-20%, CaOl-7%, SrO, BaO
Total amount of 10-20%, B203, O-10% and M
A multi-component glass for the core consisting of g0 0-5%, (B) SiO260-80%, AI2 by weight ratio
030.5-10%, alkali metal oxide 9-17%,
A multi-component glass for coating consisting of ~5% CaOO, 7% or less of at least one selected from ZnO, ZrO2, and TiO2 (excluding 0), 0-4% Mg0, and 30-10% B2. Highly weather resistant multi-component glass fiber for optical communication
JP53057117A 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications Expired JPS5849499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53057117A JPS5849499B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53057117A JPS5849499B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Publications (2)

Publication Number Publication Date
JPS54148811A JPS54148811A (en) 1979-11-21
JPS5849499B2 true JPS5849499B2 (en) 1983-11-04

Family

ID=13046590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53057117A Expired JPS5849499B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Country Status (1)

Country Link
JP (1) JPS5849499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029632A (en) * 2016-07-13 2019-03-20 쌩-고벵 이조베르 glass fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8103089A (en) * 1981-06-26 1983-01-17 Philips Nv OPTICAL FIBER OF THE GRADED INDEX TYPE AND METHOD FOR THE MANUFACTURE THEREOF
JP2003267753A (en) * 2000-10-11 2003-09-25 Paramount Glass Kogyo Kk Glass composition for manufacturing inorganic fiber and its molding
CN106517772B (en) * 2016-10-25 2019-02-19 中国建筑材料科学研究总院 The light and preparation method thereof of fibre faceplate is prepared for pulling plate molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029632A (en) * 2016-07-13 2019-03-20 쌩-고벵 이조베르 glass fiber

Also Published As

Publication number Publication date
JPS54148811A (en) 1979-11-21

Similar Documents

Publication Publication Date Title
US4367012A (en) Optical glass fiber having cover glass of sodium zinc alumino borosilicate
US4418985A (en) Multi-component glass optical fiber for optical communication
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS621337B2 (en)
GB2237017A (en) Alkali-resistant glass for forming glass fibres.
JPH10507993A (en) Glass composition and fiber using the same
JPS5846459B2 (en) Low density flint optical glass
KR20000064588A (en) Artificial light surface composition
AU735688B2 (en) Glass fiber composition
US4265667A (en) Step-type light-transmitting body having excellent water resistance
AU722826B2 (en) Glass compositions having high KI values and fibers therefrom
JPS5849499B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS6316349B2 (en)
JPS61155227A (en) Low boron content rate low refractive index glass fiber and manufacture
JP2000264675A (en) Glass for optical fiber
JPS5953224B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5839782B2 (en) Glass fiber for optical communication
JPS5812214B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS6270245A (en) Optical fiber having environmental resistance
JPS6213293B2 (en)
JPS5812215B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS5945617B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5953225B2 (en) Weather-resistant multi-component glass fiber for optical communications
US2883296A (en) Glass composition
JPS5915100B2 (en) Glass fiber for optical communication