JPS5812215B2 - Highly weather resistant multi-component glass fiber for optical communications - Google Patents

Highly weather resistant multi-component glass fiber for optical communications

Info

Publication number
JPS5812215B2
JPS5812215B2 JP53057116A JP5711678A JPS5812215B2 JP S5812215 B2 JPS5812215 B2 JP S5812215B2 JP 53057116 A JP53057116 A JP 53057116A JP 5711678 A JP5711678 A JP 5711678A JP S5812215 B2 JPS5812215 B2 JP S5812215B2
Authority
JP
Japan
Prior art keywords
glass
component glass
core
glass fiber
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53057116A
Other languages
Japanese (ja)
Other versions
JPS54148810A (en
Inventor
加曽利光男
高野武止
沢村国英
牧博憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53057116A priority Critical patent/JPS5812215B2/en
Publication of JPS54148810A publication Critical patent/JPS54148810A/en
Publication of JPS5812215B2 publication Critical patent/JPS5812215B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Description

【発明の詳細な説明】 本発明は芯ガラスと被覆ガラスとから成るステップ型の
光通信用多成分系ガラスファイバーの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a step-type multicomponent glass fiber for optical communications, which comprises a core glass and a coated glass.

一般にこの種のガラスファイバーは芯の周囲にそれより
も小さい屈折率を有する被覆層が設けられて成るもので
ファイバーの一端から芯に入射させた光情報を、芯と被
覆との境界面での全反射を利用して芯内に閉じ込めファ
イバーの他端へ伝えようとするものである。
Generally, this type of glass fiber has a coating layer around the core that has a smaller refractive index than the core, and optical information incident on the core from one end of the fiber is transferred to the interface between the core and the coating. The idea is to use total internal reflection to confine it within the core and transmit it to the other end of the fiber.

ところで従来、光通信用多成分系ガラスファイバーとし
て例えばNa2020%、Ca09%およびSiO27
1%(いずれも重量比)からなる芯ガラスに、Na20
22%、Ca03.5%およびSin274.5%(い
ずれも重量比)からなるガラスを被覆したものが用いら
れている。
By the way, conventionally, multi-component glass fibers for optical communication, such as Na2020%, Ca09% and SiO27
Na20 is added to the core glass consisting of 1% (both by weight).
A glass coating consisting of 22% Ca, 3.5% Ca, and 274.5% Sin (all by weight) is used.

しかしこのガラスファイバーにおいてはアルカリ含有量
が多いため低損失化し易い反面、アルカリ成分が外部に
溶出し易いだめ耐候性が劣ると言う欠点がある。
However, since this glass fiber has a high alkali content, it is easy to reduce the loss, but on the other hand, the alkali component is easily eluted to the outside, resulting in poor weather resistance.

一方、ステップ型の光通信用多成分系ガラスファイバー
の製造方法は、主として二重ルノボ法が採用されている
On the other hand, the double Lunovo method is mainly adopted as a method for manufacturing step-type multi-component glass fibers for optical communications.

この方法は同芯円状に配置した内管端部及び外管端部の
オリフイスから夫々溶融した芯ガラス、被覆ガラスを同
時に自然流下させ、線引さして光通信用多成分系ガラス
ファイバーを造るものである。
In this method, molten core glass and coating glass are simultaneously allowed to flow down naturally from orifices at the ends of the inner and outer tubes arranged in concentric circles, respectively, and drawn to produce a multi-component glass fiber for optical communications. It is.

この場合、とくに線引き作業温度、つまり芯ガラス、被
覆ガラスの紡糸温度を高くして粘性を低く抑えて(通常
粘度が106〜103ポイズ)、オリフイスからの各ガ
ラスの自然流下を容易ならしめる必要がある。
In this case, it is necessary to raise the drawing temperature, that is, the spinning temperature of the core glass and coating glass, to keep the viscosity low (usually the viscosity is 106 to 103 poise), and to facilitate the natural flow of each glass from the orifice. be.

ところで、従来の芯材料、被覆材料としての各種多成分
系ガラスを二重ルツボ法にて光通信用多成分系ガラスフ
ァイバーを製造する場合、その多成分系ガラスを上述し
た粘度範囲となるように線引き作業温度を高くすると、
線引き作業に際してガラスの一部に結晶を生じ易くなり
、この結晶化によって得られたガラスファイバーの光伝
送損失の増加、引張り強度?低下を招く欠点があった。
By the way, when manufacturing a multicomponent glass fiber for optical communication using the double crucible method using various multicomponent glasses as conventional core materials and coating materials, the multicomponent glass should be adjusted to have a viscosity within the above-mentioned range. When the drawing temperature is increased,
During the drawing process, crystals tend to form in some parts of the glass, and this crystallization increases the optical transmission loss and tensile strength of the glass fiber obtained. There were drawbacks that led to a decline.

このようなととから、本発明者は上記欠点を解消するだ
めに鋭意研究を重ねた結果、芯材料としてSi02,A
l203、アルカリ金属酸化物、Cab,MgO,B2
03及びzrO2からなり、かつこれら成分値を規定し
た多成分系ガラスを使用し、一方、被覆材料としてSi
O2,Al203、アルカリ金属酸化物CaO,MgO
及びB2031ZnOtZr02,TiOの成分からな
り、かつこれら成分値を規定した多成分系ガラスを使用
することによって被覆用多成分系ガラスが (1)耐水性、耐酸性、耐アルカリ性等の耐化学的性質
が良好で、アルカリ溶出が少なく耐候性が優れているこ
と、(高耐候性) (2)芯用多成分系ガラスと被覆用多成分系ガラスが、
線引き工程で失透しないこと、同時に、ファイバーの寸
法安定性が優れていること。
In view of this, the inventors of the present invention have conducted extensive research in order to eliminate the above-mentioned drawbacks, and as a result, they have developed Si02, A as a core material.
l203, alkali metal oxide, Cab, MgO, B2
A multi-component glass consisting of 03 and zrO2 with defined component values was used, while Si was used as a coating material.
O2, Al203, alkali metal oxides CaO, MgO
By using a multi-component glass consisting of the following components: and B2031ZnOtZr02, TiO, and with defined values of these components, the multi-component glass for coating has (1) chemical resistance properties such as water resistance, acid resistance, and alkali resistance. (2) The multi-component glass for the core and the multi-component glass for the coating are
No devitrification during the drawing process, and at the same time, the fiber has excellent dimensional stability.

(3)芯用多成分系ガラスが低損失であること。(3) The multi-component glass for the core should have low loss.

つ寸り、散乱損失が低く、溶融し易い(溶融温度が低い
)ガラス組成であること。
Glass composition with low scattering loss and easy melting (low melting temperature).

溶融温度が高ければ、使用するルツボ、雰囲気からの、
鉄、銅等の吸収損失の高い物質の混入、並びに散乱欠陥
の発生により損失が増加する為である。
If the melting temperature is high, the crucible used and the atmosphere
This is because the loss increases due to the inclusion of substances with high absorption loss, such as iron and copper, and the occurrence of scattering defects.

(低損失) (4)芯用多成分系ガラスと被覆用多成分系ガラスとの
膨張係数の差(△α)が3×10−6cm/cm℃(a
t O〜300℃)以下と小さいこと。
(Low loss) (4) The difference in expansion coefficient (△α) between the multi-component glass for the core and the multi-component glass for the coating is 3 x 10-6 cm/cm℃ (a
tO~300℃) or less.

膨張係数の差が大きいと、ファイバ中でのストレスが高
く、信頼性が低下する。
A large difference in expansion coefficients increases stress in the fiber and reduces reliability.

(5)芯の屈折率をn1、被覆の屈折率をn2とした場
合、比屈折率差△n(nl−n2/n1)が0.003
以上であること、等種々の優れた特性を有する高耐候性
低損失多成分系ガラスファイバを見い出した。
(5) When the refractive index of the core is n1 and the refractive index of the coating is n2, the relative refractive index difference Δn (nl-n2/n1) is 0.003
We have found a multi-component glass fiber with high weather resistance and low loss that has various excellent properties such as the above.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の光通信用多成分系ガラスファイバーは、(4)
重量比にて(1)SiO240〜80%(このうちGe
O2で係まで置換してもよい)、AI。
The multi-component glass fiber for optical communication of the present invention includes (4)
Weight ratio: (1) SiO2 40-80% (of which Ge
02), AI.

0320.5〜7%、アルカリ金属酸化物10〜23係
、CaO2〜12%、MgO O〜5%、B2030〜
15%及びzr021〜12%からなる芯用多成分系ガ
ラスと、 (B)重量比にて、SiO260〜80%)AI203
0.5〜10%,アルカリ金属酸化物9〜17%、?a
00〜5%、MgOO〜4係、B2030〜10%およ
びznO,ZrO2,TiO2のうちの少なくとも1種
7%以下(0を含まず)からなる被覆用多成分系ガラス
と、 から形成されるものである。
0320.5-7%, alkali metal oxide 10-23, CaO2-12%, MgO2-5%, B2030-
(B) SiO260-80% by weight) AI203
0.5-10%, alkali metal oxide 9-17%, ? a
A multi-component glass for coating consisting of 00 to 5%, MgOO to 4, B2030 to 10%, and 7% or less (not including 0) of at least one of ZnO, ZrO2, TiO2; It is.

次に、上記芯用多成分系ガラスの各成分値を限定した理
由について述べる。
Next, the reason for limiting the values of each component of the multi-component glass for the core will be described.

IA)SiO SiO2は、ガラス形成酸化物であり、その含有量が、
40wt%未満では、耐水性が低く、一方、その含有量
が、80wt%を超えると、均一なガラスが得られない
ので好ましくない。
IA) SiO SiO2 is a glass-forming oxide whose content is
If the content is less than 40 wt%, water resistance is low, while if the content exceeds 80 wt%, a uniform glass cannot be obtained, which is not preferable.

しかしこのSi02成分はGeO2で30係の範囲内で
置換(Si02は最低10係になる)して溶融温度の低
下を図りうる。
However, this Si02 component can be replaced with GeO2 within a range of 30 parts (Si02 has a minimum of 10 parts) to lower the melting temperature.

2A)Al203 A103は、ガラスの耐水性の改善化に寄与するもので
ある。
2A) Al203 A103 contributes to improving the water resistance of glass.

Al203の含有量が、0.5wt%未満では、耐水性
の改善化が期待できず、一方、その含有量が、7wt%
を超えると失透し易くなり好ましくない。
If the content of Al203 is less than 0.5 wt%, no improvement in water resistance can be expected; on the other hand, if the content is less than 7 wt%
Exceeding this is not preferable as it tends to cause devitrification.

3A)アルカリ金属酸化物 アルカリ金属酸化物は、主に、Na20,K20,Li
20からなり、網目修飾酸化物として作用する。
3A) Alkali metal oxides Alkali metal oxides are mainly Na20, K20, Li
20 and acts as a network modifying oxide.

アルカリ金属酸化物の含有量が、10wt係未満では、
失透し易くなり、一方23wt%を超えると、耐水性が
低下する。
When the content of alkali metal oxide is less than 10wt,
It becomes easy to devitrify, and on the other hand, if it exceeds 23 wt%, water resistance decreases.

まだ、アルカリ金属酸化物中の構成成分(Na20,K
20,Li20)の配合割合は、要求される芯の物性変
化により適宜調整される。
However, the constituent components in alkali metal oxides (Na20, K
The blending ratio of Li20 and Li20) is adjusted as appropriate depending on the required change in the physical properties of the core.

具体的には、粘性を低減させる場合は、K20の比率を
低くシ、膨張係数を高める場合は、Li20の比率を高
くし、更に、屈折率を高める場合は、Li20の比率を
高くする。
Specifically, to reduce the viscosity, the ratio of K20 is lowered, to increase the expansion coefficient, the ratio of Li20 is increased, and further, to increase the refractive index, the ratio of Li20 is increased.

4A)CaO CaOは、耐水性の向上、屈折率の増加に寄与するもの
である。
4A) CaO CaO contributes to improving water resistance and increasing refractive index.

CaOの含有量が、2wt係未満では所期の効果を、充
分達成できず、一方、その含有量が、12wt俤を超え
ると失透し易くなるからである。
This is because if the CaO content is less than 2 wt, the desired effect cannot be sufficiently achieved, whereas if the content exceeds 12 wt, devitrification tends to occur.

5A)MgO MgOは、耐風化性の改善に寄与する。5A) MgO MgO contributes to improving weathering resistance.

MgOが5wt%を超えると失透し易くなるので好まし
くない。
If MgO exceeds 5 wt%, devitrification tends to occur, which is not preferable.

?A)B203 B203は、失透を防止する効果と、高温粘性を調整す
る効果を有する。
? A) B203 B203 has the effect of preventing devitrification and the effect of adjusting high temperature viscosity.

1swt%を超えると、高温粘性が低下し、線引き作業
が、困難となる。
If it exceeds 1 swt%, high temperature viscosity decreases and wire drawing becomes difficult.

7A)ZrO zrO2は、耐水性、耐アルカリ性を改善する。7A) ZrO zrO2 improves water resistance and alkali resistance.

また、失透傾向をも改善する。It also improves the tendency to devitrify.

Zr02の含有量が1wt%未満では所期の目的を充分
達成できず、一方、その含有量が、12wt%を超える
と、脈理が増えて均一なガラスが得られない。
If the content of Zr02 is less than 1 wt%, the intended purpose cannot be sufficiently achieved, while if the content exceeds 12 wt%, striae increase and a uniform glass cannot be obtained.

まだ、上記被覆用多成分系ガラスの各成分を限定した理
由について述べる。
The reasons for limiting each component of the multi-component glass for coating will now be described.

1B)SiO2 SiO2は被覆の骨格を形成するものであり、その含有
量が60重量係未満では耐水性が低下?、一方80重量
%を超えると、高温粘性が増加し芯ガラスとの粘性差が
増大するので好ましくない。
1B) SiO2 SiO2 forms the skeleton of the coating, and if its content is less than 60% by weight, water resistance will decrease? On the other hand, if it exceeds 80% by weight, the high temperature viscosity increases and the difference in viscosity with the core glass increases, which is not preferable.

2B)Al03 Al203は耐水性の改善効果を有するものである。2B) Al03 Al203 has the effect of improving water resistance.

Al203の含有量が0.5重量係未満では所期の効果
が充分達成できず、かといって10重量%を超えると失
透し易くなるからである。
This is because if the content of Al203 is less than 0.5% by weight, the desired effect cannot be sufficiently achieved, whereas if it exceeds 10% by weight, devitrification tends to occur.

3B)アルカリ金属酸化物 アルカリ金属酸化物は主にNa20,K20,Li20
からなり、網目修飾酸化物として作用する。
3B) Alkali metal oxides Alkali metal oxides are mainly Na20, K20, Li20
It acts as a network-modifying oxide.

アルカリ金属酸化物の含有量が9重量楚未満では失透し
易くなり、17重量係を超えると耐水性が低下し所期の
要求を満たす被覆が得られない。
If the content of the alkali metal oxide is less than 9% by weight, devitrification tends to occur, and if it exceeds 17% by weight, the water resistance decreases and a coating that satisfies the desired requirements cannot be obtained.

4B)CaO CaOは耐水性の向上効果を有するものであるが、5重
量%を超えると失透し易くなり好ましくない。
4B) CaO CaO has the effect of improving water resistance, but if it exceeds 5% by weight, it tends to devitrify, which is not preferable.

5B)MgO MgOは耐風化性の改善化に寄与する。5B) MgO MgO contributes to improving weathering resistance.

MgOが4重量係を超えると、失透するので好ましくな
い。
If MgO exceeds 4 weight coefficients, devitrification occurs, which is not preferable.

6B)B203 B203は耐水性の改善、屈折率の増加に寄与する。6B) B203 B203 contributes to improving water resistance and increasing refractive index.

B203が10重量係を超えると、被覆ガラスの屈折率
が高くなり過ぎて、所期の屈折率差が得られず好しくな
い。
If B203 exceeds 10% by weight, the refractive index of the coated glass becomes too high and the desired refractive index difference cannot be obtained, which is not preferable.

7B)ZnO,Zr02,TiO2 これら成分の添加は耐水性の改善に寄与する。7B) ZnO, Zr02, TiO2 Addition of these components contributes to improving water resistance.

しかしてこの成分は1種もしくは2種以上の混合系であ
ってもよいがその組成比が7%を超えると脈理が生E易
くなるので常に7係を上限度とする必要がある。
However, the lever component may be a single type or a mixture of two or more types, but if the composition ratio exceeds 7%, striae are likely to form, so it is necessary to always keep the upper limit at 7%.

次に、本発明の実施例を説明する。Next, examples of the present invention will be described.

下記表1〜表4に示す如く、組成割合が夫々異なる芯用
多成分系ガラス及び被覆用多成分系ガラスを二重ルツボ
法により、800〜1100℃の温度下で線引きして1
1種の光通信用多成分系ガラスファイバー(芯径80μ
、被覆径150μ)を得だ。
As shown in Tables 1 to 4 below, multi-component glass for the core and multi-component glass for the coating, each having a different composition ratio, are drawn at a temperature of 800 to 1100°C by the double crucible method to obtain 1.
A type of multi-component glass fiber for optical communication (core diameter 80μ
, a coating diameter of 150μ) was obtained.

しかして、得られだ各光通信用多成分系ガラスファイバ
ーの芯及び被覆における屈折率n、熱膨張係数α、耐水
性、耐風化性、IQ4,105,106ポイズになる温
度、並びに失透傾向を調べだ。
Therefore, the refractive index n, thermal expansion coefficient α, water resistance, weathering resistance, temperature at IQ 4, 105, 106 poise, and devitrification tendency of the core and coating of each multicomponent glass fiber for optical communications obtained. Check it out.

その結果を同表1〜表4に併記した。なお、耐水性、耐
風化性、及び失透傾向は次のような試験により求めた。
The results are also listed in Tables 1 to 4. In addition, water resistance, weathering resistance, and devitrification tendency were determined by the following tests.

■)耐水性;目開き0.5mmのJIS標準篩にパスし
、目開き0.3咽の同標準篩にパスしない粉末試料5.
01を、100mlの蒸留水に浸し沸騰湯浴中で1時間
加熱した後、その溶液を0.01N−MCI溶液で滴定
し、その滴定しだ量(ml)で耐水性の優、劣を求める
■) Water resistance: Powder sample that passes a JIS standard sieve with a mesh size of 0.5 mm, but does not pass the same standard sieve with a mesh size of 0.3 mm.5.
After soaking 01 in 100ml of distilled water and heating it in a boiling water bath for 1 hour, titrate the solution with 0.01N-MCI solution, and determine the superiority or inferiority of water resistance based on the titrated amount (ml). .

2)@風化性;ガラス表面にできるヘイズ(Haze)
を観察し、 SK−16よりヘイズのできにくいものをASK−16
と同程度のものを ABSK−16よりヘイズ
のでき易いものを Bと評価する。
2) @Weathering; Haze that forms on the glass surface
Observe and select ASK-16 which is less likely to cause haze than SK-16.
A product with the same level of haze as ABSK-16 is rated as B.

3)失透傾向;800℃で15時間加熱、並びに110
0℃で15時間加熱して 結晶の析出しないものを a表面に結晶
を析出するものを b表面及び内部に結晶を
析出するものを Cと評価する。
3) Tendency to devitrify; heating at 800°C for 15 hours and 110°C
Those that do not precipitate crystals after heating at 0°C for 15 hours are evaluated as: (a) Those that deposit crystals on the surface; (b) Those that deposit crystals on the surface and inside are evaluated as C.

しかして本発明に係る多成分系ガラスファイバーは伝送
損失が850mμの波長での測定で、20dB/km以
下であり、低損失ファイバーであった。
However, the multi-component glass fiber according to the present invention had a transmission loss of 20 dB/km or less when measured at a wavelength of 850 mμ, and was a low-loss fiber.

尚、上記組成のガラスは、二重ルツボ法以外での製法、
例えば、ロツド・イン・チューブ法で紡糸しても高耐候
性低損失ファイバーが得られる。
In addition, the glass with the above composition can be manufactured by a method other than the double crucible method,
For example, fibers with high weather resistance and low loss can be obtained by spinning using the rod-in-tube method.

以上詳述した如く、本発明によれば低損失で耐水性、耐
風化性などの耐化学的性質が良好で、とくに被覆層から
のアルカリ溶出が少なく耐候性に優れ、かつ寸法安定性
に優れ、しかも線引き作業時の失透傾向を防止でき、性
能、耐用寿命、損失を著しく改善した光通信用多成分系
ガラスファイバーを提供できるものである。
As detailed above, the present invention has low loss, good chemical resistance such as water resistance and weathering resistance, particularly low alkali elution from the coating layer, excellent weather resistance, and excellent dimensional stability. Moreover, it is possible to provide a multi-component glass fiber for optical communications which can prevent the tendency of devitrification during drawing operations and has significantly improved performance, service life and loss.

Claims (1)

【特許請求の範囲】 1 (4)重量比にてSt0240〜80%(このうち
30%以内はGe02で置換してもよい)、Al203
0.5〜7%、アルカリ金属酸化物10〜23%、Ca
O2〜12%、ZrO21〜12%、B2030〜15
%およびMgOO〜5%からなる芯用多成分系ガラスと
、 ■)重量比にて、SiO。 60〜80%、Al2030.5〜1。 0%、アルカリ金属酸化物9〜17%、CaOO〜5%
ZnO,Zr02 ,Ti02のうちから選ばれた少な
くとも1種7%以下(但し0を含捷ず)、Mg00〜4
%およびB2030〜10%からなる被覆用多成分系ガ
ラスとから形成された高酬候性光通信用多成分系ガラス
ファイバー。
[Claims] 1 (4) St0240 to 80% by weight (up to 30% of this may be replaced with Ge02), Al203
0.5-7%, alkali metal oxides 10-23%, Ca
O2~12%, ZrO21~12%, B2030~15
% and MgOO~5% of the core multi-component glass; and (i) SiO in weight ratio. 60-80%, Al2030.5-1. 0%, alkali metal oxides 9-17%, CaOO-5%
At least one selected from ZnO, Zr02, Ti02, 7% or less (however, 0 is not included), Mg00-4
% and B2030 to 10% for coating.
JP53057116A 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications Expired JPS5812215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53057116A JPS5812215B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53057116A JPS5812215B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Publications (2)

Publication Number Publication Date
JPS54148810A JPS54148810A (en) 1979-11-21
JPS5812215B2 true JPS5812215B2 (en) 1983-03-07

Family

ID=13046558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53057116A Expired JPS5812215B2 (en) 1978-05-16 1978-05-16 Highly weather resistant multi-component glass fiber for optical communications

Country Status (1)

Country Link
JP (1) JPS5812215B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560040A (en) * 1978-10-26 1980-05-06 Nippon Sheet Glass Co Ltd Light transmission body with superior water resistance

Also Published As

Publication number Publication date
JPS54148810A (en) 1979-11-21

Similar Documents

Publication Publication Date Title
US4367012A (en) Optical glass fiber having cover glass of sodium zinc alumino borosilicate
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
US4418985A (en) Multi-component glass optical fiber for optical communication
GB2150555A (en) Optical glasses with refractive indices not less than 1.90, abbe numbers not less than 25 and high chemical stability
JPS60155551A (en) Coating glass for optical fiber
US3294556A (en) Tan ophthalmic glass
JPS5846459B2 (en) Low density flint optical glass
JPS5860641A (en) Glass fiber composition
GB2169596A (en) Optical cdo and tho2 free glass with nd 1.73 - 1.78 and vd 30-34 and good devitrification on stability
JPS5930731A (en) High refractive index, low dispersion and low density glass
JP4219039B2 (en) Fiber optic glass
JPS6316349B2 (en)
JPS5849499B2 (en) Highly weather resistant multi-component glass fiber for optical communications
US4913518A (en) Fluoroborosilicate glass clad article and night vision device
JPS5812215B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS5953224B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS6270245A (en) Optical fiber having environmental resistance
JPS5812214B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5839782B2 (en) Glass fiber for optical communication
JPS5945617B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5953225B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS6213293B2 (en)
JPS5953220B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5953221B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5915100B2 (en) Glass fiber for optical communication