JPS5952963B2 - How to measure deformation - Google Patents

How to measure deformation

Info

Publication number
JPS5952963B2
JPS5952963B2 JP10247379A JP10247379A JPS5952963B2 JP S5952963 B2 JPS5952963 B2 JP S5952963B2 JP 10247379 A JP10247379 A JP 10247379A JP 10247379 A JP10247379 A JP 10247379A JP S5952963 B2 JPS5952963 B2 JP S5952963B2
Authority
JP
Japan
Prior art keywords
deformation
amount
speckle pattern
speckle
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10247379A
Other languages
Japanese (ja)
Other versions
JPS5626208A (en
Inventor
一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP10247379A priority Critical patent/JPS5952963B2/en
Publication of JPS5626208A publication Critical patent/JPS5626208A/en
Publication of JPS5952963B2 publication Critical patent/JPS5952963B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明はスペックル模様の移動量から物体の変形を測定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring the deformation of an object from the amount of movement of a speckle pattern.

物体をレーザビームで照射したときに生ずるス。The scratches that occur when an object is irradiated with a laser beam.

ペツクル模様は、物体の並進、回転、歪などによる物体
の微小な変形によつて移動する。このスペックル模様の
移動量から物体の変形量を測定する方法として、スペッ
クル写真法がある。スペックル写真法は、物体の変形前
・後のスペックル模様。を写真フィルムに二重露光し、
これを現像処理したネガフィルムをレーザビームで照射
して、ネガフィルムの後方に配置したスクリーン上に現
出する縞模様の間隔からスペックル模様の移動量を求め
、この移動量から物体の変形量を測定するものである。
し力士、この従来公知のスペックル写真法では次のよう
な問題がある。1 物体の変形を実時間測定できず、測
定の自動化も困難である。
The Pezkle pattern moves due to minute deformations of the object due to translation, rotation, distortion, etc. of the object. Speckle photography is a method for measuring the amount of deformation of an object from the amount of movement of this speckle pattern. Speckle photography captures speckle patterns before and after deformation of an object. double exposed on photographic film,
The developed negative film is irradiated with a laser beam, and the amount of movement of the speckle pattern is determined from the spacing of the striped patterns that appear on a screen placed behind the negative film.The amount of deformation of the object is calculated from this amount of movement. It is used to measure.
However, this conventionally known speckle photography method has the following problems. 1. It is not possible to measure the deformation of an object in real time, and it is difficult to automate the measurement.

2 スペックル模様の移動量の符号が求められないので
、物体の変形量を完全に決定することができない。
2. Since the sign of the amount of movement of the speckle pattern cannot be determined, the amount of deformation of the object cannot be completely determined.

3 スペックルの平均径以下の移動量は検知できないの
で、物体の変形の測定範囲が狭く制約を受ける。
3. Since the amount of movement below the average speckle diameter cannot be detected, the measurement range of object deformation is narrow and limited.

本発明は上記に鑑みなされたものであつて、物体の変形
前後におけるスペックル模様を光電変換し、得られる信
号間の相互相関関数の極値の位置として求められるスペ
ックル模様の移動量から物体の変形量を測定する方法を
提供するものである。
The present invention has been made in view of the above, and is based on the amount of movement of the speckle pattern obtained by photoelectrically converting the speckle pattern before and after the deformation of the object, and the position of the extreme value of the cross-correlation function between the obtained signals. The present invention provides a method for measuring the amount of deformation.

以下、添付図面により本発明を詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.

第1図は本発明を説明するための測定系の一例である。
図示の如く、物体面1の測定領域Oを、レーザ源2から
のレーザビーム3で必要に応じて拡大レンズ4を介して
照射し、得られるスペックル模様を観察面5で観察する
。こ・で、物体面上の座標軸:x、、y、、2、レーザ
ビームの発散点の距離■05■Ls、発散点の方向:l
sx、、lsy、、ls2、物体面と観察面の距離:L
o、観察点Pの方向:lx、、ly、l2、レーザビー
ムで照射した領域における物体の並進、回転、歪の成分
をそれぞれ: (ax、ay、a2)、 (ΩX、Ωy
)Ωz)、 (εXX)εXy)εyy)とする。
FIG. 1 is an example of a measurement system for explaining the present invention.
As shown in the figure, a measurement area O on an object surface 1 is irradiated with a laser beam 3 from a laser source 2 via a magnifying lens 4 as required, and the resulting speckle pattern is observed on an observation surface 5. Here, the coordinate axes on the object plane: x, y, , 2, the distance of the divergence point of the laser beam ■05■Ls, the direction of the divergence point: l
sx,,lsy,,ls2, distance between object plane and observation plane: L
o, direction of observation point P: lx,, ly, l2, components of translation, rotation, and distortion of the object in the area irradiated with the laser beam: (ax, ay, a2), (ΩX, Ωy)
)Ωz), (εXX)εXy)εyy).

以下の条件下で、物体が変形を受ける前・後における観
察点でのスペックル模様の強度分布l、(x、、y)と
12(x、、y)の間の相互相関関数すなわち、C(x
、y) =<11(x、、y)12(x+−xy+(た
だし、〈〉は集合平均を意味する。
Under the following conditions, the cross-correlation function between the speckle pattern intensity distribution l,(x,,y) and 12(x,,y) at the observation point before and after the object undergoes deformation, that is, C (x
,y) =<11(x,,y)12(x+-xy+ (where <> means the collective average.

)を計算する。).

計算過程は複雑なためこ・では省略するが、結果的には
C(X.y)はx=Ax.yAyで最大値をとる。Ax
.Ayは次式で与えられ、物理的には物体変形によるス
ペツクル模様の移動量に相当する。スペツクルの移動量
Ax.Ayの測定は次のようにして行う。
The calculation process is complicated, so it will be omitted here, but as a result, C(X.y) is x=Ax. The maximum value is taken at yAy. Ax
.. Ay is given by the following equation and physically corresponds to the amount of movement of the speckle pattern due to object deformation. Speckle movement amount Ax. The measurement of Ay is performed as follows.

第2図に示す如く、半導体イメージセンサー6,を1図
のP点に対応する位置に配置して、物体が変形を受ける
前・後のスペツクル模様を光電変換し、その出力信号を
A/D変換してマイクロコンピユータ7のメモリーに格
納し、信号間の相互相関関数を計算する。
As shown in FIG. 2, a semiconductor image sensor 6 is placed at a position corresponding to point P in FIG. The converted signal is stored in the memory of the microcomputer 7, and a cross-correlation function between the signals is calculated.

得られる関数の最大値の位置1が物体の変形量を示す。
なお、図中8は相関計であつて、第5図に示す相互相関
関数の形を与えるために特に配置したもので必ずしも必
要でない。なお、(1)、(2)式からも明らかなよう
に、物体の並進(Ax.ay.az)、回転(Ωx、Ω
y、ΩJz)、歪(εXx、εXy、εYy)が同時に
生ずる場合には、それらの未知数の数に応じてレーザビ
ームの発散点Sの位置ないしイメージセンサー6の位置
を変えて相互相関関数の最犬値を求め連立方程式を解く
ことにより並進、回転、歪を求めるj必要がある。例え
ば、第2図の測定系において半導体イメージセンサー6
に1次元のセンサーを用い、物体が走査方向に対する並
進Axと、それに直角な軸のまわりの面外回転Ωyを行
う場合には、(1)式及びζ(2)式で表わされるスペ
ツクルの移動量Ax.Ayは次式で与えられる。
Position 1 of the maximum value of the obtained function indicates the amount of deformation of the object.
Incidentally, reference numeral 8 in the figure is a correlator, which is specially arranged to provide the form of the cross-correlation function shown in FIG. 5, and is not necessarily necessary. Furthermore, as is clear from equations (1) and (2), the translation (Ax.ay.az) and rotation (Ωx, Ω
y, ΩJz) and distortion (εXx, εXy, εYy) occur simultaneously, the position of the divergence point S of the laser beam or the position of the image sensor 6 is changed depending on the number of these unknowns to obtain the maximum of the cross-correlation function. It is necessary to find translation, rotation, and distortion by finding dog values and solving simultaneous equations. For example, in the measurement system shown in FIG.
When a one-dimensional sensor is used and the object performs translation Ax with respect to the scanning direction and out-of-plane rotation Ωy about an axis perpendicular to it, the speckle movement expressed by equations (1) and ζ (2) is Quantity Ax. Ay is given by the following formula.

こ・でθ8はビームの入射角である。したがつて、この
場合には未知数がAx、Ωyの2つであるので、それら
を分離して求めるためには、2つの異つた入射角θ5又
は距離LOに対してイメージセンサー6の出力信号の相
互相関関数の最大位置を得る必要がある。
Here, θ8 is the incident angle of the beam. Therefore, in this case, there are two unknowns, Ax and Ωy, so in order to separate them, it is necessary to calculate the output signal of the image sensor 6 for two different incident angles θ5 or distances LO. It is necessary to obtain the maximum position of the cross-correlation function.

実施例 レーザビームとして出力5mWのHe−Neレーザを用
い、金属板の面内変位1ax1=25μm〜1.0mm
、面外回転Ωy=0.01〜0.40degの各変形が
単独に起る場合についてそれぞれ測定した結果、第3図
及び第4図を得た。
Example Using a He-Ne laser with an output of 5 mW as a laser beam, the in-plane displacement of the metal plate 1ax1 = 25 μm to 1.0 mm
Figures 3 and 4 were obtained as a result of measurement for the cases where each deformation of .

なお半導体イメージセンサーとして素子数1024で分
解能15μmの1次元イメージセンサー、マイクロコン
ピユータとして16KWのメモリ容量のものを用いた。
第3図及び第4図の測定結果からも明らかなように、面
内変位及び面外回転がいずれも精度よく測定されている
ことが理解される。なお、参考のためAx=100μm
の面内変位に対して得られたイメージセンサーの出力の
相互相関関数を第5図に示す。遅延がOしたがつて、x
−0に対応する位置は中央にとつてあるので、中央から
極値の位置までの時間τ1がスペツクル移動量Axに比
例し、スペツクル模様が正の方向に動いたことが分る。
以上詳述したように、本発明は物体が変形を受ける前後
のスペツクル模様を光電変換し、得られる信号間の相互
相関関数の極値の位置として求められるスペツクル模様
の移動量から物体の変形量を測定する方法である。
A one-dimensional image sensor with 1024 elements and a resolution of 15 μm was used as the semiconductor image sensor, and a microcomputer with a memory capacity of 16 KW was used.
As is clear from the measurement results shown in FIGS. 3 and 4, it is understood that both in-plane displacement and out-of-plane rotation are measured with high accuracy. For reference, Ax = 100μm
FIG. 5 shows the cross-correlation function of the output of the image sensor obtained with respect to the in-plane displacement of . Since the delay is O, x
Since the position corresponding to -0 is set at the center, it can be seen that the time τ1 from the center to the extreme value position is proportional to the speckle movement amount Ax, and the speckle pattern has moved in the positive direction.
As described in detail above, the present invention photoelectrically converts speckle patterns before and after an object undergoes deformation, and calculates the amount of deformation of an object from the amount of movement of the speckle pattern, which is determined as the position of the extreme value of the cross-correlation function between the obtained signals. This is a method of measuring

そのため、実時間測定ができ、測定系の配置も簡単でし
かも自動化が容易である。スペツクル模様の移動量の符
号が求められるので、物体の変形量を完全に知ることが
できる。イメージセンサーの受光面でのスペツクルの平
均径はλLd(た・゛し、λはレーザビームの波長、d
は物体面上でのビーム径)に等しいので、センサーの分
解能をこの値より小さくすればよく、測定範囲も広くな
る。
Therefore, real-time measurement is possible, the measurement system is easy to arrange, and it is easy to automate. Since the sign of the amount of movement of the speckle pattern is determined, the amount of deformation of the object can be completely known. The average diameter of the speckle on the light-receiving surface of the image sensor is λLd (where λ is the wavelength of the laser beam and d
is equal to the beam diameter on the object plane), so the resolution of the sensor can be made smaller than this value, and the measurement range can be widened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための測定系の一例を示す。 第2図は本発明の実施例に用いた測定系の一例を示す。
第3図と第4図は本発明の実施例で得られたスペツクル
模様の移動量に対する物体の面内変位又は面外回転の関
係を示すグラフ。第5図は本発明の実施例における物体
の面内変位に対して得られたイメージセンサーの出力の
相互相関関数を示す。図中の符号:1・・・・・・物体
面、3・・・・・ルーザビーム、5・・・・・・観察面
、6・・・・・・イメージセンサー 7・・・・・・マ
イコン、Ls・・・・・・点光源の距離、LO・・・・
・・物体面と観察面の距離、Ax・・・・・・スペツク
ルの移動量。
FIG. 1 shows an example of a measurement system for explaining the present invention. FIG. 2 shows an example of a measurement system used in an embodiment of the present invention.
FIGS. 3 and 4 are graphs showing the relationship between the in-plane displacement or out-of-plane rotation of an object with respect to the amount of movement of a speckle pattern obtained in an example of the present invention. FIG. 5 shows a cross-correlation function of the output of the image sensor obtained with respect to the in-plane displacement of the object in the embodiment of the present invention. Codes in the diagram: 1...Object surface, 3...Lower beam, 5...Observation surface, 6...Image sensor 7...Microcomputer , Ls...Distance of point light source, LO...
...Distance between object plane and observation plane, Ax...Amount of movement of speckle.

Claims (1)

【特許請求の範囲】 1 変形前・後の物体表面の一部をレーザビームで照射
してスペックル模様を現出し、この変形前・後のスペッ
クル模様をそれぞれ光電変換して得られる信号間の相互
相関関数を求め、その相互相関関数の極値の位置として
求められるスペックル模様の移動量から物体の変形量を
決定することを特徴とする測定方法。 2 前記の変形が物体の並進、回転、歪のいずれかまた
はそれらの組合せにより生ずることを特徴とする特許請
求の範囲第1項に記載の測定方法。 3 前記の光電変換が半導体イメージセンサーにより行
われることを特徴とする特許請求の範囲第1項に記載の
測定方法。
[Claims] 1. Part of the surface of an object before and after deformation is irradiated with a laser beam to reveal a speckle pattern, and the speckle pattern before and after deformation is photoelectrically converted, respectively. A measuring method characterized in that the amount of deformation of an object is determined from the amount of movement of a speckle pattern found as the position of the extreme value of the cross-correlation function. 2. The measuring method according to claim 1, wherein the deformation is caused by translation, rotation, or distortion of the object or a combination thereof. 3. The measuring method according to claim 1, wherein the photoelectric conversion is performed by a semiconductor image sensor.
JP10247379A 1979-08-09 1979-08-09 How to measure deformation Expired JPS5952963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247379A JPS5952963B2 (en) 1979-08-09 1979-08-09 How to measure deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247379A JPS5952963B2 (en) 1979-08-09 1979-08-09 How to measure deformation

Publications (2)

Publication Number Publication Date
JPS5626208A JPS5626208A (en) 1981-03-13
JPS5952963B2 true JPS5952963B2 (en) 1984-12-22

Family

ID=14328413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247379A Expired JPS5952963B2 (en) 1979-08-09 1979-08-09 How to measure deformation

Country Status (1)

Country Link
JP (1) JPS5952963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11900591B2 (en) 2021-04-27 2024-02-13 Canon Kabushiki Kaisha Displacement meter, storage medium, manufacturing system, and method for manufacturing articles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320411A (en) * 1988-06-22 1989-12-26 Hamamatsu Photonics Kk Measuring method for deformation
JP2771594B2 (en) * 1989-05-11 1998-07-02 株式会社キーエンス Method and apparatus for measuring displacement of object
JPH047939U (en) * 1990-05-10 1992-01-24
JP2525922Y2 (en) * 1990-07-12 1997-02-12 極東開発工業株式会社 Safety device for dump truck with crane
US6642506B1 (en) 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US6873422B2 (en) 2000-12-08 2005-03-29 Mitutoyo Corporation Systems and methods for high-accuracy displacement determination in a correlation based position transducer
JP4741367B2 (en) * 2005-12-28 2011-08-03 ハスクバーナ・ゼノア株式会社 Twig tree crusher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11900591B2 (en) 2021-04-27 2024-02-13 Canon Kabushiki Kaisha Displacement meter, storage medium, manufacturing system, and method for manufacturing articles

Also Published As

Publication number Publication date
JPS5626208A (en) 1981-03-13

Similar Documents

Publication Publication Date Title
US5289264A (en) Method and apparatus for ascertaining the absolute coordinates of an object
CN108802043B (en) Tunnel detection device, tunnel detection system and tunnel defect information extraction method
US5339154A (en) Method and apparatus for optical measurement of objects
EP0470816A1 (en) Field shift moire system
CN100405003C (en) Method and apparatus for correcting conversion coefficient of stripe gauging device and stripe gauging device
JPH0329806A (en) Measuring method of shape of object
JPS5952963B2 (en) How to measure deformation
US4678324A (en) Range finding by diffraction
CN107490358A (en) A kind of laser ranging system and its application method
EP0343158B1 (en) Range finding by diffraction
US5061860A (en) Deformation measuring method and device using comb-type photosensitive element array
JPH0226164B2 (en)
CN207197493U (en) A kind of laser ranging system
JPH0735515A (en) Device for measuring diameter of object
Fryer Non-metric photogrammetry and surveyors
JPS6262208A (en) Range-finding apparatuws and method
JPH0758169B2 (en) Deformation measuring device
SU1040332A1 (en) Method of determination of object small displacements
CN116576884A (en) System, method and machine-readable storage medium for calibrating parameters of multiple sensors
Leopold Process monitoring of 3D—cutting inserts using optical methods
JPH063364B2 (en) Film thickness measurement method
JPS5826325Y2 (en) position detection device
JPS6127681B2 (en)
Aslanyan Speckle photography processing using the optico-digital radon-Fourier transform
JPH04258712A (en) Image pick-up device