JPS5952885A - Super conductive schottky transistor and manufacture thereof - Google Patents

Super conductive schottky transistor and manufacture thereof

Info

Publication number
JPS5952885A
JPS5952885A JP57163390A JP16339082A JPS5952885A JP S5952885 A JPS5952885 A JP S5952885A JP 57163390 A JP57163390 A JP 57163390A JP 16339082 A JP16339082 A JP 16339082A JP S5952885 A JPS5952885 A JP S5952885A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
emitter
impurity
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57163390A
Other languages
Japanese (ja)
Inventor
Yoshikazu Takano
鷹野 致和
Yoshinobu Sugiyama
杉山 佳延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57163390A priority Critical patent/JPS5952885A/en
Publication of JPS5952885A publication Critical patent/JPS5952885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable to form a broad-band high sensitive amplifying circuit of microscopic signal and a high speed logic circuit of microscopic logic amplitude and low power consumption by a method wherein a superconductive metal layer and two semiconductor layers are joined together, said superconductive metal layer is turned to an emitter or a collector, the first semiconductor layer is turned to a base, and the second semiconductor layer is turned to a collector or an emitter. CONSTITUTION:An n type impurity semiconductor layer 13 is grown on an n<+> type substrate 1 by performing a crystal growing method, and a p type impurity semiconductor layer 14 is formed thereon. Subsequently, after a semiinsulating semiconductor layer 15 has been formed, a transistor is formed by providing a superconductive metal electrode 16 and electrodes 17 and 18. The impurity layers 13, 14 and the semiinsulating layer 15 are formed using the same substance as the base material by controlling the dopant so that the required impurity density or semiinsulating layer can be formed. As a result, a high sensitivity and low noise amplification of microscopic signal or a low level and high speed switching operation can be performed at the operating temperature less than the superconductive transition temperature of the superconductive material of superconductive metal electrode 16 based on the principle of operation different from the conventional bipolar and the field-effect type transistor.

Description

【発明の詳細な説明】 この発明は、スーパ・ショット;V−・トランジスタお
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a super shot;V- transistor and a method of manufacturing the same.

従来用いられてきたバイポーラトランジスタは、半導体
のpn接合の組み合わせをその基本構成としている。ま
た、電界効果トランジスタは、pn接合の他に、ショッ
トキ接合あるいはMIS接合をその基本4M成としてい
る。これらのトランジスタの動作の基本となる接合構造
は、通常用いられているものとして半導体材料および金
属材料との組み合わせである。これらの接合構造、すな
わちPN接合、ショットキ接合あるい41Ml5接合の
いずれの場合においても数百mV以上の障壁高さを有し
ている。したがって、トランジスタ動作を行わせるため
の素子へのバイアス電圧は、いずれの場合にも数V程度
を必要としており、幾何学的形状の微小化等の技術的便
法な使用−しても、低雑音化、低消費電力化には限度が
あり、最近の高度化されたニーズに対応しきれなくなっ
ている。
The basic structure of conventionally used bipolar transistors is a combination of pn junctions of semiconductors. In addition to the pn junction, the field effect transistor basically has a 4M structure including a Schottky junction or an MIS junction. The junction structure that is the basis of the operation of these transistors is a commonly used combination of semiconductor materials and metal materials. Any of these junction structures, ie, PN junction, Schottky junction, or 41Ml5 junction, has a barrier height of several hundred mV or more. Therefore, in any case, the bias voltage to the element for transistor operation is required to be on the order of several volts, and even if technological expedients such as miniaturization of the geometrical shape are used, the bias voltage is low. There are limits to reducing noise and lowering power consumption, and it is no longer possible to meet the increasingly sophisticated needs of recent years.

第1図は従来のバイポーラトランジスタの基本構成であ
り、n+型(またはp+型)の基板1の上圧、p型(ま
たはn型)の不純物層2を拡散ないし結晶成長等によっ
て形成し、さらにその上にn型(またはp型)の不純物
;脅3を同様の方法で形成して各々所要個所に金属から
なる冨、極/l、S、6ン形成して製造する。この素子
構造において、半導体部である基板1.不純物層2.不
純物j慢3と各々電極4.5.6の金属との間は障壁の
ないオーム性接合を作る。このようにして作成された、
不純物層3と不純物層2および不純物層2と基板1の間
のpn接合に適当なバイアス電圧を印加すること罠より
、’a電極に加えられた信号の増幅またはスイッチング
等の能動作用を行わせることができる。
Figure 1 shows the basic configuration of a conventional bipolar transistor, in which an n+ type (or p+ type) substrate 1 is placed under an upper pressure, a p type (or n type) impurity layer 2 is formed by diffusion or crystal growth, and On top of that, n-type (or p-type) impurities are formed in the same manner, and metal poles are formed at required locations. In this device structure, a substrate 1 which is a semiconductor portion. Impurity layer 2. A barrier-free ohmic junction is created between the impurity 3 and the metal of the electrodes 4, 5, and 6, respectively. Created in this way,
By applying an appropriate bias voltage to the pn junction between the impurity layer 3 and the impurity layer 2 and between the impurity layer 2 and the substrate 1, active functions such as amplification or switching of the signal applied to the 'a electrode are performed. be able to.

pn接合障壁高さは、例えばSi(シリコン)の場合0
.8〜1vであるから最低的IVのバイアス電圧を印加
して動作させることになり、この値を大幅に1#、少さ
せることができないため、不純物層20幅ならびに電#
i40間の間隔をサフミクロンに微小化するなどの手段
′f/:喧じて消it T[、力のホ小化、動作速度の
高速化を園っている。しかしながら、Siバイポーラト
ランジスタの単体尚りの消費゛電力は約2mW、スイッ
チ速度は約80ps程度でほぼ限界忙達しており、これ
以上の改善は望めないというのが現状である。
For example, the pn junction barrier height is 0 in the case of Si (silicon).
.. Since the voltage is 8 to 1V, the lowest IV bias voltage must be applied to operate, and this value cannot be significantly reduced by 1V, so the width of the impurity layer 20 and the voltage
Measures such as reducing the distance between I40 to submicrons are aimed at reducing the force and increasing the operating speed. However, the power consumption of a single Si bipolar transistor is about 2 mW, and the switching speed is about 80 ps, which has almost reached its limit, and the current situation is that no further improvement can be expected.

第2図は一般的な従来のMIS型雷、界効果トランジス
タの基本構造であり、絶縁性基板Tの上圧n型(または
p型)の半導体層8を作成し、その上に金属の電極11
および12を形成して各々ソースおよびドレン電極とす
るとともに、ソース電極11.ドレン電極12間に絶縁
層9およびその上圧金属の電極10を形成してゲート電
極とするものである。ゲート電極1(IK電圧数Vど化
印加1′ると、半導体層8および絶縁層9間に、いわゆ
るチャネル層が形成され、ソースi+を極zおよびドレ
ン電極12間に流れる電流が変化することを利用して、
信号の増幅またはスイッチング等の能動作用を行わせる
ものである。この構造のトランジスタにおいては、半導
体材料としてSlを用いると消*電力がバイポーラトラ
ンジスタに比べて小さくなるという利点がある反面、ス
イッチ速度が数ns以上となり、動作速度が遅くなると
いう欠点を有ゴる。さらに、化合、物半導体材料を用い
た場合、半導体層8と絶縁層9間の界面の制御性が悪く
なり、実用に適さない。同様な動作原理で働く・iW電
界効果トランジスタ、p「1接合型、ショットキ接合型
があり、oaAs(ガリウム砒素)のような化合物半導
体材料を用いたショットキ接合型、イワユるMESFE
Tが実用に供されているが、いずれの場合にも、接合の
障壁高さが数imV以上であるため、消費電力が1ゲー
ト当り1oμW程度と比較的大きい。また、障壁高さが
高いため、低雑音動作罠も限界がある。
Figure 2 shows the basic structure of a general conventional MIS type lightning field effect transistor, in which an n-type (or p-type) semiconductor layer 8 is formed on an insulating substrate T, and a metal electrode is placed on top of the n-type (or p-type) semiconductor layer 8. 11
and 12 to serve as source and drain electrodes, respectively, and source electrodes 11 . An insulating layer 9 and a metal electrode 10 above the insulating layer 9 are formed between the drain electrodes 12 to serve as a gate electrode. When the gate electrode 1 (IK voltage number V) is applied, a so-called channel layer is formed between the semiconductor layer 8 and the insulating layer 9, and the current flowing through the source i+ between the pole z and the drain electrode 12 changes. Using
It performs functional operations such as signal amplification or switching. In transistors with this structure, using Sl as the semiconductor material has the advantage that the power consumption is smaller than that of bipolar transistors, but has the disadvantage that the switching speed is several ns or more, which slows down the operation speed. . Furthermore, when a compound semiconductor material is used, the controllability of the interface between the semiconductor layer 8 and the insulating layer 9 becomes poor, making it unsuitable for practical use. There are two types of iW field effect transistors, one-junction type and Schottky junction type, which work on the same principle of operation, and one is Schottky junction type using compound semiconductor materials such as oaAs (gallium arsenide).
T is put into practical use, but in any case, the barrier height of the junction is several millivolts or more, so the power consumption is relatively large, about 1 μW per gate. The high barrier height also limits the low noise operation of the trap.

この発明は、上述の点にがんがみてなされたもので、従
来のバイポーラトランジスタの特に接合障壁が高いこと
による消費電力並ひに雑音の大きさを低減させ微小1阿
号の低雑音高感度増幅あるいは低レベル高速スイッチン
グ火可能ならしめた新しい能動機構に基づくバイポーラ
トランジスタを得ること欠目的とするものである。また
、この素子を基本とする集積回路の製作により、高感度
広帯域増幅器ないし高速論理回路等の実現を可能にする
ものである。以下この発明を図面に基づいて説明する。
This invention was made in consideration of the above points, and reduces the power consumption and noise caused by the particularly high junction barrier of conventional bipolar transistors, and achieves low noise and high sensitivity of the micro size 1A. It is an object to obtain bipolar transistors based on new active mechanisms capable of amplification or low-level fast switching. Furthermore, by manufacturing an integrated circuit based on this element, it becomes possible to realize a highly sensitive wideband amplifier or a high-speed logic circuit. The present invention will be explained below based on the drawings.

第3囚はこの発明の一実施例としてのスーパ・ショット
キ・トランジスタの基本購成を示す図である。同図に示
1よ5に、このトランジスタは、n+型(またはp+型
)の基板1の上にさらK n型(またはp型)不純物半
導体7PN (以下不純物層という)13を主K M 
B E等の結晶成長によって形成し、その上Ic p形
(またはn型)不純物半導体層(以下不純物層という)
14乞同じく主に結晶成長によって形成する。続いて半
絶縁性半導体層(以下半絶縁物層とい5)15Y結晶成
長法により形成した後、超電導体金属電極16.電村イ
1r。
The third figure is a diagram showing the basic purchase of a super Schottky transistor as an embodiment of the present invention. As shown in 1 to 5 in the same figure, this transistor further includes an n-type (or p-type) impurity semiconductor 7PN (hereinafter referred to as an impurity layer) 13 on an n+ type (or p+ type) substrate 1.
A p-type (or n-type) impurity semiconductor layer (hereinafter referred to as an impurity layer) is formed by crystal growth such as B E, etc.
14 It is also formed mainly by crystal growth. Subsequently, a semi-insulating semiconductor layer (hereinafter referred to as semi-insulating layer 5) 15 is formed by the Y crystal growth method, and then a superconducting metal electrode 16. Denmurai 1r.

18ft設けてトランジスタとして措成イるものである
。ここで、不純物層13.不純物層14.半絶縁物層1
5は基本的圧は同一物質を1σ体とし、それぞれ所要の
不純物濃度ないしは半絶縁1脅を形成するようにドーパ
ントの制御を行って作るものである。また、不純物層1
3.不純物層14間はpn接合の代りに、ペテロ接合と
なるように祠相の選択を行ってもよい。さらに、超電導
体金属電極16と半絶縁物If415間に形成されるシ
ョットキ障壁高さは、オーム性になら7エい程度九低い
値となるような組み合わせを選ぶものとする。基板1は
その上に成長する不純物層13.不純物層14゜半絶縁
物層150拐料が結晶として成長するために、これらの
材料との格子整合のとれたものとし、成長層と反対側に
オーム性の電極18ケとりつけろものとする。
It can be used as a transistor by providing 18 feet. Here, the impurity layer 13. Impurity layer 14. Semi-insulating layer 1
No. 5 is made by using the same material as a 1σ body and controlling the dopant so as to form the required impurity concentration or semi-insulating 1 sigma. In addition, impurity layer 1
3. A grain phase may be selected so that a Peter junction is formed between the impurity layers 14 instead of a pn junction. Furthermore, the height of the Schottky barrier formed between the superconductor metal electrode 16 and the semi-insulator If415 is selected to be a combination that is about 7 degrees lower in the case of ohmic properties. The substrate 1 has an impurity layer 13 grown thereon. Since the impurity layer 14 and the semi-insulating layer 150 grow as crystals, they are made to have lattice matching with these materials, and 18 ohmic electrodes are provided on the side opposite to the grown layer.

この構造の具体例として、例えは、基板1にn型Ink
(インジウム燐)ないし、n型oaAs (ガリウム砒
素)、不純物層13,14.半絶縁物層15の母体とし
てInGaAs(インジウムガリウム砒素)を用い、不
純物層13はn型、不純物層14はp型、半絶縁物層1
5は半絶縁性になるように不純物濃度の制御を行う。不
純物層13.不純物層14間にペテロ接合を用いる。9
エ合は、不純物層13Kn型InGaAs、不純物rf
N 14にp型InPないしp型InAIP(インジウ
ムアルミニウム燐)を用い、半絶縁物層15Ilcは半
絶縁性1nl’を用いる。この場合半絶縁物層15部分
は数loi以下と極めて薄くして不純物層14や超電導
体金属電!!16を設けることもできる。さらに、超電
導体金属電極16の材料としては、pb(鉛)、Nb(
ニオブ)等の超電導材料を用い、その酸化等劣化を防ぐ
ため、金等の材料で覆うものとする。また、を極17.
18には金等を用いる。
As a specific example of this structure, for example, an n-type ink is used on the substrate 1.
(indium phosphide) or n-type oaAs (gallium arsenide), impurity layers 13, 14. InGaAs (indium gallium arsenide) is used as the base material of the semi-insulating layer 15, the impurity layer 13 is n-type, the impurity layer 14 is p-type, and the semi-insulating layer 1
5 controls the impurity concentration so that it becomes semi-insulating. Impurity layer 13. A Peter junction is used between the impurity layers 14. 9
The impurity layer 13 is Kn-type InGaAs, and the impurity rf
P-type InP or p-type InAIP (indium aluminum phosphorus) is used for N 14, and semi-insulating 1nl' is used for semi-insulating layer 15Ilc. In this case, the semi-insulator layer 15 is made extremely thin to a few LOi or less to form the impurity layer 14 and the superconductor metal layer. ! 16 can also be provided. Furthermore, as the material of the superconductor metal electrode 16, pb (lead), Nb (
A superconducting material such as niobium (niobium) is used, and it is covered with a material such as gold to prevent deterioration such as oxidation. Also, the pole 17.
Gold or the like is used for 18.

このような構造とすること匠より、超電導体金属電極1
6の超電導材料の超電導転移温度以下の動作温度で、従
来のバイポーラないしは電界効果型トランジスタと相異
なる動作原理九基づく、微小信号レベルの高感度低雑音
増幅または低レベル高速スイッチング動作を行わせるこ
とができる。
The superconductor metal electrode 1 was designed by Takumi to have such a structure.
It is possible to perform high-sensitivity, low-noise amplification or low-level, high-speed switching operations based on operating principles different from conventional bipolar or field-effect transistors at an operating temperature below the superconducting transition temperature of superconducting materials (6). can.

すなわち、従来のpn接合の代わりに、スーパ・ショッ
トキ接合ン用いること釦より、±ImV前後において、
超電導体金属電極16と不純物層140間に効率のよい
トンネル注入を行わせることができる。こ第1は超電導
体金属の状態密度が±1mV前後において挿めて太きい
ため、トンネル電流l増大させ得ることによる。このと
き、トンネル抵抗を下げ効率よく注入な行わせるため、
ショットキ障壁が極めて低い1mVに近い値を得るため
に、障壁高さを低(し得る半導体材料を用いる必要があ
り、例えは、I n G a A S系等の材料の他、
G d HgTe、Pb、5nTe等が考えられる。さ
らに、逆方向の侵洩電流、な減少さぜるためK 、 m
4 <薄い半絶縁物層1jY挿入する。トンネル電流の
制御は、超電導体金属電極16.llt掩11間に印加
する電圧により行う。このよう妊して不純物層14に注
入された荷電粒子は、不純物層13.14間のpn接合
またはへテロ接合に印加されてぃろ電圧によって集めら
れ基板1を通って電極18に集められろ点は通常のバイ
ポーラトランジスタの場合と同一である。また、通常の
′電界効果トランジスタの場合と異プLす、超+If、
導体金属電極16が金属である忙も関わらず、動作温度
乞通常極低温に保ち超電導体とするため低レベルでの注
入電極となっている点に特徴がある。上述の月相を用い
た具体例によれは、超電導体金属i!検16がら超m導
トンネリングによって注入された電子は、誦常のバイポ
ーラトランジスタにおけろベース領域、不純物層14に
おいて僅かな再結合忙よる減少を経て、不純物層14.
13間のpn接合また1ll−\テロ接合障壁を越え不
純物層13の領域に到達する。電流到達率がベース領域
の損失忙より減少゛することは通常のトランジスタと同
一であり、超′1に導体金y4電極16のように超電導
体金属を用いたスーパ・ショットキ接合を用いろととも
にショットキ障壁高さを低くするため混晶半導体材料ケ
用いることによって、微小信号の高感度低雑音増幅ある
いは、低レベル高速スイッチングを可能ならしめている
。不純物層13および14間のpn接合またはへチル接
合は上述の具体例の材料を用いることにより、極めて浅
い接合障壁を持つ構造を作り、低雑音化並びに低消*電
力化1図るものとする。
That is, by using a super Schottky junction instead of the conventional pn junction, at around ±ImV,
Efficient tunnel injection can be performed between the superconductor metal electrode 16 and the impurity layer 140. The first reason is that the density of states of the superconducting metal is extremely large around ±1 mV, so that the tunnel current l can be increased. At this time, in order to lower the tunnel resistance and perform injection efficiently,
In order to obtain an extremely low Schottky barrier of close to 1 mV, it is necessary to use a semiconductor material that can reduce the barrier height. For example, in addition to materials such as InGaAs,
Possible materials include G d HgTe, Pb, and 5nTe. Furthermore, the leakage current in the reverse direction is reduced by K, m
4 <Insert thin semi-insulator layer 1jY. Tunnel current is controlled by superconductor metal electrode 16. This is done by applying a voltage between the 11 and 11. The charged particles injected into the impurity layer 14 in this way are collected by a voltage applied to the pn junction or heterojunction between the impurity layers 13 and 14, pass through the substrate 1, and are collected at the electrode 18. The points are the same as in the case of a normal bipolar transistor. Also, unlike the case of a normal field effect transistor, super+If,
Although the conductive metal electrode 16 is made of metal, it is characterized by being an injection electrode at a low level in order to maintain the operating temperature at an extremely low temperature and make it a superconductor. According to a specific example using the above-mentioned moon phase, superconductor metal i! In the conventional bipolar transistor, the electrons injected by superm-conducting tunneling are reduced due to slight recombination in the base region and impurity layer 14.
It crosses the pn junction between 13 and the 1ll-\tero junction barrier to reach the region of impurity layer 13. The fact that the current delivery rate decreases due to loss in the base region is the same as in normal transistors. By using a mixed crystal semiconductor material to lower the barrier height, high-sensitivity, low-noise amplification of minute signals or low-level high-speed switching becomes possible. The pn junction or hethyl junction between the impurity layers 13 and 14 is made of the material of the above-described specific example to create a structure with an extremely shallow junction barrier, thereby achieving low noise and low power consumption.

pn接合の構造は、この目的のために通常の接合伝導機
構の他、トンネル機構によっても伝導する構造を含むも
のである。
For this purpose, the pn junction structure includes a structure that conducts by a tunnel mechanism as well as a normal junction conduction mechanism.

第4図、第5図はこの発明の他の実施例を示すもので、
第3図に示すこの発明の基本構成であろバイポーラトラ
ンジスタの変形例である。
FIGS. 4 and 5 show other embodiments of this invention,
The basic configuration of the present invention shown in FIG. 3 is a modification of the bipolar transistor.

第4図に示1構造は、第3図に示す構造を作り、七〇牛
絶縁物層15を取り除い℃、直接不純物層14と超成導
体金JtA電極16火接)ケ1むさせ、不純物P14.
超電導体金属′ル極16間に形成されるショットキ障壁
、高さが適当な大きさになる材料を用い、それに伴つ℃
形成される空乏J□□□を第3図に示す半絶縁物415
0代りに1゛ることに特徴がある。
1 structure shown in FIG. 4 is made by making the structure shown in FIG. P14.
The Schottky barrier formed between the superconducting metal poles 16 is made of a material that has an appropriate height, and the temperature associated with it is
The depletion J□□□ formed in the semi-insulating material 415 shown in FIG.
It is characterized by being 1 instead of 0.

このような構造のトランジスタは、不純物濃度および膜
厚の制御+/hの良い単結晶成長手段、例えばMBIE
、MO−CVD、LPEないしCVD等の成長方法を用
いて行う。Jなわら、N、b 、 k’ b等の超電導
体金属との間に形成されるショットキ障壁高さが低い半
導体材料と格子整合のとり易い材料の基板1を選択し、
この基板10表面を機械的平坦性がよく、かつ原子レベ
ルで清浄にして、その上に所要特性を持った不純物層1
3.14.半絶縁物層15を順次MBB等の単結晶成長
手段を用いて単結晶を成長させて形成するものである。
A transistor with such a structure can be manufactured using a single crystal growth method that allows good control of impurity concentration and film thickness, such as MBIE.
, MO-CVD, LPE or CVD. J, select a substrate 1 made of a material that is easily lattice matched with a semiconductor material that has a low Schottky barrier height formed between it and a superconducting metal such as N, b, k' b, etc.
The surface of this substrate 10 is made to have good mechanical flatness and is clean at the atomic level, and an impurity layer 1 having the required characteristics is formed thereon.
3.14. The semi-insulator layer 15 is formed by sequentially growing a single crystal using a single crystal growth method such as MBB.

第5図に示1措造は実際の’It’! 、ii、’j技
61G上の都合にかんがみてなされたものであり、基本
的動作原理は第3図のものと同一で、基板1と不純物層
、130間に緩衝層19を設けたものである。この緩衝
層19は基板1と不純物層130間の格子整合をとり、
その清浄表面上に良質な不純物層13,14゜半絶縁物
層15を形成させるためのもので、通常基板1と同種の
半導体からなり、基板1の上忙不純物層13.14およ
び半絶縁物層15の成長方法と同じ方法で成長させる。
The first construction shown in Figure 5 is the actual 'It'! , ii, 'j Technique 61G This was done in view of the convenience, and the basic operating principle is the same as that in FIG. 3, with a buffer layer 19 provided between the substrate 1 and the impurity layer 130. be. This buffer layer 19 provides lattice matching between the substrate 1 and the impurity layer 130,
This layer is for forming good quality impurity layers 13, 14 and semi-insulating layer 15 on the clean surface, and is usually made of the same type of semiconductor as substrate 1, and is made of impurity layers 13, 14 and semi-insulating layer 15 on top of substrate 1. It is grown in the same manner as layer 15.

この方法を採ることにより、格子整合の良くとれた良質
の半導体屑が得られることに特徴がある。
This method is characterized in that high-quality semiconductor chips with good lattice matching can be obtained.

具体的例としては、詑3図に示す実施例の具体例と同様
、基板1の半導体InPの上にn型(またはp型)In
PIFlを緩衝層19として成長させた後、InGaA
、sの不純物層13..14および半絶縁物層15を成
長させるか、または不純物M13としてInGaA、s
s不純物屑14および半絶縁物層15として1nPIi
あるいはI nA、IAs Jf4 Y成長させる。
As a specific example, similar to the specific example of the embodiment shown in FIG.
After growing PIFl as a buffer layer 19, InGaA
, s impurity layer 13. .. 14 and semi-insulating layer 15, or InGaA, s as impurity M13.
1nPIi as impurity waste 14 and semi-insulating layer 15
Alternatively, I nA, IAs Jf4 Y is grown.

その後、超電導体金属よりなる電極層を半絶縁物層15
上に形成し、この表面にさらにフォトエツチング等の工
程により所望個所に、超電導体金属電極16.電4ti
1?および電極18を形成し基本構造な完成させる。
Thereafter, an electrode layer made of a superconducting metal is applied to the semi-insulator layer 15.
A superconducting metal electrode 16. electric 4ti
1? Then, electrodes 18 are formed to complete the basic structure.

上記のような基本構造ならびに動作原理に基づく集積回
路は超電導体金属ML極16の層まで形成された構造物
上に、相互接続を含む複合パターンをフォトエツチング
等の工程により形成することによって作成するのである
An integrated circuit based on the basic structure and operating principle described above is created by forming a composite pattern including interconnections by a process such as photoetching on a structure formed up to the superconducting metal ML pole 16 layer. It is.

第3図乃至第5図忙示1ja造において一各相料の厚さ
は、大路次の通りとなる。基板1はInP。
In Figures 3 to 5, the thickness of each phase material in 1ja construction is as follows. Substrate 1 is InP.

G aA S m  I n ASなどからなる半導体
層で厚さ100μm 〜500μm、不純物層13はI
nGaAsなどからなる低障壁高移動層で厚さ500八
〜0.5μm。
The impurity layer 13 is a semiconductor layer made of G aAs m I n AS or the like and has a thickness of 100 μm to 500 μm.
A low-barrier, high-mobility layer made of nGaAs or the like with a thickness of 500 to 0.5 μm.

不純物層14はInP、InAIP”EたはInGaA
sなどからなるベース形成層で暦さ300八〜0.2μ
m、半絶縁物層15はInPtたは1nGaAsなどか
らなる障壁漏洩電流調整層で厚さ0〜100k、緩衝層
19は1nPまたは1nGaA8などからなり基板1・
と格子整合のための活性層で厚さ0.5μm〜1−μm
とする。また、超電導体金属虱権16は、厚さはNl)
 s o 7V〜0.2μm−+−Au I (10A
〜05μm、ないしばpbとInとAuの合金利で厚さ
0.2μm程度とする。オーム性の電極17.18は各
々の基板に応じた金属を用い任意の厚さとする。
The impurity layer 14 is InP, InAIP"E or InGaA
The base cambium layer consists of
m, the semi-insulator layer 15 is a barrier leakage current adjustment layer made of InPt or 1nGaAs, and has a thickness of 0 to 100k; the buffer layer 19 is made of 1nP or 1nGaA8, etc., and the substrate 1.
and 0.5 μm to 1-μm thick active layer for lattice matching.
shall be. In addition, the superconductor metal plate 16 has a thickness of Nl)
s o 7V~0.2μm-+-Au I (10A
The thickness is about 0.5 μm, or about 0.2 μm with a combination of PB, In, and Au. The ohmic electrodes 17 and 18 are made of a metal suitable for each substrate and have an arbitrary thickness.

以上詳細に説明したようにこの発明に係るスーパ・ショ
ットキ・トランジスタは、超電導体金属層と第1および
第2の半導体層との王者の接合から構成され、超電導体
金属層をエミッタまたはコレクタとし、第1の半導体層
をベース、第2の半導体層をコレクタまたはエミッタと
したので、このスーパ・ショットキ・トランジスタを集
積回路の基本構造と1れば、μV以下の微小信号の広帯
域高感度増幅回路、ならびに1mV前後の微小論理振幅
の低消費電力高速論理回路の作成が可能となる。また、
超電導体金属の超電導転移温度以下の、主に極低温領域
で使用ずれは雑音レベルおよび消費電力とも、従来のシ
ョットキ・トランジスタに較べて約2桁の性能向上が見
込まれるから、スーパ・ショットキ・ダイオードやジョ
セフソン接合ダイオード等の高感度電磁波検出器並びに
一般の低雑旨増幅器の初段I l”増幅器、S Q [
J I L)等高感度センサの初段増幅器、ジョセフソ
ン論理演算回路等と同様の低レベル低消費電力論理演算
回路を構成することができる等の極めてすぐれた効果を
有する。ものである。
As explained in detail above, the super Schottky transistor according to the present invention is composed of a junction between a superconducting metal layer and first and second semiconductor layers, with the superconducting metal layer serving as an emitter or a collector, Since the first semiconductor layer is used as the base and the second semiconductor layer is used as the collector or emitter, if this super Schottky transistor is considered as the basic structure of an integrated circuit, it can be used as a wide-band high-sensitivity amplifier circuit for minute signals of less than μV. Furthermore, it becomes possible to create a low power consumption high speed logic circuit with a minute logic amplitude of around 1 mV. Also,
Super Schottky diodes are used mainly in the extremely low temperature region, below the superconducting transition temperature of superconducting metals, because they are expected to improve performance by about two orders of magnitude compared to conventional Schottky transistors in both noise level and power consumption. high-sensitivity electromagnetic wave detectors such as or Josephson junction diodes, and first-stage Il'' amplifiers of general low-noise amplifiers, S Q [
It has extremely excellent effects, such as being able to configure a low-level, low-power consumption logic operation circuit similar to the first-stage amplifier of a high-sensitivity sensor such as JIL, a Josephson logic operation circuit, and the like. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイポーラトランジスタの構成略図、第
2図は従来の1口、界効果トランジスタの構成略図、第
3図はこの発明の一実施例としてのスーパ・ショットキ
・トランジスタの構成略図、第4図、第5図はその変形
例の構成略図である。 図中、1は基板、13.14は不純物層、15は半絶縁
物層、16は超電導体金属↑a、倹、17゜18は電極
、19は緩衝層である。 i゛”−・・、゛・ 1 第1図 第3図 第4図 第5図 昭(1117イl’//   月   / 7111 
=lN’lの表示 昭和Sり年特Irf願第1乙339θ号その袈危方法 3h11正をする者 事件との関係 待針出願人 東京都丁(いII l/l’、iか関] 1’ II 
:(ifi l ’弓4指定代理人 茨城ll、1新治郡桜Htl+i園11111吊4−;
00351栗技術院 Iir技術技術総合研究所得々力 5匍正の対象 明細書中の発明の詳細な説明の瘤 6袖正の内容 を印加」を「電圧数Vを印加」と訂正する。 (2)  同、第g頁第79行の「p型111A1p 
(−(ンジウムアルミニウム燐)」を「p型InAlA
s (インジウムアルミニウム砒素)」と訂正する。 (3)同、第10頁第グ行の「GdHgJを「0曲g」
と訂正する。 (4)  同、第14’頁第1行の「所望個所」を「所
要個所」と訂正する。 (5)  同、第1頌第1ダ行の[InAlp Jをi
 ] nAlAs Jと訂正する。
FIG. 1 is a schematic diagram of the configuration of a conventional bipolar transistor, FIG. 2 is a schematic diagram of the configuration of a conventional single-hole, field-effect transistor, and FIG. 3 is a schematic diagram of the configuration of a super Schottky transistor as an embodiment of the present invention. FIG. 4 and FIG. 5 are schematic diagrams of the configuration of the modified example. In the figure, 1 is a substrate, 13 and 14 are impurity layers, 15 is a semi-insulating layer, 16 is a superconducting metal ↑a, 17° and 18 are electrodes, and 19 is a buffer layer. i゛"-...,゛・1 Figure 1 Figure 3 Figure 4 Figure 5 Akira (1117 I'// Month / 7111
= Indication of lN'l Relation to Showa S year special Irf application No. 1 Otsu 339θ and the case of the person who made the 3h11 correction. 'II
:(ifi l 'Yumi 4 Designated Agent Ibaraki ll, 1 Niiharu-gun Sakura Htl+i Garden 11111 Suzari 4-;
00351 Chestnut Institute of Technology Iir Technology Comprehensive Research Income 5 卍 5 卍 5 卍 5 卍 5 卍 5 卍 The detailed description of the invention in the detailed description of the invention in the 6 sleeve ``apply'' is corrected to ``apply the voltage number V''. (2) “p-type 111A1p” in page g, line 79 of the same
(-(Indium Aluminum Phosphorus)” is “p-type InAlA
s (indium aluminum arsenide)". (3) Same, page 10, line G, “GdHgJ is “0 song g”
I am corrected. (4) Same, on page 14', first line, "desired location" is corrected to "required location." (5) Same, 1st ode, 1st line [InAlp J to i
] Corrected as nAlAs J.

Claims (4)

【特許請求の範囲】[Claims] (1)超電導体金属層と第1および第2の半導体層との
王者の接合から構成され、前記%イ4 ’+11.導体
金属層をエミッタまたはコレクタとし、F+II Tl
13第1の半導体Jf4をベース、前記第2の半導体層
なコレクタまたはエミッタとイることヲlr♀徴とずろ
スーパ・ショットキ・トランジスタ。
(1) Consisting of a superconducting metal layer and a first and second semiconductor layer, the %i4'+11. The conductive metal layer is used as the emitter or collector, and F+II Tl
13. A super Schottky transistor whose base is the first semiconductor Jf4 and whose collector or emitter is the second semiconductor layer.
(2)  超電導体金属層と第1および第2の半導体層
との王者の接合から構成され、前記超電導体金属層をエ
ミッタまたはコレクタとし、^II Mj:第1の半導
体層をベース、前記第2の半導体層をコレクタまたはエ
ミッタとし、さらに前記第1の半導体層として前記超電
導体金属層と前記第1の半導体層間に形成されるショッ
トキ障壁高さを低くするための半導体材料および構造を
用いたことな特徴と1−ろスーパ・ショットキ・トラン
ジスタ。
(2) Consisting of a superconducting metal layer and a first and second semiconductor layer, the superconducting metal layer is used as an emitter or a collector, ^II Mj: the first semiconductor layer is the base, the first semiconductor layer is the A second semiconductor layer is used as a collector or an emitter, and a semiconductor material and structure are used as the first semiconductor layer to reduce the height of a Schottky barrier formed between the superconductor metal layer and the first semiconductor layer. Unique features and 1-Ro super Schottky transistor.
(3)超電導体金属層と第1および第2の半導体層との
三者の接合から構成され、前記超電導体金FA層をエミ
ッタまたはコレクタとし、前記第1の半導体層をベース
、前記第2の半導体層tコレクタまたはエミッタとし、
さらに前記超電導体金属層と第1の半導体層間に漏洩電
流を少なくする半絶縁性半導体層を形成したことを特徴
と1ろスーパ・ショットキ・トランジスタ。
(3) It is composed of a three-way junction of a superconducting metal layer and a first and second semiconductor layer, with the superconducting gold FA layer as an emitter or collector, the first semiconductor layer as a base, and the second semiconductor layer as an emitter or collector. a semiconductor layer t collector or emitter,
1. A super Schottky transistor further characterized in that a semi-insulating semiconductor layer for reducing leakage current is formed between the superconducting metal layer and the first semiconductor layer.
(4)n  型■nPまたはn 型QaASの基板上に
n型に不純物ドープしたInGaAsからなる第2の半
導体層と、p型に不純物ドープした1nGaAsからな
る第】の半導体191Gと、不純物ドープなしないIn
GaAsからなる半絶縁性半導体層とを順次成長形成し
、さらに^II Ri4半導体層構造上に超電導体金属
であるN bまたはPbの金鵬層ケ設置Jた後、所要各
電極部を構成して3次元構造を得ることン特徴とするス
ーパーショットキ・トランジスタの製造方法。
(4) A second semiconductor layer made of n-type impurity-doped InGaAs on an n-type nP or n-type QaAS substrate, a second semiconductor layer 191G made of p-type impurity-doped InGaAs, and an impurity-doped semiconductor layer 191G made of p-type impurity-doped InGaAs. Not In
Semi-insulating semiconductor layers made of GaAs are sequentially grown, and a superconducting metal layer of Nb or Pb is placed on the ^II Ri4 semiconductor layer structure, and each required electrode part is formed. A method for manufacturing a super Schottky transistor characterized by obtaining a three-dimensional structure.
JP57163390A 1982-09-20 1982-09-20 Super conductive schottky transistor and manufacture thereof Pending JPS5952885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57163390A JPS5952885A (en) 1982-09-20 1982-09-20 Super conductive schottky transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163390A JPS5952885A (en) 1982-09-20 1982-09-20 Super conductive schottky transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5952885A true JPS5952885A (en) 1984-03-27

Family

ID=15772973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163390A Pending JPS5952885A (en) 1982-09-20 1982-09-20 Super conductive schottky transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5952885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190514A (en) * 1985-02-18 1986-08-25 Sumitomo Chem Co Ltd Production of thermoplastic elastic material
JPS63143870A (en) * 1986-12-08 1988-06-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS6450605A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Amplifier
US4884111A (en) * 1984-11-05 1989-11-28 Toshikazu Nishino Superconducting device
US5126315A (en) * 1987-02-27 1992-06-30 Hitachi, Ltd. High tc superconducting device with weak link between two superconducting electrodes
US5138401A (en) * 1987-08-24 1992-08-11 Semiconductor Energy Laboratory Co., Ltd. Electronic devices utilizing superconducting materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884111A (en) * 1984-11-05 1989-11-28 Toshikazu Nishino Superconducting device
JPS61190514A (en) * 1985-02-18 1986-08-25 Sumitomo Chem Co Ltd Production of thermoplastic elastic material
JPH0562606B2 (en) * 1985-02-18 1993-09-08 Sumitomo Chemical Co
JPS63143870A (en) * 1986-12-08 1988-06-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
US5126315A (en) * 1987-02-27 1992-06-30 Hitachi, Ltd. High tc superconducting device with weak link between two superconducting electrodes
US5552375A (en) * 1987-02-27 1996-09-03 Hitachi, Ltd. Method for forming high Tc superconducting devices
US6069369A (en) * 1987-02-27 2000-05-30 Hitachi, Ltd. Superconducting device
JPS6450605A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Amplifier
US5138401A (en) * 1987-08-24 1992-08-11 Semiconductor Energy Laboratory Co., Ltd. Electronic devices utilizing superconducting materials

Similar Documents

Publication Publication Date Title
US5179037A (en) Integration of lateral and vertical quantum well transistors in the same epitaxial stack
DE69713761T2 (en) SPIN TRANSISTOR
JPS60142580A (en) Transistor device
JPS61140181A (en) Semiconductor device
JP2929899B2 (en) Field-effect transistor with nonlinear transfer characteristics
US4716445A (en) Heterojunction bipolar transistor having a base region of germanium
CA2098919C (en) Semiconductor device
JPS5952885A (en) Super conductive schottky transistor and manufacture thereof
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
JPS6010775A (en) Hetero-junction type bipolar semiconductor device
KR20010039681A (en) Charge injection transistor using high-k dielectric barrier layer
JPS6359272B2 (en)
O'connor et al. In 0.53 Ga 0.47 As FET's with insulator-assisted Schottky gates
EP0250886B1 (en) Semiconductor heterostructure adapted for low temperature operation
CN106898609B (en) A kind of III-V CMOS type high electron mobility transistor
JPH0452631B2 (en)
US4772932A (en) Bipolar transistor and including gas layers between the emitter and base and the base and collector
Jay et al. Design of TEGFET devices for optimum low-noise high-frequency operation
Kolagunta et al. Self‐aligned sidewall gated resonant tunneling transistors
JPS62298181A (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
Chen et al. Experimental realization of the bound state resonant tunneling transistor
Won et al. Self-aligned In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As heterojunction bipolar transistors with graded interface on semi-insulating InP grown by molecular beam epitaxy
JPH0388369A (en) Heterostructure semiconductor device
JPH07263708A (en) Tunnel transistor