JPS5952803B2 - Manufacturing method of alignment substrate for liquid crystal display - Google Patents

Manufacturing method of alignment substrate for liquid crystal display

Info

Publication number
JPS5952803B2
JPS5952803B2 JP55042464A JP4246480A JPS5952803B2 JP S5952803 B2 JPS5952803 B2 JP S5952803B2 JP 55042464 A JP55042464 A JP 55042464A JP 4246480 A JP4246480 A JP 4246480A JP S5952803 B2 JPS5952803 B2 JP S5952803B2
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
alignment
crystal display
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55042464A
Other languages
Japanese (ja)
Other versions
JPS56138714A (en
Inventor
孝二 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP55042464A priority Critical patent/JPS5952803B2/en
Publication of JPS56138714A publication Critical patent/JPS56138714A/en
Publication of JPS5952803B2 publication Critical patent/JPS5952803B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Description

【発明の詳細な説明】 本発明は、液晶に部分的に異なる配向を起こす配向基板
に関するものであり、さらに詳しくは非 3ご常に緻密
なパターンを容易に形成しうる配向基板を提供するもの
である。
[Detailed Description of the Invention] The present invention relates to an alignment substrate that causes liquid crystals to have partially different alignments, and more specifically, to provide an alignment substrate that can easily form an extremely dense pattern. be.

従来、液晶表示素子等に用いられている固定表示パター
ンは、セル外表面への印刷か、配向面上では水平配向を
妨げる物質を荒いパターンで塗被する方法等が一般的で
ある。
Conventionally, fixed display patterns used in liquid crystal display elements and the like are generally printed on the outer surface of the cell, or coated with a rough pattern on the alignment surface with a substance that prevents horizontal alignment.

しかしながらこれらの方法では十分に緻密な画像を形成
することができず、また水平配向面に印刷する場合には
その垂直配向物質の接着性が問題となり、また配向面の
汚れ等現実には困難な点が多い。
However, these methods cannot form sufficiently dense images, and when printing on horizontally oriented surfaces, the adhesion of the vertically oriented material becomes a problem, and in reality, problems such as stains on the oriented surfaces occur. There are many points.

本発明の方法は従来の方法と異なり、垂直配向性のシリ
コーン樹脂の表面をプラズマ処理により改質することに
特徴があり、両配向ともに材料が同一物質であるところ
から、接着性の問題がなく配向の緻密さ、均一さ、汚れ
の起きにくさ等に優れた性能を持゜つ基板を提供するも
のである。
The method of the present invention differs from conventional methods in that the surface of vertically oriented silicone resin is modified by plasma treatment, and since the material is the same for both orientations, there is no problem with adhesion. The present invention provides a substrate having excellent performance in terms of fineness and uniformity of orientation, resistance to staining, etc.

この基板はプラズマ処理を行うことにより基板表面を部
分的に垂直配向と非垂直配向になし、かつ非垂直配向部
分をラビングにより水平配向になし、対向する液晶配向
基板との組合わせで液晶の細かな配向制御を行い、散乱
、屈折率、偏光特性等を変化させるディスプレイに用い
られ、また基板に電極を設けれぱ意匠性に富んだ表示装
置が得られる。以下、本発明について詳細に説明する。
This substrate uses plasma treatment to make parts of the substrate surface vertically aligned and non-vertically aligned, and the non-vertically aligned parts are made horizontally aligned by rubbing, and in combination with the opposing liquid crystal alignment substrate, fine liquid crystal alignment is achieved. It is used in displays that control orientation and change scattering, refractive index, polarization characteristics, etc., and if electrodes are provided on the substrate, a display device with rich design can be obtained. The present invention will be explained in detail below.

本発明に用いられる基板としては、金属、セラミック、
ガラス等の無機材、各種の合成または天然樹脂等の有機
材が用いられ、着色、透過光制御のための散乱反射、吸
収等の処理の他に金属又は金属化合物等の導電膜を設け
ることもできる。
Substrates used in the present invention include metals, ceramics,
Inorganic materials such as glass, organic materials such as various synthetic or natural resins are used, and in addition to treatments such as coloring, scattering and reflection to control transmitted light, and absorption, conductive films such as metals or metal compounds may also be provided. can.

さらに基板の下地の影響が出ないように絶縁材を蒸発あ
るいは塗布することも行いうる。この基材の上に施され
る垂直配向性シリコーン樹脂としては、ポリメチルシロ
キサン、ポリフェニルシロキサン、シラノール等の単独
又は共重合体又は架橋重合体が用いられ、特にポリジメ
チルシロキサンを主成分とする各種熱硬化性シリコーン
が好ましく使用される。
Furthermore, an insulating material may be evaporated or coated so as not to be affected by the base of the substrate. As the vertically oriented silicone resin applied on this base material, single or copolymers or crosslinked polymers of polymethylsiloxane, polyphenylsiloxane, silanol, etc. are used, and in particular polydimethylsiloxane as the main component is used. Various thermosetting silicones are preferably used.

熱硬化性シリコーンとしては、一液型及び二液型があり
二液型における硬化はSiOH,SiOR,SiH,S
iCH=CH2のような反応基をもつシロキサン同志の
触媒による架橋反応によるもので、脱水縮合、脱アルコ
ール縮合、脱水素縮合、付加重合などによる架橋反応が
起る。一液型の硬化は空気中の水分と反応し縮合硬化反
応を起すもので、脱酢酸型、脱アミン型、脱アルコール
型、脱オキシム型などがある。これらは基板の一方の面
に、ベンゼン、トルエン等適当な溶剤に溶かし、回転塗
布法、浸漬法、たれ流し法等により塗布し、加熱乾燥す
ることにより設けられる。また、基板表面は、該被膜と
の接着性向上のためその表面に予めプライマーを塗布し
ておくこともよく、このプライマーとしては、ビニルト
リヌ(2−メトキシエトキシ)シラン、3−グリシドキ
シプロピルトリメトキシシラン、3−メタクリルオキシ
プロピルトリメトキシシラン、N−(3−トリメトキシ
シリルプロピル)エチレンジアミン、3−アミノプロピ
ルトリエトキシシランなどのシラン単独またはこれらの
混合物、さらにはこれらの部分加水分解物または部分共
加水分解物が使用され、これらは回転塗布、ロツドコー
テイング、刷毛塗り、スプレー塗りなどの通常の方法に
より塗布される。
There are two-component types and one-component types of thermosetting silicone, and the two-component type cures with SiOH, SiOR, SiH, and S.
This is due to a catalytic crosslinking reaction between siloxanes having reactive groups such as iCH=CH2, and crosslinking reactions such as dehydration condensation, dealcoholization condensation, dehydrogenation condensation, and addition polymerization occur. One-component curing reacts with moisture in the air to cause a condensation curing reaction, and includes deacetic acid type, deamined type, dealcoholized type, and deoxime type. These are applied to one surface of the substrate by dissolving them in a suitable solvent such as benzene or toluene, applying them by a spin coating method, dipping method, dripping method, etc., and then heating and drying. In addition, a primer may be applied to the surface of the substrate in advance to improve adhesion with the film, and examples of this primer include vinyl tri(2-methoxyethoxy) silane, 3-glycidoxypropyltritri Silanes such as methoxysilane, 3-methacryloxypropyltrimethoxysilane, N-(3-trimethoxysilylpropyl)ethylenediamine, and 3-aminopropyltriethoxysilane, or mixtures thereof, as well as partial hydrolysates or parts thereof. Co-hydrolysates are used and these are applied by conventional methods such as spin coating, rod coating, brushing, spraying, etc.

次に、上記オルガノシリコーン層上に形成されるマスク
には、プラズマ処理で起る種々のラジカ.ル反応、光分
解反応等により著しく影響を受けず、又オルガノシリコ
ーン面から剥離してこない材料が適用されるが、膜厚が
数μ以上あれば、シリコーン表面のプラズマ処理が通常
数10秒〜数分以内で行なわれるため、多くの材料が使
用町能となる。
Next, the mask formed on the organosilicon layer contains various radicals generated during plasma treatment. Materials that are not significantly affected by chemical reactions, photodecomposition reactions, etc., and that do not peel off from the organosilicon surface are used. However, if the film thickness is several microns or more, plasma treatment of the silicone surface is usually performed for several tens of seconds or more. Since it is performed within a few minutes, many materials are used in the town Noh.

このような材料の例としては、金属、無機材料等の外に
たとえば、シツプレ一社製ホトレジストAZ.東京応化
社製ホトレジスト0MR1T1P1R1の如き市販のホ
トレジスト及び多数の感光性樹脂、被覆性のある感光材
料が使用できる。市販品の場合には通常のホトレジスト
画像形成法によりパターニングされる。尚、ホトレジス
ト画像を形成するにはホトレジスト液を直接オルガノシ
リコーン層上に通常の塗布法で塗布する方法と、一旦ポ
リエチレン、ポリペロピレン等のフイルム上に塗布、乾
燥後、加熱圧着により、オルガノシリコーン層上に転写
する方法が適用でき、しかる後ペターニングを行なう。
直接オルガノシリコーン層上に塗布する方法においては
シリコーン被膜によりはじかれる場合があるので、適宜
の界面活性剤の添加等によりホトレジスト液の減粘を行
なうことが必要となる。あるいは、エチルセルロース、
エチルヒドロキシセルロース、アクリル樹脂などを含む
インキを用いてスクリーン印刷することによりレジスト
層をパターン状に形成することができる。この場合にお
いても直接印刷と転写法があるが、減粘剤の添加は、印
刷適正を低下するため転写法が望ましい。さらにまた、
静電写真用のトナーなどをレジスト材料として静電印刷
によりレジスト層を形成することもできる。この場合、
オルガノシリコーン層が絶縁物であるため、良好な静電
潜像及びトナー画像を形成することが可能である。更に
簡単には成膜性樹脂液を手描きしたり適当な印刷手段で
転写したものでもよい。本発明においてプラズマ処理に
よりオルガノシリコーン層の表面の垂直配向性を失わせ
るためにはAr,He,Neのような不活性ガス又は酸
素もしくは大気などのような活性ガスによるプラズマ処
理が良好である。プラズマ処理では、(1)表面のエツ
チング、(2)表面化学修飾、(3)表面架橋、(4)
表面内重合、(5)表面上重合の5種類の変化が複雑に
複合して起るとされているが、本発明における不活性ガ
ス又は活性ガスによるプラズマ処理においては電子顕微
鏡観察、赤外吸収の測定により、表面のエツチングは起
こらず主として表面の化学修飾、即ちアルキル基の脱離
と水酸基、カルボニル基の生成が起こつているとみられ
る。これによりプラズマ状態における活成化学種がシリ
コーン表面に衝突することによりアルキルラジカルの脱
離、ケイ素ラジカルの生成、架橋によるオルガノシリコ
ーンの三次元化、アルキル基の酸化等による水酸基、カ
ルボニル基の生成等が起りシリコーンが垂直配向性を失
うものと思われる。更にこれらの反応は、オルガノシリ
コーン層の表面のみでなく、処理時間によつてかなり内
部迄進行している。これはオルガノシリコーン層が一般
にガス透過性に富むため活性化学種が層内部迄到達する
ものと推定される。プラズマ活性化学種を形成させる為
の低圧雰囲気は、一般に空気でよいがAr,Ne,He
等の不活性ガス、02,N2,NH3,C02,フツ化
炭化水素ガス等の活性ガスが使用できる。プラズマ親油
化処理時間は条件により変化するが、たとえば、3×1
0−2t0rr,300Wの条件下において30秒以上
で効果的にオルガノシリコーン層の垂直配向性が失われ
るが同条件下で20分以上ではエツチング効果によりマ
スク材によつては劣化が起るため好ましくない。次に、
プラズマ処理後マスクを除去するには、ホトレジストの
場合ではオルガノシリコーン層を破損するようなものた
とえば、強酸、強アルカリによるものは好ましくなく、
アセトン、エチルセルソルプ、トルエン等の溶剤により
除去することが望ましい。
Examples of such materials include metals, inorganic materials, etc., as well as photoresist AZ. Commercially available photoresists such as Photoresist 0MR1T1P1R1 manufactured by Tokyo Ohka Co., Ltd., as well as many photosensitive resins and photosensitive materials with coating properties can be used. In the case of a commercially available product, it is patterned by a normal photoresist image forming method. The photoresist image can be formed by applying the photoresist solution directly onto the organosilicon layer using a conventional coating method, or by applying it onto a film of polyethylene, polyperopylene, etc., drying it, and then applying heat and pressure to the organosilicon layer. A method of transferring the image to the surface can be applied, and then petering is performed.
In the method of directly coating the organosilicone layer, the photoresist solution may be repelled by the silicone film, so it is necessary to reduce the viscosity of the photoresist solution by adding an appropriate surfactant or the like. Or ethyl cellulose,
The resist layer can be formed into a pattern by screen printing using an ink containing ethyl hydroxycellulose, acrylic resin, or the like. In this case as well, there are direct printing and transfer methods, but the transfer method is preferable because addition of a thinner reduces printing suitability. Furthermore,
The resist layer can also be formed by electrostatic printing using electrostatic photographic toner or the like as a resist material. in this case,
Since the organosilicone layer is an insulator, it is possible to form good electrostatic latent images and toner images. More simply, the film-forming resin liquid may be hand-painted or transferred by an appropriate printing means. In the present invention, plasma treatment using an inert gas such as Ar, He, or Ne, or an active gas such as oxygen or air is suitable for eliminating the vertical orientation of the surface of the organosilicone layer by plasma treatment. Plasma treatment involves (1) surface etching, (2) surface chemical modification, (3) surface crosslinking, and (4)
It is said that five types of changes (intrasurface polymerization, (5) on-surface polymerization) occur in a complex combination, but in the plasma treatment with inert gas or active gas in the present invention, electron microscopy, infrared absorption As a result of the measurements, it appears that surface etching does not occur, but chemical modification of the surface mainly occurs, that is, elimination of alkyl groups and generation of hydroxyl groups and carbonyl groups. As a result, active chemical species in the plasma state collide with the silicone surface, resulting in elimination of alkyl radicals, generation of silicon radicals, three-dimensionalization of organosilicone through crosslinking, generation of hydroxyl groups and carbonyl groups through oxidation of alkyl groups, etc. It is thought that this occurs and the silicone loses its vertical orientation. Furthermore, these reactions proceed not only on the surface of the organosilicone layer but also considerably deep inside the organosilicone layer depending on the treatment time. This is presumed to be because the organosilicone layer generally has high gas permeability, so that the active chemical species reach the inside of the layer. The low-pressure atmosphere for forming plasma active chemical species may generally be air, but Ar, Ne, He, etc.
Inert gases such as 02, N2, NH3, CO2, and active gases such as fluorinated hydrocarbon gases can be used. The plasma lipophilization treatment time varies depending on the conditions, but for example, 3×1
Under the conditions of 0-2t0rr and 300W, the vertical alignment of the organosilicone layer is effectively lost in 30 seconds or more, but if the same conditions are used for 20 minutes or more, some mask materials may deteriorate due to the etching effect, so it is preferable. do not have. next,
To remove the mask after plasma treatment, in the case of photoresist, it is undesirable to use strong acids or strong alkalis that can damage the organosilicone layer.
It is preferable to remove it with a solvent such as acetone, ethylcellolp, or toluene.

たとえば、シツプレ一社製ホトレジストAZは、アセト
ン、メチルエチルケトン(MEK)等で溶解除去でき、
東京応化製TPRではエチルセルソルプにより剥膜可能
である。スクリーン印刷でのレジスト層は、トルエン等
の溶剤で除去でき、また静電印刷でのレジスト層ではM
EK等の極性溶剤で除去可能である。また、オルガノシ
リコーン層は他物質との接着が一般に弱い為残留レジス
ト膜を適当な接着テープ等でも容易に除去することがで
きる。上記マスクの除去後、非垂直配向となつた非マス
ク部のシリコーン樹脂被膜表面を布、ガーゼ、刷毛等で
ラピングすることにより、この部分に整列した配向を与
える。
For example, Photoresist AZ manufactured by Shitsupre Co., Ltd. can be dissolved and removed using acetone, methyl ethyl ketone (MEK), etc.
TPR manufactured by Tokyo Ohka Co., Ltd. can be peeled off using ethyl cellsolp. The resist layer in screen printing can be removed with a solvent such as toluene, and the resist layer in electrostatic printing can be removed with M
It can be removed with a polar solvent such as EK. Furthermore, since the organosilicone layer generally has weak adhesion to other substances, the residual resist film can be easily removed using a suitable adhesive tape or the like. After the mask is removed, the surface of the silicone resin coating on the non-vertically oriented non-mask portions is wrapped with cloth, gauze, a brush, etc. to give aligned orientation to these portions.

この場合、ラピングは垂直配向性シリコーン樹脂被膜部
分を含む全面に行なつてもよい。垂直配向性部分はラピ
ングされても垂直配向性を保持するからである。又、ラ
ピングは上記マスクを除去する前に行なうこともできる
。この場合にもラピングはマスク部分を含む全面に行な
いうる。ラピングの後は、上述の如くマスクを除去すれ
ばよい。このようにして得られる垂直配向性部分と水平
配向性部分とを有する基板と他の水平配向部を持つ配向
基板の間に、例えば正の誘電異方性を持つネマチツク液
晶を挟持すると、クロスニコル下で、パターン化された
垂直配向部は暗く整列した配向部分は明るくまたは着色
して見える。
In this case, wrapping may be performed on the entire surface including the vertically oriented silicone resin coating portion. This is because the vertically aligned portion maintains its vertically aligned property even if it is wrapped. Also, wrapping can be performed before removing the mask. In this case as well, wrapping can be performed on the entire surface including the mask portion. After wrapping, the mask may be removed as described above. For example, if a nematic liquid crystal having positive dielectric anisotropy is sandwiched between the thus obtained substrate having the vertical alignment portion and the horizontal alignment portion and the other alignment substrate having the horizontal alignment portion, cross nicol Below, the patterned vertical alignment appears darker and the aligned alignment appears lighter or colored.

この偏光板の一方を回転させ平行ニコルにする間に、こ
の液晶は様々に色や明るさを変化させ、また垂直配向部
は明るくなるので、デイスプレイ用途にも非常に適して
いる。次に、実施例をあげて本発明をさらに具体的に説
明する。
While one side of the polarizing plate is rotated to make it a parallel Nicol, this liquid crystal changes color and brightness in various ways, and the vertically oriented portion becomes brighter, making it very suitable for display applications. Next, the present invention will be explained in more detail with reference to Examples.

実施例−1 所定の原版に基づき、シルクスクリーン版を作成した。Example-1 A silk screen plate was created based on a given original plate.

次いで、ガラス板上に形成したポリジメチルシロキサン
とポリジフエニルシロキサンの90:10共重合体被膜
−Eに、エチルセルロースとパインオイルを主成分とす
るスクリーンオイル20重量部とガラスフリツト80重
量部からなるスクリーンインキを用いて上記シルクスク
リーン版により印刷し、乾燥後、酸素下、3×10−2
t0rr300Wの条件下で1分間プラズマ処理を行つ
た。次いで、トルエンによりスクリーンインキレジスト
層を剥離し、ガーゼで一定方向にラピングを行つた。こ
れにネマチツク液晶を塗被した後、水平配向を施したガ
ラス基板を配向方向とラピング方向が直交するように重
ね、偏光軸をそれぞれ配向方向に合致させてクロスニコ
ル下で観察したところ、プラズマの処理されないところ
は垂直配向しており暗く、プラズマ処理された部分はラ
ピング方向に整別した水平配向になつており、明るく見
えた。また、一方の偏光板の軸を徐々に90く回転させ
たところ明暗が反転し画像の明暗が徐々に反転した。実
施例−2 パターン化されたネサガラス上に形成したからなる ポリシロキサン被膜上に、ポリプロピレンフイルムにフ
オトレジスト(東京応化製T.P.R.)を塗布、乾燥
(乾燥膜厚3μ)したフオトレジスト面を圧着、加熱し
てフオトレジスト膜を転写した。
Next, a screen consisting of 20 parts by weight of screen oil containing ethyl cellulose and pine oil as main components and 80 parts by weight of glass frit was applied to the 90:10 copolymer film-E of polydimethylsiloxane and polydiphenylsiloxane formed on the glass plate. Print using the above silk screen plate using the ink, and after drying, under oxygen, 3 x 10-2
Plasma treatment was performed for 1 minute under the condition of t0rr300W. Next, the screen ink resist layer was peeled off with toluene and wrapped in a certain direction with gauze. After coating this with nematic liquid crystal, horizontally aligned glass substrates were stacked so that the alignment direction and the wrapping direction were perpendicular to each other, and the polarization axes were aligned with the alignment direction. When observed under crossed nicols, it was found that the plasma The untreated areas were vertically aligned and dark, while the plasma-treated areas were horizontally aligned in the wrapping direction and appeared bright. Furthermore, when the axis of one polarizing plate was gradually rotated by 90 degrees, the brightness and darkness of the image were gradually reversed. Example 2 A photoresist (TPR manufactured by Tokyo Ohka Co., Ltd.) was applied to a polypropylene film on a polysiloxane film formed on a patterned Nesa glass and dried (dry film thickness: 3μ). The surface was pressed and heated to transfer the photoresist film.

次に所定のポジ原版を密着した後、露光、現像により、
ポリシロキサン被膜上にレジスト画像を形成した。
Next, after attaching a specified positive original plate, exposure and development are performed.
A resist image was formed on the polysiloxane film.

次いで3×10−2t0rr1大気下、300Wの条件
下でプラズマ処理を行つた後、刷毛を用いて一定方向に
ラピングし、フオトレジストを剥離し、垂直配向と、一
定方向に整列した水平配向がパターン化された本発明に
係る配向基板を得た。
Next, after performing plasma treatment under the condition of 300W in 3×10-2t0rr1 atmosphere, the photoresist was peeled off by wrapping in a certain direction using a brush, and the vertical alignment and horizontal alignment aligned in a certain direction were patterned. An oriented substrate according to the present invention was obtained.

この配向基板と、ラピング17たポリイミド被膜を表面
に有するパターン化されたネサガラス基板との配向面を
10μ間隙で各々のラピング軸が直交するように対向さ
せ、間にはエステル系のネマチツク液晶を挟持した。次
いで、2枚の偏光板間に各々偏光軸がラピング軸と一致
するように液晶素子を挟持して、垂直配向部が暗く水平
配向部の明るい表示が得られ、さらにネサを通して電圧
を加圧すると、別の暗いパターンが出現する効果が得ら
れた。
The alignment surfaces of this alignment substrate and a patterned Nesaglass substrate having a wrapped polyimide film on its surface are opposed to each other with a gap of 10μ so that the wrapping axes of each are perpendicular to each other, and an ester-based nematic liquid crystal is sandwiched between them. did. Next, a liquid crystal element is sandwiched between two polarizing plates so that the polarization axis coincides with the wrapping axis, and a display is obtained in which the vertically aligned area is dark and the horizontally aligned area is bright, and when a voltage is applied through the neta. , the effect of another dark pattern appearing was obtained.

Claims (1)

【特許請求の範囲】 1 基板の一方の面の全面に、液晶に対する垂直配向性
を有するシリコーン樹脂被膜を形成し、次いで該被膜上
にパターン状にプラズマに対するマスク層を設け、次い
でプラズマ処理し、さらに上記マスク層を除去した後表
面をラビングすることを特徴とする液晶表示用配向基板
の製造法。 2 前記基板が、シリコーン樹脂被膜を設ける面側に電
極被膜を有する電極基板である前記第1項の液晶表示用
配向基板の製造法。 3 基板の一方の面の全面に、液晶に対する垂直配向性
を有するシリコーン樹脂被膜を形成し、次いで該被膜上
にパターン状にプラズマに対するマスク層を設け、次い
でプラズマ処理し、さらに表面をラビングした後上記マ
スク層を除去することを特徴とする液晶表示用配向基板
の製造法。 4 前記基板が、シリコーン樹脂被膜を設ける面側に電
極被膜を有する電極基板である前記第3項の液晶表示用
配向基板の製造法。
[Claims] 1. A silicone resin film having vertical alignment with respect to the liquid crystal is formed on the entire surface of one side of the substrate, and then a mask layer against plasma is provided in a pattern on the film, and then plasma treatment is performed, A method for producing an alignment substrate for a liquid crystal display, further comprising rubbing the surface after removing the mask layer. 2. The method for producing an alignment substrate for a liquid crystal display according to item 1 above, wherein the substrate is an electrode substrate having an electrode coating on the side on which the silicone resin coating is provided. 3. A silicone resin film having vertical alignment with respect to the liquid crystal is formed on the entire surface of one side of the substrate, then a mask layer against plasma is provided in a pattern on the film, then plasma treatment is performed, and the surface is further rubbed. A method for producing an alignment substrate for a liquid crystal display, comprising removing the mask layer. 4. The method for producing an alignment substrate for a liquid crystal display according to item 3 above, wherein the substrate is an electrode substrate having an electrode coating on the side on which the silicone resin coating is provided.
JP55042464A 1980-04-01 1980-04-01 Manufacturing method of alignment substrate for liquid crystal display Expired JPS5952803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55042464A JPS5952803B2 (en) 1980-04-01 1980-04-01 Manufacturing method of alignment substrate for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55042464A JPS5952803B2 (en) 1980-04-01 1980-04-01 Manufacturing method of alignment substrate for liquid crystal display

Publications (2)

Publication Number Publication Date
JPS56138714A JPS56138714A (en) 1981-10-29
JPS5952803B2 true JPS5952803B2 (en) 1984-12-21

Family

ID=12636786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55042464A Expired JPS5952803B2 (en) 1980-04-01 1980-04-01 Manufacturing method of alignment substrate for liquid crystal display

Country Status (1)

Country Link
JP (1) JPS5952803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398007U (en) * 1986-12-17 1988-06-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796458A (en) * 1992-09-01 1998-08-18 Fujitsu Limited Element division liquid crystal display device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398007U (en) * 1986-12-17 1988-06-24

Also Published As

Publication number Publication date
JPS56138714A (en) 1981-10-29

Similar Documents

Publication Publication Date Title
KR100298824B1 (en) Production Process of Color Filter, Color Filter Produced Thereby and Liquid Crystal Display Device Using Such Color Filter
EP0854389B1 (en) Process for the production of a coating of molecular thickness on a substrate
KR100296498B1 (en) Method of manufacturing monomolecular film having orientation property chemically adsorbed
JPS60254001A (en) Color filter
JP3486580B2 (en) Functional film and method for producing the same, liquid crystal display device using the same, and method for producing the same
JPS5952803B2 (en) Manufacturing method of alignment substrate for liquid crystal display
JPS5952802B2 (en) Aligned substrate for liquid crystal display and its manufacturing method
US4868096A (en) Surface treatment of silicone-based coating films
US5637359A (en) Plastic substrate liquid crystal display device, method of making, and product produced by the method
EP0444703A2 (en) Polarizers, a method for producing the same and liquid crystal display devices
EP1040876B1 (en) Process for the production of liquid crystal displays by using a chemisorption film
US5691011A (en) Dispersion-preventing pattern for liquid crystal display device
JPS5821246B2 (en) LCD holding board
JPH04306616A (en) Manufacture of liquid crystal display element
JP3411207B2 (en) Method for producing oriented chemisorbed monolayer
US6517401B1 (en) Process for the production of monomolecular chemisorption film, and processes for the production of liquid crystal alignment films and liquid crystal displays by using the chemisorption film
JPS6169004A (en) Color filter
RU2283338C1 (en) Method of manufacture of the liquid-crystal cell
JPH095784A (en) Liquid crystal display device, its production and display electrode substrate
JP2003287756A (en) Functional film and liquid crystal display element using the same
JPH01262502A (en) Formation of protective layer on color filter
JPH10197716A (en) Production of color filter for liquid crystal
JPS6155671B2 (en)
JPS58223333A (en) Surface treating method of silicon dioxide layer
JPS6155668B2 (en)