JPS5952240B2 - Ultrafiltration method - Google Patents

Ultrafiltration method

Info

Publication number
JPS5952240B2
JPS5952240B2 JP56181009A JP18100981A JPS5952240B2 JP S5952240 B2 JPS5952240 B2 JP S5952240B2 JP 56181009 A JP56181009 A JP 56181009A JP 18100981 A JP18100981 A JP 18100981A JP S5952240 B2 JPS5952240 B2 JP S5952240B2
Authority
JP
Japan
Prior art keywords
electrodeposition
ultrafiltration
membrane
paint
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56181009A
Other languages
Japanese (ja)
Other versions
JPS5884997A (en
Inventor
紘一 松本
隆 能美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56181009A priority Critical patent/JPS5952240B2/en
Publication of JPS5884997A publication Critical patent/JPS5884997A/en
Publication of JPS5952240B2 publication Critical patent/JPS5952240B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は、限外濾過膜などの選択的濾過膜を利用して、
カチオン電着塗料中から、溶解した低分子量重合物、溶
解を助ける有機溶媒、中和剤及び夾雑イオンなどの不用
成分を含む濾液を得るに際。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a selective filtration membrane such as an ultrafiltration membrane to
When obtaining a filtrate containing unnecessary components such as dissolved low molecular weight polymers, organic solvents that aid in dissolution, neutralizing agents, and contaminant ions from cationic electrodeposition paints.

し、限外ろ過膜の炉液量レベルを低下させることなく、
高いレベルに保持する方法に関するものである。電着技
術の発達と共に、電着溶液組成の管理は重要な問題とな
つて来た。
and without reducing the furnace liquid level of the ultrafiltration membrane.
It's about how to maintain it at a high level. With the development of electrodeposition technology, control of electrodeposition solution composition has become an important issue.

すなわち電着溶液は、通常塩基性又は酸性の合成樹脂が
それぞれ水溶性酸又は塩基によつて可溶化された状態で
水性媒体中に含有されており、その使用に伴つて合成樹
脂は基質上に塗膜として電着されるため、電着溶液中に
は前記可溶化に使用された酸又は塩基が、イオンとして
残存する。また使用につれて二酸化炭素(大気中から)
有機溶媒(たとえば補給物から)塩類(たとえば前処理
液から)分解物(たとえば合成樹脂から)などの不用物
質が、電着溶液中に蓄積することになる。その結果電着
塗膜の仕上りが悪くなると共に、電気効率が悪化するな
どの種種の欠点を生ずる。従つて電着溶液から前記した
ような不要物を除去し、その組成を常に使用当初のもの
と大差のない状態に維持することは、電着塗装における
大きな問題となつており、現に多数の処理方法が提案さ
れるに至つている。
In other words, an electrodeposition solution usually contains a basic or acidic synthetic resin in an aqueous medium in a state of being solubilized with a water-soluble acid or base, respectively. Since it is electrodeposited as a coating film, the acid or base used for solubilization remains in the form of ions in the electrodeposition solution. Also carbon dioxide (from the atmosphere) as it is used.
Unwanted materials such as organic solvents (eg, from supplies), salts (eg, from pretreatment liquids), and decomposition products (eg, from synthetic resins) will accumulate in the electrodeposition solution. As a result, the finish of the electrodeposited coating film deteriorates, and various drawbacks such as deterioration of electrical efficiency occur. Therefore, removing the above-mentioned unnecessary substances from the electrodeposition solution and maintaining its composition in a state that is not significantly different from the one at the time of use is a major problem in electrodeposition coating, and there are currently many treatments. A method has been proposed.

この虫で最も効率的に有効成分を回収できる方法として
注目をあびているのが、限外濾過法などの膜分離方法で
ある。膜分離方法を利用すれば、(1)樹脂粒子を殆ど
完全に回収することができるので、被塗物による塗料の
持出しロスを著しく低減できる。(2)水だけでなく低
分子不純物を除去することができるので、回収した樹脂
粒子を電着浴にもどしても塗料の品質を高度に保つこと
ができる。また(3)限外ろ過濾液はほぼ完全に樹脂粒
子が除かれているから、これを被塗物の洗浄水に使用す
ることができる。以上の結果(4)電着製品の品質の向
上、塗料の節約、水洗水の節約となり、これらに伴つて
経費と労力の節約、水洗水の節約が実現し、さらにこれ
らにより経費と労力の節減、公害の防止など種々の工業
的に有利な効果が認められるようになつて来た。しかし
ながら膜分離方法による電着有効成分の回収方法では、
電着塗料の安定性、浴中での電着塗料濃度の変化、不純
物の混入などの理由から、限外淵過の枦液量を高いレベ
ルで安定化する方法が一番の問題であり、従来は原因不
明の淵液量レベル低下がひんぱんに起こつたため、長期
間にわたつて安定した枦液を出すことは至難であつた。
Membrane separation methods such as ultrafiltration are attracting attention as the most efficient method for recovering active ingredients from these insects. By using the membrane separation method, (1) the resin particles can be almost completely recovered, so the loss of paint carried away by the object to be coated can be significantly reduced. (2) Since not only water but also low-molecular impurities can be removed, the quality of the paint can be maintained at a high level even when the recovered resin particles are returned to the electrodeposition bath. Furthermore, (3) since resin particles are almost completely removed from the ultrafiltration filtrate, it can be used as washing water for objects to be coated. As a result of the above (4), the quality of electrodeposited products is improved, paint is saved, and washing water is saved, which results in cost and labor savings and washing water savings, which further reduces costs and labor. Various industrially advantageous effects, such as prevention of pollution, have come to be recognized. However, in the method of recovering electrodeposited active ingredients using membrane separation method,
Due to reasons such as the stability of the electrodeposition paint, changes in the concentration of the electrodeposition paint in the bath, and the contamination of impurities, the biggest problem is how to stabilize the amount of ultrafiltration liquid at a high level. In the past, it was extremely difficult to produce stable water over a long period of time because the level of water in the water frequently decreased for unknown reasons.

従来から限外淵過の炉液量を、高いレベルにかつ安定に
保つ方法としては、膜上にかかる原液側の電着塗料圧力
を増大させる方法によつていたが、その方法では圧力を
かければかける程目ずまりが多くなり、膜の性能を長期
的に安定かつ高いレベルにするには問題があつた。本発
明の方法によれば、従来の方法とはまつたく異なり、目
ずまりの原因を根本から解決しているために、枦液量を
高いレベルでかつ、長期的に安定させることができる。
Conventionally, the method of keeping the amount of ultrafiltration furnace fluid at a high level and stable has been to increase the pressure of the electrocoating paint on the undiluted solution side applied to the membrane; The more the film was applied, the more it clogged, creating a problem in maintaining the membrane's performance at a stable and high level over the long term. The method of the present invention is completely different from conventional methods in that it fundamentally solves the cause of clogging, so the amount of liquid can be stabilized at a high level over a long period of time.

以下、本発明について更に詳述する。The present invention will be explained in more detail below.

カチオン電着塗装の工程を”第1図に示す。The process of cationic electrodeposition coating is shown in Figure 1.

カチオン電着塗装工程は、脱脂工程、化成処理工程、電
着工程および水洗工程の四つよりなる。このうち限外P
過モジユール1は、電着工程2、水洗工,程3を結ぶ工
程において用いられる。すなわち限外涙過膜は、電着槽
中において汚染された塗料4中から、水、夾雑イオンそ
の他低分子成分をぬきとる。濃縮された塗料5は電着槽
にもどし、ぬきとられた水、夾雑イオンその他低分子樹
脂を含んヒだ淵液6は、水洗液として水洗工程へ戻す。
上記の脱脂工程とは、持ちこまれた被電着物の表面に付
着している油よごれをアルカリ液などを用いて洗浄し、
電着槽中において被電着物表面へ効率的に電着塗料を電
着できるようにするための町工程である。化成処理工程
とは、塗装密着性と耐食性を向上させるために電着塗装
下処理として行うもので、通常リン酸皮膜処理が行われ
ている。
The cationic electrodeposition coating process consists of four steps: a degreasing process, a chemical conversion treatment process, an electrodeposition process, and a water washing process. Of these, the limit P
The supermodule 1 is used in a step connecting the electrodeposition step 2, washing step, and step 3. That is, the ultralacrimal membrane removes water, contaminant ions, and other low-molecular components from the paint 4 contaminated in the electrodeposition tank. The concentrated paint 5 is returned to the electrodeposition bath, and the drained liquid 6 containing water, contaminant ions, and other low-molecular resins is returned to the washing process as a washing liquid.
The above degreasing process involves cleaning the oil stains adhering to the surface of the electrodeposited material using an alkaline solution.
This is a process for efficiently electrodepositing an electrodeposition paint onto the surface of an electrodeposited object in an electrodeposition bath. The chemical conversion treatment step is carried out as a preliminary treatment for electrodeposition coating in order to improve paint adhesion and corrosion resistance, and phosphoric acid film treatment is usually performed.

カチオン電着工程とは、被電着物をマイナス電5極にし
て、プラス電荷を持つた塗料を被電着物表面に析出させ
る工程である。
The cationic electrodeposition process is a process in which a material to be electrodeposited is made into a negative electrode and a paint having a positive charge is deposited on the surface of the material to be electrodeposited.

水洗工程は、被電着物表面に付着した過剰持ち出し塗料
成分を水洗液で洗浄して、電着に有効な成分を電着槽へ
オーバーフローさせるための工程qである。
The water washing step is a step q in which excess paint components adhering to the surface of the electrodeposited object are washed away with a washing liquid, and components effective for electrodeposition overflow into the electrodeposition bath.

水洗工程よりオーバーフローさせた電着液と、限外淵過
膜などで濃縮された電着液の量をコントロールすること
により、電着槽中における電着液の濃度を一定に保つこ
とができる。限外ろ過膜の働きにより、カチオン電着工
程において連続的に電着処理を行う際、電着槽中の塗料
濃度のバランスを維持するために、電着槽中の水、低分
子量イオン等を選択的に淵液として取り出し、一方、濃
縮した塗料を電着浴に戻すことができる。
The concentration of the electrodeposition solution in the electrodeposition tank can be kept constant by controlling the amount of the electrodeposition solution overflowing from the water washing step and the concentration of the electrodeposition solution using an ultrafiltration membrane or the like. Due to the action of the ultrafiltration membrane, water, low molecular weight ions, etc. in the electrodeposition tank are filtered out to maintain the balance of the paint concentration in the electrodeposition tank during continuous electrodeposition processing in the cationic electrodeposition process. It can be selectively removed as a bottom liquid, while the concentrated paint can be returned to the electrodeposition bath.

この選択的処理により、電着槽から、電着に有効な成分
であるいかなる願料、樹脂をも、浴中から除去せずに所
望の塗料濃度にすることができる。沢液中に取り出され
る成分には、水はもとより陰イオン、陽イオンおよび非
イオン性物質、例えば酸、アルカリ金属イオン、リン酸
塩、クロム酸塩、硫酸塩、溶剤および溶解二酸化炭素が
含まれる。しかし、このような限外濾過法による電着塗
料の濃縮を長期連続運転すると、膜表面へ不純物が沈着
して、表面にある選択済過機能を有する孔をつぶし、い
わゆる目ずまり現象をおこして淵液量レベルが低下し、
ついには濾液がまつたく出なくなつてしまう。
By this selective treatment, a desired coating concentration can be achieved without removing any coating material or resin that is an effective component for electrodeposition from the electrodeposition bath. The components extracted into the sap include water as well as anions, cations and nonionic substances such as acids, alkali metal ions, phosphates, chromates, sulfates, solvents and dissolved carbon dioxide. . However, when concentrating electrocoating paint using this ultrafiltration method is operated continuously for a long period of time, impurities are deposited on the membrane surface, crushing the pores on the surface that have a selected filtration function, and causing the so-called clogging phenomenon. As a result, the deep water level decreases,
Eventually, no more filtrate will come out.

このような淵液量レベルの低下現象がなぜ起きるのか、
原因は不明であつた。本発明者らはこの原因を鋭意研究
した結果、目ずまりを生じたモジユールを分解すると、
膜のろ過側(P液の出る側)に大小の結晶が析出し、こ
の結晶が孔をつぶしてしまう事を見出した。これらの濾
液低下現象は、長期的に運転したモジユールが少ない事
や、戸液低下モジユールに再現性が見られないこと、混
合物を分解するため目ずまりの原因となる要素が多すぎ
ることなどにより、今まで解明できなかつたものである
。本発明者らは、これらの結晶を分析した結果、炭酸塩
を主成分とする金属の炭酸塩が析出していることを見出
した。
Why does this phenomenon of lowering the level of deep water occur?
The cause was unknown. As a result of intensive research into the cause of this problem, the inventors found that by disassembling the module that caused the blockage,
It was discovered that large and small crystals were deposited on the filtration side of the membrane (the side from which the P solution exits), and these crystals clogged the pores. These filtrate drop phenomena are due to the fact that few modules have been operated for a long period of time, the lack of reproducibility in the filtrate drop module, and the presence of too many factors that cause clogging due to decomposition of the mixture. , which has not been elucidated until now. As a result of analyzing these crystals, the present inventors found that metal carbonate whose main component is carbonate was precipitated.

すなわち電着液を長期的に使用すると、空気中から炭酸
ガスが、電着液中に炭酸ガスとして溶解する。
That is, when the electrodeposition liquid is used for a long period of time, carbon dioxide gas from the air is dissolved into the electrodeposition liquid as carbon dioxide gas.

しかし電着液中には、第4級アンモニウム基を持つ可溶
化した樹脂、これらの樹脂の水分散性をよくするためや
沈着樹脂膜の外観を改良するためにいれる溶媒、 (列
えば炭化水素、アルコール、エーテル、ダリコール類な
ど)顔料(酸化鉄、酸化鉛、クロム酸ストロンチウム、
カーボンブラツク、炭塵、二酸化チタン、滑石、硫酸バ
リウムおよび彩色願料例えばカドミウムイエロ一、カド
ミウムレツド、クロミウムイエロ一等)その他界面活性
剤、反応触媒、また液媒体のコンダクタンスを制御する
ための電解質塩類(Ka,AlCl3,K4Fe(CN
)6,BaC12,NaC1,A1(NO3)3,Mg
C12,CaC12,SnC14,NH4C1,LiC
1,H3P04,H2S04等)などが添加されている
。このような多くの物質の混合系であり、これらがうま
く可溶化し、対イオンとして安定化し、PHコントロー
ルされているため、炭酸が溶解しても炭酸鉛などの炭酸
塩が析出することはない。
However, the electrodeposition solution contains solubilized resins with quaternary ammonium groups, solvents used to improve the water dispersibility of these resins and to improve the appearance of the deposited resin film (for example, hydrocarbons). , alcohols, ethers, dalicols, etc.) pigments (iron oxide, lead oxide, strontium chromate,
Carbon black, coal dust, titanium dioxide, talc, barium sulfate, colored materials such as cadmium yellow, cadmium red, chromium yellow, etc.), other surfactants, reaction catalysts, and electrolytes for controlling the conductance of liquid media. Salts (Ka, AlCl3, K4Fe(CN
)6, BaC12, NaC1, A1(NO3)3, Mg
C12, CaC12, SnC14, NH4C1, LiC
1, H3P04, H2S04, etc.) are added. It is a mixed system of many substances, and these are successfully solubilized, stabilized as counterions, and the pH is controlled, so even if carbonic acid is dissolved, carbonates such as lead carbonate do not precipitate. .

しかしながら膜の淵過側では、カチオン電着樹脂、顔料
などが膜を通過できないため、戸液は低分子量物質の水
溶液となる。この際、反応触媒として含まれる金属の酢
酸塩は、カチオン樹脂のまわりについて、イオン化し解
離安定化していたものが、淵液ではカチオン樹脂と離さ
れるために不安定になる。このため酢酸鉛は、炭酸と反
応して炭酸鉛になり、膜表面に析出すると考えられる。
本発明者らは、この現象を種々の面から検討した結果、
淵液低下のはじまつた膜を、酢酸で洗浄してやることに
より、電着液中に電着率を低下させる成分を添加するこ
となく、炭酸鉛の結晶の成長を抑えることが出来た。す
なわち戸液低下のはじまつた膜(P液低下とは、淵過能
力が運転開始時の90%以下になることを言うこととす
る。
However, on the permeation side of the membrane, the cationic electrodeposition resin, pigment, etc. cannot pass through the membrane, so the solution becomes an aqueous solution of low molecular weight substances. At this time, the metal acetate contained as a reaction catalyst, which had been ionized and stabilized by dissociation around the cationic resin, becomes unstable because it is separated from the cationic resin in the stream. Therefore, it is thought that lead acetate reacts with carbonic acid to become lead carbonate, which is deposited on the membrane surface.
As a result of examining this phenomenon from various aspects, the present inventors found that
By washing the film with acetic acid, which had begun to degrade the edge liquid, it was possible to suppress the growth of lead carbonate crystals without adding any components to the electrodeposition solution that would reduce the electrodeposition rate. In other words, the membrane begins to drop in the P liquid (a drop in the P liquid refers to the fact that the permeation capacity becomes 90% or less of what it was at the start of operation).

)の戸液側に、酢酸を混入した戸液と膜を接触させてや
ればよく、この際添加する酢酸の量は、500〜100
00ppmであり、これ以上添加すると電着液中でのP
Hが大幅に低下し、悪い影響を与える。またこれ以下の
量では、膜表面に析出した炭酸塩を完全に溶解すること
ができず、P液量は回復しない。膜と酢酸を含む済液と
を接触させる方法にはいくつかあるが、代表的な方法は
、定期的にモジユールを休止する際に、沢液側に酢酸を
含む戸液を封入する方法囚と、定期的な逆洗時間に、済
液中に酢酸を添加した濾液で逆洗を行う方法(3)であ
る。
), the membrane should be brought into contact with the solution mixed with acetic acid, and the amount of acetic acid added at this time is between 500 and 100.
00 ppm, and if more than this is added, P in the electrodeposition solution will increase.
H is significantly reduced and has a negative effect. Moreover, if the amount is less than this, the carbonate deposited on the membrane surface cannot be completely dissolved, and the amount of P liquid will not be recovered. There are several ways to bring the membrane into contact with the liquid containing acetic acid, but the most typical method is to fill the liquid containing acetic acid into the liquid side when periodically stopping the module. This is a method (3) in which backwashing is performed with a filtrate obtained by adding acetic acid to the finished liquid during regular backwashing times.

囚の方法の場合、酢酸含有炉液と膜との接触時間は、約
1昼夜程度が好ましい。
In the case of this method, the contact time between the acetic acid-containing furnace solution and the membrane is preferably about one day and night.

また定期的に酢酸を封入する場合には、−ケ月に一度程
度行うのがよい。(B)の方法の場合、酢酸含有淵液に
よる逆洗時間は、連続濾過時間にもよるが、30〜60
分連続ろ過した後0.5〜1分間逆洗する程度が良い。
In addition, if acetic acid is to be encapsulated periodically, it is recommended to do this about once every month. In the case of method (B), the backwashing time with the acetic acid-containing bottom liquid is 30 to 60 minutes depending on the continuous filtration time.
It is best to backwash for 0.5 to 1 minute after continuous filtration.

酢酸は、電着塗料中の金属触媒が酢酸塩として入つてお
り、また解離度がさほど大きくなく、電着効率を下げる
事もないので最適である。酢酸以外にも、本方法に用い
る事の出来る酸としては、ギ酸、ヒドロキシ酢酸、グリ
コール酸、乳酸、リンゴ酸など、脂肪族及び芳香族の一
価又は多価酸を使用することができる。
Acetic acid is most suitable because the metal catalyst in the electrodeposition paint is contained in the form of acetate, and the degree of dissociation is not so large that it does not reduce the electrodeposition efficiency. In addition to acetic acid, aliphatic and aromatic mono- or polyhydric acids such as formic acid, hydroxyacetic acid, glycolic acid, lactic acid, malic acid, etc. can be used in this method.

これら以外の酸では、電着塗料の電着効率を低下させる
ので好ましくない。本方法に用いられる膜は原則的に、
電着塗料中の有効成分と低分子量物質を分離できるもの
なら何でもよいが、平均孔径1μm以下の膜が好ましい
Acids other than these are not preferred because they reduce the electrodeposition efficiency of the electrodeposition paint. In principle, the membrane used in this method is
Any membrane may be used as long as it can separate the active ingredients and low molecular weight substances in the electrodeposition paint, but a membrane with an average pore diameter of 1 μm or less is preferred.

これ以上の孔径では、電着に有効な塗料成分、樹脂、願
料などを透過させてしまう。好ましくは、平均孔径0.
5μm以下又は分画分子量で500万以下の限外淵過膜
、逆浸透膜、ミクロフイルタ一と呼ばれるものが好まし
く、表面にスキン層と呼ばれる、大きな分子を阻止し小
さな分子のみを透過させる選択透過能力を持つた孔があ
り、その下に連続的に孔が大きくなるような支持層を持
つ、いわゆる非対称膜と呼ばれる構造を持つた膜は、選
択性、流速共に良い結果を示すので好ましい。
If the pore diameter is larger than this, paint components, resins, application materials, etc. that are effective for electrodeposition will pass through. Preferably, the average pore size is 0.
Ultrafiltration membranes, reverse osmosis membranes, and microfilters with a molecular weight cut-off of 5 μm or less or a molecular weight cut-off of 5 million or less are preferred, and selective permeation membranes with a skin layer on the surface that blocks large molecules and allows only small molecules to pass through. A membrane with a so-called asymmetric membrane structure, which has pores with high pores and a supporting layer below which the pores become continuously larger, is preferable because it shows good results in both selectivity and flow rate.

実施例 1 関西ペイント社製カチオン電着塗料エレクロン#900
0(G)について、旭化成工業製UFモジユールKCV
−4010を用いて限外濾過を行い、使用したKCV−
4010を各種酸液で封入して済液量の回復を調べた。
Example 1 Kansai Paint Co., Ltd. cationic electrodeposition paint Elecron #900
Regarding 0 (G), Asahi Kasei UF module KCV
-4010 was used for ultrafiltration, and the used KCV-
4010 was sealed with various acid solutions and the recovery of the amount of the solution was investigated.

テストに供したモジユールの履歴を第1表に示す。Table 1 shows the history of the modules tested.

酸封入の条件(酸は全て戸液に投入した。Conditions for acid encapsulation (all acids were added to the liquid).

)上記組成の酸液を第1表のモジユール(KCV−40
10)に51封入し、24時間放置後封入液を抜き、純
水で簡単に水洗し、電着塗料液で限外淵過を行つた。
) The acid solution with the above composition was added to the module (KCV-40) shown in Table 1.
10), and after standing for 24 hours, the sealed liquid was removed, and the sample was briefly washed with pure water, and subjected to ultrafiltration using an electrodeposition coating solution.

その結果を第2表に示す。実施例 2関西ペイント社製
カチオン型電着塗料エレクロン#9000クレーを用い
たK杜S工場のラインにおいて、旭化成工業社製UFモ
ジユールKCV−4010でのテスト結果を第3表に示
す。
The results are shown in Table 2. Example 2 Table 3 shows the test results of UF module KCV-4010 manufactured by Asahi Kasei Kogyo Co., Ltd. on the line of the K-Mori S factory using cationic electrodeposition paint Elekron #9000 clay manufactured by Kansai Paint Co., Ltd.

尚淵過および逆洗の条件は次の通りであつた。 (テス
トNO.2,4,6は逆洗なし)
The conditions for filtration and backwashing were as follows. (Test No. 2, 4, and 6 are without backwashing)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカチオン電着塗装の工程図である。 1・・・限外濾過モジユール、2・・・電着工程、3・
・・水洗工程、4・・・汚染された塗料、5・・・濃縮
された塗料、6・・・済液。
FIG. 1 is a process diagram of cationic electrodeposition coating. 1... Ultrafiltration module, 2... Electrodeposition process, 3.
... Water washing process, 4... Contaminated paint, 5... Concentrated paint, 6... Finished liquid.

Claims (1)

【特許請求の範囲】 1 限外濾過法でカチオン電着塗料を回収する工程にお
いて、限外濾過膜の濾液側を、一時的または連続的に脂
肪族及び芳香族の一価または多価酸溶液と接触させる事
を特徴とする限外濾過方法。 2 限外濾過法でカチオン電着塗料を回収する工程にお
いて、濾液に酸を添加した液を用いて膜を逆洗すること
を特徴とする特許請求の範囲第1項記載の限外濾過方法
。 3 限外濾過法でカチオン電着塗料を回収する工程にお
いて、濾液に酸を添過した液を限外濾過モジュールの濾
水側に封入することを特徴とする特許請求の範囲第1項
記載の限外濾過方法。
[Claims] 1. In the process of recovering cationic electrodeposition paint by ultrafiltration, the filtrate side of the ultrafiltration membrane is temporarily or continuously soaked in an aliphatic and aromatic monohydric or polyhydric acid solution. An ultrafiltration method characterized by contacting with. 2. The ultrafiltration method according to claim 1, wherein in the step of recovering the cationic electrodeposition paint by ultrafiltration, the membrane is backwashed using a solution obtained by adding an acid to the filtrate. 3. The method according to claim 1, characterized in that in the step of recovering the cationic electrodeposition paint by ultrafiltration, a solution obtained by adding an acid to the filtrate is sealed in the filtrate side of the ultrafiltration module. Ultrafiltration method.
JP56181009A 1981-11-13 1981-11-13 Ultrafiltration method Expired JPS5952240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181009A JPS5952240B2 (en) 1981-11-13 1981-11-13 Ultrafiltration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181009A JPS5952240B2 (en) 1981-11-13 1981-11-13 Ultrafiltration method

Publications (2)

Publication Number Publication Date
JPS5884997A JPS5884997A (en) 1983-05-21
JPS5952240B2 true JPS5952240B2 (en) 1984-12-18

Family

ID=16093142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181009A Expired JPS5952240B2 (en) 1981-11-13 1981-11-13 Ultrafiltration method

Country Status (1)

Country Link
JP (1) JPS5952240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100732A (en) * 2018-12-21 2020-07-02 日本ペイント・オートモーティブコーティングス株式会社 Cationic electrodeposition coating composition and method for producing cationic electrodeposition coating film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594664A (en) * 1982-06-29 1984-01-11 Mitsubishi Electric Corp Manufacture of electrodeposition coating
JPS62151597A (en) * 1985-12-25 1987-07-06 Toyota Auto Body Co Ltd Regenerating method of organic acid permeable membrane of electrodeposition cell
JP2873095B2 (en) * 1994-09-06 1999-03-24 日本ペイント株式会社 Treatment method of waste water in final washing tank in cationic electrodeposition coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249248A (en) * 1975-10-17 1977-04-20 Shinko Fuaudoraa Kk Reverse osmotic treatment of water-soluble electro-deposition coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249248A (en) * 1975-10-17 1977-04-20 Shinko Fuaudoraa Kk Reverse osmotic treatment of water-soluble electro-deposition coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100732A (en) * 2018-12-21 2020-07-02 日本ペイント・オートモーティブコーティングス株式会社 Cationic electrodeposition coating composition and method for producing cationic electrodeposition coating film

Also Published As

Publication number Publication date
JPS5884997A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
CN205662404U (en) Zero release water treatment facilities
JP2873095B2 (en) Treatment method of waste water in final washing tank in cationic electrodeposition coating
CN110759554A (en) Recycling and zero-discharge treatment method for ammonium adipate wastewater generated in aluminum foil formation
JPS5952240B2 (en) Ultrafiltration method
CN205662395U (en) Circulation water treatment facilities
CN211972015U (en) Ammonium adipate wastewater recycling treatment process device
US4684453A (en) Purification of dye baths
CN110787512A (en) Pickling process for metal filter element
Zhao et al. Hydraulic resistance in microfiltration of titanium white waste acid through ceramic membranes
CN110624419B (en) Reverse osmosis membrane environment-friendly recycling method
JP4490565B2 (en) Method for recovering treatment agent components in metal surface treated rinse water
CA2311500C (en) A method for purifying water, in particular ground water, under anaerobic conditions, using a membrane filtration unit, a device for purifying water, as well as drinking water obtained by using such a method
Ramachandraiah et al. Separation and concentration of metals present in industrial effluent and sludge samples by using electrodialysis, coulometry, and photocatalysis
JP2003105594A (en) Closed system electrodeposition coating system and electrodeposition coating method
JPH11128919A (en) Treatment of reverse osmosis membrane
JP3050430B2 (en) Membrane treatment method for organic acid-containing fermentation waste liquid
JP3906989B2 (en) Electrodeposition paint collection method
JP3303893B2 (en) Control of acid backwashing time of cationic electrodeposition coating liquid and new acid backwashing method
CN205347001U (en) Wastewater recycling device
JPH11342361A (en) Method and device for recycling cleaning solution by membrane filtration
JP3164522B2 (en) Treatment method of waste water in final washing tank in cationic electrodeposition coating
JP2717458B2 (en) Filtration method
JPS5934239B2 (en) How to recycle electrocoated paint liquid
JP2002235196A (en) Electrodeposition coating system
JP2002212790A (en) Electrode deposition coating method