JPS595198B2 - Manufacturing method of corrosion-resistant pipe - Google Patents

Manufacturing method of corrosion-resistant pipe

Info

Publication number
JPS595198B2
JPS595198B2 JP51157752A JP15775276A JPS595198B2 JP S595198 B2 JPS595198 B2 JP S595198B2 JP 51157752 A JP51157752 A JP 51157752A JP 15775276 A JP15775276 A JP 15775276A JP S595198 B2 JPS595198 B2 JP S595198B2
Authority
JP
Japan
Prior art keywords
resin
base material
corrosion
layer
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51157752A
Other languages
Japanese (ja)
Other versions
JPS5380818A (en
Inventor
清吾 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51157752A priority Critical patent/JPS595198B2/en
Publication of JPS5380818A publication Critical patent/JPS5380818A/en
Publication of JPS595198B2 publication Critical patent/JPS595198B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation

Description

【発明の詳細な説明】 本発明は新規な耐蝕パイプの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for manufacturing corrosion-resistant pipes.

具体的に言えば、本発明は内面に耐熱、耐蝕性に秀れた
熱可塑性樹脂層を有する繊維強化プラスチック(以下F
RPと称す)製パイプの製造法に関するものである。F
RPぱ、一般にはガラス繊維などの強化繊維基材に硬化
するポリエステル樹脂、エポキシ樹脂等の硬化する液状
樹脂を含浸・硬化させたものと理解されている。
Specifically, the present invention uses fiber-reinforced plastics (hereinafter referred to as F
The present invention relates to a method of manufacturing pipes made of RP (referred to as RP). F
RP is generally understood to be a reinforcing fiber base material such as glass fiber impregnated and hardened with a hardening liquid resin such as a hardening polyester resin or an epoxy resin.

FRPは、軽量の上、耐蝕性に秀れ、また機械的強度に
も秀れている為、航空機部品、機械部品や、その他の分
野に広く、用いられ、パイプも秀れたFRP特性を生か
す応用例として、特に耐蝕分野で実用化されている。5
FRPパイプに使用される硬化樹脂は、ポリエステル樹
脂、エポキシ樹脂であつて、一般には耐熱、耐蝕性樹脂
と言われている。
FRP is lightweight, has excellent corrosion resistance, and has excellent mechanical strength, so it is widely used in aircraft parts, mechanical parts, and other fields, and pipes also take advantage of FRP's excellent characteristics. As an example of application, it has been put into practical use, especially in the corrosion resistance field. 5
Cured resins used for FRP pipes are polyester resins and epoxy resins, which are generally said to be heat-resistant and corrosion-resistant resins.

しかしながら耐熱性の点から見ると成形作業のしにくい
特殊な樹脂系を除けば、ポリエステル樹脂で100℃、
工10ポキシ樹脂で150Cが使用限界であつて、この
温度附近では、曲げ強度弾性率も低下する。また耐蝕性
の点から見ると、ポリエステル樹脂、エポキシ樹脂とも
万能ではなく、FRPパイプ用樹脂は、使用流体に見合
つた配合が要求され、汎用性が15少ない。例えば、硫
酸などの無機酸に耐えるエポキシ樹脂でも、有機溶剤に
は犯され、塩素系化合物に対する耐蝕性は、ポリエステ
ル樹脂の方がエポキシ樹脂に勝る。更に耐蝕性は、温度
条件が高くなると低下するのも一般的な事実である。ま
た、20耐熱、耐蝕パイプと称しても、FRPパイプは
、高湿・高温下で使用すると、例えば蒸気排出管などに
使用すると、内層の樹脂が、その配合組成によつて、若
干の時間差はあるものの、次第になくなつて、繊維基材
が露出して<る。この原因ぱ、5 定かではないが、高
湿・高温における樹脂の加水分野と推定され、ポリエス
テル樹脂を用いたパイプは、この高湿・高温劣化が早い
。FRPパイプの内面は、耐蝕層として、樹脂含有率が
80〜90%になるように調整した0.1〜0.15r
wLの樹30脂層が設けられている例が多く、この層は
パイプの耐蝕機能ぱ強化繊維基材が有しているのではな
く、樹脂が有している為に設けられているのであつて、
通常はサーフエイスマツトと称する不織布が樹脂層保持
材として用いられている。しかし、35この耐蝕樹脂層
を設けても耐熱・耐蝕性は、前述の如く、汎用性は少な
〈、高湿高温劣化に対しても、時間をかせぐだけのもの
である。本発明は、FRPパイプの軽量且機械的強度を
生かし、耐熱・耐蝕性を更に高め、汎用性のあるパイプ
の開発研究からなされたものであつて、具体的には、フ
ツ素樹脂、ポリフエニレンサルフアイド樹脂に代表され
る耐熱、耐蝕性に秀れた熱可塑性樹脂を強化繊維基材に
結合せしめた層を内面に有するFRPパイプの製造法に
関するものである。
However, from the point of view of heat resistance, except for special resin systems that are difficult to mold, polyester resin can
150C is the limit of use for 10 poxy resin, and around this temperature, the bending strength and elastic modulus also decreases. Also, from the point of view of corrosion resistance, neither polyester resin nor epoxy resin is universal, and resins for FRP pipes require a formulation appropriate to the fluid used, and are 15 times less versatile. For example, even epoxy resins that can withstand inorganic acids such as sulfuric acid are attacked by organic solvents, and polyester resins are superior to epoxy resins in terms of corrosion resistance against chlorine compounds. Furthermore, it is a general fact that corrosion resistance decreases as temperature conditions become higher. In addition, even if FRP pipes are called 20 heat-resistant and corrosion-resistant pipes, when used in high humidity and high temperatures, for example, when used as steam exhaust pipes, the resin in the inner layer may have a slight time lag depending on its composition. Although there is some, it gradually disappears and the fiber base material is exposed. Although the cause of this is not certain, it is assumed that this is due to the addition of water to resins in high humidity and high temperatures, and pipes made of polyester resin deteriorate quickly at high humidity and high temperatures. The inner surface of the FRP pipe is coated with a corrosion-resistant layer of 0.1-0.15r whose resin content is adjusted to 80-90%.
In many cases, a wL resin layer is provided, and this layer is provided because the resin has the corrosion-resistant function of the pipe, not the reinforcing fiber base material. hand,
Usually, a nonwoven fabric called Surf Ace Mat is used as the resin layer holding material. However, even if this corrosion-resistant resin layer is provided, the heat resistance and corrosion resistance are not very versatile as described above (and they only add time to high-humidity, high-temperature deterioration). The present invention was developed through research and development into a versatile pipe that takes advantage of the lightweight and mechanical strength of FRP pipes, further improves heat resistance and corrosion resistance, and specifically utilizes fluorocarbon resin, polyphenylene resin, etc. The present invention relates to a method for producing an FRP pipe having a layer on its inner surface in which a thermoplastic resin having excellent heat resistance and corrosion resistance, such as Rensulfide resin, is bonded to a reinforcing fiber base material.

フツ素樹脂(ポリ四フツ化エチレン、ポリ三フツ化塩化
エチレンFRPなど)及ポリフエニレンサルフアイド樹
脂は、熱可塑性樹脂であるが、融点が高く、常時200
℃で使用しても実用的性能に変化がなく、耐蝕性も他に
類を見ない樹脂である。これらの樹脂は通常の熱可塑性
樹脂に比べると加工性が悪いが、適当な加工条件を選定
すれば、ピンホールのない皮膜を形成することが知られ
ている。本発明は、フツ素樹脂及ポリフエニレンサルフ
アイド樹脂の耐熱・耐蝕性をFRPパイプに組合せたも
ので、以下、図によつて詳細に説明する.先ず強化繊維
基材1の片面にフツ素樹脂あるい 二はポリフエニレン
サルフアイド樹脂(以下、単に樹脂と称す)2の粉末を
塗付し、焼結し樹脂皮膜3を形成する。
Fluorine resins (polytetrafluoroethylene, polytrifluorochloride ethylene FRP, etc.) and polyphenylene sulfide resins are thermoplastic resins, but they have a high melting point and always have a
There is no change in practical performance even when used at ℃, and its corrosion resistance is unparalleled. Although these resins have poor processability compared to ordinary thermoplastic resins, it is known that they can form pinhole-free films if appropriate processing conditions are selected. The present invention combines the heat resistance and corrosion resistance of fluororesin and polyphenylene sulfide resin into an FRP pipe, and will be explained in detail below with reference to the drawings. First, a powder of fluororesin or polyphenylene sulfide resin (hereinafter simply referred to as resin) 2 is applied to one side of a reinforcing fiber base material 1 and sintered to form a resin film 3.

繊維基材1は、ガラス繊維、アスペスト繊維,炭素繊維
、ケプラー繊維等、無機繊維、有機繊維でつくられたテ
ープ、クロスなどの織布あるいは、不織布であつて目の
つまつた基材が望ましい。樹脂2の粉末は、特に粒度は
限定せず,乾燥状態あるいは、液状スラリーにして塗付
する。塗付された樹脂2は、焼結によつて繊維基材1の
片面に樹脂皮膜3を形成するが、一部の樹脂2は繊維基
材1の内部に浸透し、樹脂皮膜3のアンカー4となつて
、繊維基材1に結合され、樹脂処理基材5が形成される
。樹脂皮膜3の厚みは、繰返し、樹脂2の塗付焼結で任
意に変えうるが、通常は2回の重ね塗りで、ピンホール
レスの0.1〜0.2W1!nの皮膜が得られ、耐蝕性
は、十分である。次に樹脂処理基材5を樹脂皮膜3が芯
型6に接するように捲回する。捲回する場合、樹脂処理
基材5をテープ状になし、つき合せゲートル巻きするの
が、作業上便利である。捲回数は1回で十分である。す
なわち、パイプとなしたあと、最内層のみが樹脂皮膜3
VC.なつているのが望ましい。樹脂処理基材5を捲回
したあと、樹脂処理基材5の外面すなわち、繊維基材1
の他面3′VCポリエステル樹脂、エポキシ樹脂など硬
化する液状樹脂7を塗付含浸する。この塗付含浸する硬
化する液状樹脂7VCガラスバルーン(図示せず)の如
き、微小中空体を30〜70(11)(重量)を混入せ
しめ、断熱層として機能させることが可能である。
The fiber base material 1 is preferably a woven or non-woven fabric such as tape or cloth made of inorganic fibers or organic fibers such as glass fiber, aspest fiber, carbon fiber, Kepler fiber, etc., and is preferably a dense base material. . The powder of the resin 2 is not particularly limited in particle size, and is applied in a dry state or in the form of a liquid slurry. The applied resin 2 forms a resin film 3 on one side of the fiber base material 1 by sintering, but some of the resin 2 penetrates into the inside of the fiber base material 1 and forms anchors 4 of the resin film 3. As a result, it is bonded to the fiber base material 1 to form the resin-treated base material 5. The thickness of the resin film 3 can be changed arbitrarily by repeatedly applying and sintering the resin 2, but usually it is 0.1 to 0.2 W1 without pinholes with two overlapping coatings! A film of n is obtained, and the corrosion resistance is sufficient. Next, the resin-treated base material 5 is wound so that the resin film 3 is in contact with the core mold 6. When winding, it is convenient to form the resin-treated base material 5 into a tape shape and wind it with a butt gaiter. One winding is sufficient. In other words, after forming the pipe, only the innermost layer is covered with the resin coating 3.
V.C. It is desirable to be familiar. After winding the resin-treated base material 5, the outer surface of the resin-treated base material 5, that is, the fiber base material 1
The other surface 3' is coated and impregnated with a hardening liquid resin 7 such as VC polyester resin or epoxy resin. It is possible to mix 30 to 70 (11) microscopic hollow bodies (by weight) with this hardening liquid resin 7VC glass balloon (not shown) to function as a heat insulating layer.

次いで、硬化する液状樹脂7を含浸させた強化繊維基材
8をパントレーアップあるいはフイラメントワインデイ
ングの方法で、捲回、積層しFRP層9を形成する。強
化繊維基材8は無機繊維、有機繊維又はこれらから加工
されたテープ、クロスであり、FRP層9の厚みは、パ
イプの強度設計によつて決定される。かくして、硬化す
る液状樹脂7が硬化すれば、芯型6を引抜くことによつ
て、内層に耐熱、耐蝕性に秀れた熱可塑性樹脂を有する
FRPパイプが得られる。本発明の骨子を整理すれば、
1)織布、不織布などの繊維基材の片面に、2)耐熱、
耐蝕性の秀れた熱可塑性樹脂を焼結含浸結合させ、3)
この樹脂層がパイプの最内面になるように繊維基材を芯
型に巻付け,4)熱硬化する樹脂と繊維基材でFRP補
強層を形成する。
Next, the reinforcing fiber base material 8 impregnated with the hardening liquid resin 7 is wound and laminated by a pan lay-up or filament winding method to form an FRP layer 9. The reinforcing fiber base material 8 is an inorganic fiber, an organic fiber, or a tape or cloth processed from these, and the thickness of the FRP layer 9 is determined by the strength design of the pipe. Once the liquid resin 7 is cured, the core mold 6 is pulled out to obtain an FRP pipe having an inner layer of a thermoplastic resin having excellent heat resistance and corrosion resistance. If we summarize the gist of the present invention,
1) On one side of a fiber base material such as woven fabric or non-woven fabric, 2) Heat resistant,
3) Thermoplastic resin with excellent corrosion resistance is sintered and impregnated.
Wrap the fiber base material around the core so that this resin layer becomes the innermost surface of the pipe, and 4) form an FRP reinforcing layer with the thermosetting resin and the fiber base material.

耐蝕パイプの製造法である。この方法によるパイプは内
層が繊維基材に結合された耐熱、耐蝕に秀れた樹脂層で
あつて、使用流体の如何を問わず使用しうる汎用性があ
り、FRP層とは機械的に結合された状態になつている
為、FRPの機械的特性がそのまま生されるパイプであ
る。従つて、取扱いもFRPパイプとは何ら変ることが
ない。実施例にも説明するように高湿高温下の使用条件
でも全く問題がないことが判明した。〔実施例1〕 厚み0.18rfr1n、巾50rfr1nのガラス繊
維平織りテープの片面に、ライトンR(フイリツプス社
商品名一ポリフエニレンサルフアイド樹脂)のスラリー
をスプレーし,370℃で50分間焼付ける処理を2回
行ない、樹脂処理基材を製作した。
This is a method for manufacturing corrosion-resistant pipes. The inner layer of the pipe made by this method is a resin layer with excellent heat resistance and corrosion resistance bonded to a fiber base material, and is versatile enough to be used regardless of the fluid used, and is mechanically bonded to the FRP layer. This pipe retains the mechanical properties of FRP. Therefore, handling is no different from that of FRP pipes. As explained in the Examples, it was found that there were no problems at all even under conditions of use under high humidity and high temperature. [Example 1] A slurry of Ryton R (product name: polyphenylene sulfide resin, manufactured by Philips Corporation) was sprayed onto one side of a glass fiber plain weave tape having a thickness of 0.18 rfr1n and a width of 50rfr1n, and the tape was baked at 370°C for 50 minutes. This was repeated twice to produce a resin-treated base material.

このテープのライトンR面をφ50.0×1000mt
の芯・型に合せて.一層つき合せ捲回した。次いでエポ
キゾ樹脂(エピコート8157/HHPA配合)を樹脂
処理基材外面に塗付含浸したあと、ガラスローピングを
用いてFRP層が3rt!nになるようにフイラメント
ワインデイングによつて600ヘリカル巻きした。通常
の方法によつてエポキシ樹脂を硬化したあと、脱芯し、
内層にライトンR層をもつFRPパイプを得た。このパ
イプを300fmの長さに切断し、蒸気排出ピツト中の
蒸気排出管に接続し、1ケ月試用したあと、内面を観察
したが特に異常は認められなかつた。同時に、比較の為
エポキシ樹脂だけを用いたFRPパイプを併行して試用
したところ、内層の樹脂がなくなり、基材が露出してい
た。〔実施例2〕 厚み0.24TW1L、巾1000mのガラスサーフエ
イスマツトの片面にライトンRの粉末をロールによつて
塗付予備成型し、370℃で40分間焼結する処理を2
回繰返し、樹脂処理基材を製作した。
Ryton R side of this tape is φ50.0×1000m
According to the core and type. I rolled it up one more layer. Next, after coating and impregnating the outer surface of the resin-treated base material with epoxy resin (Epicoat 8157/HHPA combination), the FRP layer is 3rd rated using glass roping! 600 helical windings were carried out by filament winding so that the length of the film was n. After curing the epoxy resin using the usual method, decore it,
An FRP pipe with a Ryton R layer on the inner layer was obtained. This pipe was cut into a length of 300 fm, connected to a steam exhaust pipe in a steam exhaust pit, and after being used for one month, the inner surface was observed, but no particular abnormality was observed. At the same time, for comparison purposes, an FRP pipe made of only epoxy resin was also tested, but the inner layer of resin disappeared and the base material was exposed. [Example 2] Ryton R powder was coated on one side of a glass surf ace mat with a thickness of 0.24 TW 1 L and a width of 1000 m using a roll to pre-form it, and sintered at 370°C for 40 minutes.
The process was repeated several times to produce a resin-treated base material.

この樹脂処理基材を巾100wt1nのテープ状に切断
して後、実施例1と全く同様の操作で内面にライトンR
層をもつFRPパイプを得た。このFRPパイプを1.
5!/Cd〜2.0Kf/Cdの生蒸気を吹込むゴム硫
硫缶に1ケ目間入れておいたが、パイプ内面には何ら異
常が生じなかつた。同時に内面にサーフエイスマツトで
保持されたエポキシ樹脂層をもつFRPパイプを比較試
験したところ、樹脂層がなくなり、無数のガラス繊維が
浮き出していた。
After cutting this resin-treated base material into a tape shape with a width of 100wt1n, the inner surface was coated with Ryton R in exactly the same manner as in Example 1.
An FRP pipe with layers was obtained. This FRP pipe 1.
5! /Cd~2.0Kf/Cd was placed in a rubber sulfur sulfur can into which live steam was blown, but no abnormality occurred on the inner surface of the pipe. At the same time, when we conducted a comparative test on an FRP pipe with an epoxy resin layer held on its inner surface by Surf Ace Mat, we found that the resin layer had disappeared and numerous glass fibers were exposed.

〔実施例3〕 厚み0.18wn、巾50rfmのガラス繊維平織りテ
ープの片面にポリ四フツ化樹脂のデイスパージヨンをは
けで3回塗付したあと乾燥させて、400℃で、30分
焼結し、更VC.2回ポリ四フツ化樹脂のデイスパージ
ヨンをはけで上塗りし、380Cで40分焼結して、樹
脂処理基材を得た。
[Example 3] Polytetrafluoride resin dispersion was applied three times with a brush to one side of a glass fiber plain weave tape with a thickness of 0.18wn and a width of 50rfm, dried, and baked at 400°C for 30 minutes. Conclusion, Sara VC. A dispersion of polytetrafluoride resin was applied twice with a brush and sintered at 380C for 40 minutes to obtain a resin-treated base material.

この樹脂処理基材を用いて実施例1と同様な方法で内層
にポリ四フツ化樹脂層をもつFRPパイプを得たこのパ
イプを600WrInの長さに切折し、2Kf/Cdの
工場蒸気配管に接続した。1ケ月后に取出して内面を観
察したが全く問題が生じていなかつた。
Using this resin-treated base material, an FRP pipe with a polytetrafluoride resin layer on the inner layer was obtained in the same manner as in Example 1. This pipe was cut into a length of 600WrIn, and a 2Kf/Cd factory steam pipe was prepared. connected to. After a month, I took it out and observed the inside, but no problems were found.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図一第3図は、本発明の耐蝕パイプを製造
する場合の説明図であり、第4図は本発明の耐蝕パイプ
の1例を示す断面図であり、1は強化繊維基材、2,3
,4は耐熱耐蝕性に秀れた熱可塑性樹脂、5は樹脂処理
基材、6は芯型、7は熱硬化性棚眠8は繊維強化基材、
9はFRP層である。
Figures 1, 2 and 3 are explanatory diagrams for manufacturing the corrosion-resistant pipe of the present invention, and Figure 4 is a cross-sectional view showing one example of the corrosion-resistant pipe of the present invention, and 1 is a reinforced Fiber base material, 2,3
, 4 is a thermoplastic resin with excellent heat and corrosion resistance, 5 is a resin-treated base material, 6 is a core type, 7 is a thermosetting shelf 8 is a fiber reinforced base material,
9 is an FRP layer.

Claims (1)

【特許請求の範囲】[Claims] 1 耐熱、耐蝕性に秀れた熱可塑性樹脂を織布、不織布
等の強化繊維基材の片面に塗布、焼結、結合せしめ、ピ
ンホールのない皮膜を形成したあと、熱可塑性樹脂皮膜
面が芯型面に接するように該強化繊維基材を芯型に捲回
し、捲回した層の上に、ハンドレイアップあるいは、フ
ィラメントワインディングの方法で繊維強化プラスチッ
ク層を形成し脱芯することを特徴とする耐蝕パイプの製
造方法。
1 A thermoplastic resin with excellent heat resistance and corrosion resistance is applied to one side of a reinforcing fiber base material such as woven fabric or non-woven fabric, sintered and bonded to form a pinhole-free film, and then the thermoplastic resin film surface is The reinforcing fiber base material is wound around a core mold so as to be in contact with the core mold surface, and a fiber reinforced plastic layer is formed on the wound layer by hand lay-up or filament winding method, and the core is removed. A method of manufacturing a corrosion-resistant pipe.
JP51157752A 1976-12-27 1976-12-27 Manufacturing method of corrosion-resistant pipe Expired JPS595198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51157752A JPS595198B2 (en) 1976-12-27 1976-12-27 Manufacturing method of corrosion-resistant pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51157752A JPS595198B2 (en) 1976-12-27 1976-12-27 Manufacturing method of corrosion-resistant pipe

Publications (2)

Publication Number Publication Date
JPS5380818A JPS5380818A (en) 1978-07-17
JPS595198B2 true JPS595198B2 (en) 1984-02-03

Family

ID=15656562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51157752A Expired JPS595198B2 (en) 1976-12-27 1976-12-27 Manufacturing method of corrosion-resistant pipe

Country Status (1)

Country Link
JP (1) JPS595198B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579293A (en) * 1978-11-25 1980-06-14 Ishikawajima Harima Heavy Ind Device for preventing fluctuation in liquid level in storage tank
US4596619A (en) * 1982-05-17 1986-06-24 Hercules Incorporated Process for lining composite vessels
JP7064551B2 (en) * 2020-10-28 2022-05-10 中興化成工業株式会社 A heat exchanger provided with a heat transfer tube for a heat exchanger, and a heat transfer tube and a holding member for holding the heat transfer tube.

Also Published As

Publication number Publication date
JPS5380818A (en) 1978-07-17

Similar Documents

Publication Publication Date Title
US4764427A (en) Fiber having thermoplastic resin coating
US3002534A (en) Reinforced thermoplastics
CN104354436B (en) The manufacture method of high-temperature fibre wound composite housing
US2969812A (en) Pipe structure
US2991808A (en) Reinforced articles and method of making
JPH0341143A (en) Polymeric tetrafluoroethylene composition, and its product and manufacture
JPS595198B2 (en) Manufacturing method of corrosion-resistant pipe
US5211220A (en) Tube for a shell and tube heat exchanger and process for the manufacture thereof
KR0174517B1 (en) Honeycomb of fabric reinforced polymer and method of preparation thereof
JPS60170632A (en) Manufacture of polyimide resin fiber reinforced composite body
JP4025312B2 (en) Insulation pipe cover
JPS595197B2 (en) Manufacturing method of corrosion-resistant pipe
CN109282138B (en) Polyimide composite gas cylinder and preparation method thereof
JP2000014277A (en) Fishing rod and production of rod pipe
JPS6052622A (en) Non-expansible spool for oxidizing carbon fiber and its production
RU2112652C1 (en) Multilayer casing
Knight The technique of filament winding
JPH026954B2 (en)
JPH0660471B2 (en) Compound striatum
RU2817033C1 (en) Flexible branch pipe from polymer composite materials and method of its manufacturing based on unvulcanized rubberized glass fabric
RU2733797C1 (en) Flexible pipe from polymer composite material
JPH02280106A (en) Optical fiber cable
JPH04336235A (en) Fiber reinforced thermoplastic resin pipe
JPH11342545A (en) Manufacture of pipe for heat exchanger
JPS60203428A (en) Manufacture of frp pipe