JPS60203428A - Manufacture of frp pipe - Google Patents

Manufacture of frp pipe

Info

Publication number
JPS60203428A
JPS60203428A JP59061606A JP6160684A JPS60203428A JP S60203428 A JPS60203428 A JP S60203428A JP 59061606 A JP59061606 A JP 59061606A JP 6160684 A JP6160684 A JP 6160684A JP S60203428 A JPS60203428 A JP S60203428A
Authority
JP
Japan
Prior art keywords
pipe
layer
fibers
frp
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59061606A
Other languages
Japanese (ja)
Other versions
JPH0215377B2 (en
Inventor
Toshio Ono
利夫 小野
Hidetoshi Kitakoga
北古賀 秀敏
Hiroyuki Shigemasa
重政 裕之
Kazuo Miyoshi
一雄 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59061606A priority Critical patent/JPS60203428A/en
Publication of JPS60203428A publication Critical patent/JPS60203428A/en
Publication of JPH0215377B2 publication Critical patent/JPH0215377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/562Winding and joining, e.g. winding spirally spirally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Abstract

PURPOSE:To manufacture an FRP pipe whose thickness is thin, strength and rigidity are high, by making reinforced fibers of the innermost layer and the outermost layer are made to continue unitarily. CONSTITUTION:A molding material is obtained by laminating cloth prepreg 2, 2a having an identical width with a circumference of a pipe on the top and bottom of cloth prepreg 1 whose thickness is about two times of the circumference of the pipe cut off so that fiber is arranged at an angle of 45 deg. with the direction of a pipe axis. Then the molding material is laminated by winding the same around a core metal 3 so that the innermost layer and the outermost layer are continued unitarily and cured by heating and pressing the same. With this construction, an anisotropic and thin pipe whose torsional rigidity and strength are high and reinforcing fibers in a bias and parallel directions with the pipe axis are laminated each other can be manufactured easily.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、FRP製ノ母イノの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a motherboard made of FRP.

〔従来技術〕[Prior art]

FRP製t4?イブに対して引張力、圧縮力およびねじ
り力が作用するパイプにおいては、S維をノ*イゾ軸と
平行な方法(以下O0方向という)および・ぐイブ軸と
斜めに交叉するバイアス方向(以下45°方向という)
に繊維を強化する必要がある。
FRP t4? In pipes in which tensile, compressive, and torsional forces act on the rib, the S fibers can be moved in a direction parallel to the *iso axis (hereinafter referred to as the O0 direction) and in a bias direction (hereinafter referred to as diagonally intersecting the *iso axis). (referred to as 45° direction)
It is necessary to strengthen the fibers.

このようなパイプにおいて最内層と最外層のいずれか若
しくは両方KO″方向に繊維が配列されているパイプは
、たとえば宇宙環境条件下のようにマイナス150℃前
後からプラス100℃前後の極めて温度差の大きい場合
はOo方向強化繊維材と45°方向強化繊維材との熱膨
張係数の差による熱応力によシロ0方向繊維材では繊維
と平行に樹脂層が割れてしまうことがある。上記のよう
な現象を防ぐ方法としてバイブ内外層に45°方向の強
化繊維材を配置する方法がある。
In such a pipe, the fibers are arranged in the KO'' direction in either or both of the innermost layer and the outermost layer, and the pipe can withstand extreme temperature differences from around -150°C to around +100°C, such as under space environment conditions. If it is large, the resin layer may crack parallel to the fibers in the zero direction fiber material due to thermal stress due to the difference in thermal expansion coefficient between the Oo direction reinforced fiber material and the 45° direction reinforced fiber material. One way to prevent this phenomenon is to arrange reinforcing fibers in the 45° direction on the inner and outer layers of the vibrator.

このようにパイプの内外層に45°方向強化軸゛シ維(
a) フィラメントワインディング工法によシ最内層の
45°方向強化繊維層を設け、次に一方向に繊維を引j
IIilえて樹脂を含浸させて予め予備硬化した素材(
以下1)l)プリプレグという)をθ°方向強化繊維層
として設け、最後に栴びフィラメントワインディング工
法により45゜方向を設けて硬化させ製造する方法。
In this way, the inner and outer layers of the pipe are reinforced with axial fibers (
a) The innermost reinforcing fiber layer is provided in the 45° direction using the filament winding method, and then the fibers are pulled in one direction.
Material that has been impregnated with resin and pre-cured in advance (
1) Prepreg (hereinafter referred to as prepreg) is provided as a θ° direction reinforcing fiber layer, and finally, a 45° direction is provided and hardened using the filament winding method.

(b) 最内外層の45°強化繊維材として繊維を直交
して織ったクロスに樹脂を含浸させたクロスプリプレグ
材を斜め45度に切断し芯金の軸に対し45°方向に繊
維が配列するように巻付けた後、(a)と同様のUDプ
リプレグな00方向強化繊維層として設け、最後に再び
45°方向強化繊維材として上記クロスプリプレグを巻
付けて硬化する方法。
(b) As the 45° reinforcing fiber material for the outermost layer, a cross prepreg material made by impregnating resin into a cross woven with fibers perpendicular to each other is cut diagonally at a 45° angle, and the fibers are arranged in a 45° direction with respect to the axis of the core metal. After wrapping the material in the same manner as in (a), a 00 direction reinforcing fiber layer of UD prepreg is provided as in (a), and finally, the above cross prepreg is wound again as a 45° direction reinforcing fiber material and hardened.

などの製造方法によシ製作されていた。It was manufactured using manufacturing methods such as

ところで上記(a)の方法によシたとえば炭素域維強化
プラスチック製パイプを製作する場合、炭素繊維で織っ
た厚さ0.05〜0.1鱈程度のクロス材と同程度の繊
維の打込み本数でフィラメントワインディンダニ法によ
、i545a方向のヘリカルワインディングに設定して
もクロス材と全く同一の精度で均一に繊維をワインディ
ングすることはワインディングのマシーンの精度からみ
て難しく、また外圧を加えて繊維束を偏平に押しつぶさ
ないと上記した0、05〜0.1 Mの薄肉化は困難で
あった。
By the way, when manufacturing a pipe made of carbon fiber-reinforced plastic using the above method (a), for example, the number of fibers to be implanted is the same as that of a cloth material woven from carbon fibers with a thickness of about 0.05 to 0.1. Even if the filament winding method is set to helical winding in the i545a direction, it is difficult to wind the fibers uniformly with the exact same precision as cloth material due to the precision of the winding machine, and it is difficult to wind the fibers uniformly with the same precision as cloth material. It was difficult to achieve the thickness reduction of 0.05 to 0.1 M unless the bundle was flattened.

しかも最内層の45°方向ワインデイング、中間層の0
°方方向層および最外層の45°方向ワインデイングの
3工程に分けて成形するため、製造に多くの時間を必要
とする欠点があった。
Moreover, the innermost layer has a 45° direction winding, and the middle layer has a 0
Since the molding process is divided into three steps: winding in the 45° direction layer and winding the outermost layer in the 45° direction, the manufacturing process has the drawback of requiring a lot of time.

また(b)の方法によると45°方向強化繊維材として
はクロスプリプレグを使用するため予めクロスに樹脂を
含浸して半硬化状態にする工程において2本のロールの
間を通してクロスに使用されている繊維を偏平に形状変
化させることができて繊維含有率の高い薄い45°方向
強化繊維層ができるが、(a)のフィラメントワインデ
ィング工法のように45°方向繊維がパイプの両端まで
連続させることは不可能であシ、パイプのねじシ剛性2
強厩がフィラメントワインディング工法によるパイプに
比べて低下する欠点があった。
In addition, according to method (b), since a cloth prepreg is used as the 45° direction reinforcing fiber material, the cloth is impregnated with resin in advance and passed between two rolls in the process of semi-curing. Although it is possible to change the shape of the fibers into a flat shape and create a thin 45° reinforcing fiber layer with a high fiber content, it is not possible to make the 45° oriented fibers continue to both ends of the pipe as in the filament winding method in (a). Impossible, pipe thread rigidity 2
There was a drawback that the strength was lower than that of pipes made using the filament winding method.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、予め繊維が45°方向に配向する
ように切断したクロスプリプレグの両面または片面に0
″方向に繊維を配向したUDプリプレグを積層し、これ
らを芯金となるパイプに巻付けて最内層の45°方向強
化繊維材が最外層まで連続させたことによ勺薄肉で高強
度、高剛性のFRPパイプの製造方法を提供することを
目的としている。
This invention was made in order to eliminate the drawbacks of the conventional products as described above.
By laminating UD prepregs with fibers oriented in the ``direction'' and wrapping them around a pipe that serves as a core metal, the innermost layer of reinforcing fiber material in the 45° direction continues to the outermost layer, resulting in a thin wall with high strength and high strength. The purpose is to provide a method for manufacturing a rigid FRP pipe.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2,3図はこの発明に使用したパイプの成形素材を示
し、まず、第2図ではパイプの周長の2倍の幅乞有する
クロスプリプレグ(パイプ軸に対して45°方向に繊維
を配置するように切断したプリプレグ)1にパイプ周長
と同一幅のUDプリプレ倍の幅を有する45°方向強化
繊維用クロスプリプである。
Figures 2 and 3 show the molding material of the pipe used in this invention. First, Figure 2 shows a cloth prepreg (with fibers arranged at 45 degrees to the pipe axis) having a width twice the circumference of the pipe. This is a cross prep for reinforcing fibers in the 45° direction, which has a width twice the width of the UD prepreg, which is the same width as the pipe circumference.

上記第2,3図に示した成形素材を用いて第4゜5図に
示すようにそれぞれパイプ材となる芯金3に巷付けるこ
とにより、積層後はそれぞれ第6゜7図のようになる。
By using the molding materials shown in Figures 2 and 3 above and attaching them to the core metal 3, which will become the pipe material, as shown in Figures 4-5, the laminated materials will become as shown in Figures 6-7, respectively. .

このように積層されたパイプは加熱および加圧して硬化
させることによシ最内層の45°繊維強化のクロスプリ
プレグlの繊維が最外層まで一体に連続した薄肉のパイ
プが製造できる。
By curing the pipe laminated in this manner by applying heat and pressure, a thin-walled pipe in which the fibers of the 45° fiber-reinforced cross prepreg l in the innermost layer continue integrally to the outermost layer can be manufactured.

なお、実施例ではパイプ3の横断面が円形の場合につい
て説明したが、三角形や四角形その他の形状のものを用
いることによって種々の断面形状のFRPパイプを製造
することができる。また、最内外I#に1層のクロスプ
リプレグを配置したものについて説明したが、クロスプ
リプレグの幅をパイプ周長の2倍または3倍にすれば最
内外層を2層や3層とすることも可能である。
In the embodiment, the case where the pipe 3 has a circular cross section has been described, but FRP pipes with various cross-sectional shapes can be manufactured by using triangular, quadrangular, or other shapes. In addition, although we have explained the case where one layer of cross prepreg is placed on the innermost and outermost I#, if the width of the cross prepreg is made twice or three times the pipe circumference, the outermost layer can be made into two or three layers. is also possible.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、最内1mと最外層をパ
イプ軸方向に対してバイアス方向に強化繊維を配列し、
中間層にパイプ軸と平行に強化繊維を配列したF RP
製パイプにおいて、上記最内層と最外層が一体に連続さ
せたことによシ、パイプのねじり剛性や強度が向上する
と共に、パイプ輔に対してバイアス方向と平行方向との
強化繊維が交互に積層された異方性を有する薄肉のパイ
プが容易に製造できる。また平行方向強化繊維層をバイ
アス方向のクロス材で内層、外層の両面からサンドイッ
チ状に包むようになるため、マイナス150℃前後の低
温にさらしても熱応力によシ平行方向の繊維層における
樹脂層にクラックが入ることもないなどの効呆がある。
As described above, according to the present invention, reinforcing fibers are arranged in the innermost 1 m and outermost layers in the bias direction with respect to the pipe axis direction,
FRP with reinforcing fibers arranged parallel to the pipe axis in the middle layer
In manufactured pipes, the innermost layer and outermost layer are integrated and continuous, which improves the torsional rigidity and strength of the pipe, and also allows reinforcing fibers to be alternately laminated in the bias direction and parallel direction to the pipe hem. Thin-walled pipes with a certain degree of anisotropy can be easily produced. In addition, since the parallel reinforcing fiber layer is wrapped in a sandwich-like manner from both the inner layer and the outer layer with the cross material in the bias direction, the resin layer in the parallel fiber layer will not resist thermal stress even when exposed to low temperatures of around -150°C. It has the advantage of not causing any cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるFRP製パイプの破断斜視図、
第2図および第3図は、パイプを形成するために強化繊
維をバイアス方向と平行方向に予備成形した状態のそれ
ぞれの斜視図、第4図および第5図は芯金に巻付ける状
態のそれぞれの斜視図、第6図および第7図はパイプ完
成品のそれぞれの拡大断面図である。 1・・・バイアス方向のクロスプリプレグ、2,2a・
・・平行方向のUDプリプレグ、3・・・芯金。 なお、図中、同−祠・号は同−又は和尚部分を示す。 第6図 第7図
FIG. 1 is a broken perspective view of an FRP pipe according to the present invention.
Figures 2 and 3 are perspective views of reinforcing fibers preformed in a direction parallel to the bias direction to form a pipe, and Figures 4 and 5 are of a state in which they are wound around a core metal. The perspective view, FIGS. 6 and 7 are enlarged cross-sectional views of the finished pipe product. 1... Cross prepreg in bias direction, 2, 2a.
... UD prepreg in parallel direction, 3... Core metal. In addition, in the figure, the same-shrine/number indicates the same- or Buddhist monk part. Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] FRP製ノ臂イブの断面構成における最内層と最外層を
パイプ軸方向に対してバイアス方向に強化繊維を配列し
、中間層にパイプ軸と平行に強化線維を配列したFRP
製A?イゾを得るに際し、上記最内層と最外層とを一体
に連続させたことを特徴とするFRP製パイプの製造方
法。
FRP in which reinforcing fibers are arranged in the bias direction with respect to the pipe axis direction in the innermost layer and outermost layer in the cross-sectional configuration of the FRP arm eve, and reinforcing fibers are arranged in the middle layer parallel to the pipe axis.
Made by A? A method for manufacturing an FRP pipe, characterized in that the innermost layer and the outermost layer are integrally continuous when obtaining the Iso.
JP59061606A 1984-03-29 1984-03-29 Manufacture of frp pipe Granted JPS60203428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59061606A JPS60203428A (en) 1984-03-29 1984-03-29 Manufacture of frp pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59061606A JPS60203428A (en) 1984-03-29 1984-03-29 Manufacture of frp pipe

Publications (2)

Publication Number Publication Date
JPS60203428A true JPS60203428A (en) 1985-10-15
JPH0215377B2 JPH0215377B2 (en) 1990-04-11

Family

ID=13175988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59061606A Granted JPS60203428A (en) 1984-03-29 1984-03-29 Manufacture of frp pipe

Country Status (1)

Country Link
JP (1) JPS60203428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231783A (en) * 1990-12-11 1993-08-03 Shimano, Inc. Method of making fishing rod and fishing rod made by the method
JP2002103463A (en) * 2000-10-02 2002-04-09 Mitsubishi Rayon Co Ltd Tubular molding, shaft and pole for golf club using the molding, and method for manufacturing tubular molding
JP2020092563A (en) * 2018-12-07 2020-06-11 株式会社豊田自動織機 Cylindrical member, rotor of rotary electric machine, and rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231783A (en) * 1990-12-11 1993-08-03 Shimano, Inc. Method of making fishing rod and fishing rod made by the method
JP2002103463A (en) * 2000-10-02 2002-04-09 Mitsubishi Rayon Co Ltd Tubular molding, shaft and pole for golf club using the molding, and method for manufacturing tubular molding
JP4510260B2 (en) * 2000-10-02 2010-07-21 三菱レイヨン株式会社 Method for manufacturing tubular molded body
JP2020092563A (en) * 2018-12-07 2020-06-11 株式会社豊田自動織機 Cylindrical member, rotor of rotary electric machine, and rotary electric machine

Also Published As

Publication number Publication date
JPH0215377B2 (en) 1990-04-11

Similar Documents

Publication Publication Date Title
US4385952A (en) Process for preparing fiber reinforced plastics
US4512836A (en) Method of producing composite structural members
CA1247318A (en) Method of forming a fiber reinforced composite article of complex configuration
US3372075A (en) Method of making an insulated storage tank
JPS5832570B2 (en) Kiyouka Plastics Tsukurizaono Seizouhou
US4048360A (en) Low-weight dent-resistant structure and method for production thereof
JPS60203428A (en) Manufacture of frp pipe
JPH04151232A (en) Manufacture of square pipe made of fiber-reinforced plastic
JPS6168232A (en) Preparation of curved pipe
WO1996007533A1 (en) Method of making composite product of tubular structure using clamshell mold
US3501359A (en) Method of making a reinforced filament wound pipe
JPH085139B2 (en) FRP hollow product manufacturing method
JPS60225740A (en) Manufacture of tubular product having internal reinforced part
JPH1016072A (en) Manufacture of composite material
JPH04201244A (en) Pipe structure made of fiber reinforced composite material
JPS6161966B2 (en)
JPS5845925A (en) Manufacture of frp pipe with thread
EP3967483A1 (en) Composite molded body molding system and production method
JPS61266234A (en) Manufacture of bent square pipe made of fiber reinforced plastic
JPS6310271Y2 (en)
JPH024414B2 (en)
JPH0143612B2 (en)
JPH0566856B2 (en)
JPS5849103Y2 (en) fishing rod
JPS635247B2 (en)