JPS595175B2 - magnetic bearing - Google Patents

magnetic bearing

Info

Publication number
JPS595175B2
JPS595175B2 JP2928477A JP2928477A JPS595175B2 JP S595175 B2 JPS595175 B2 JP S595175B2 JP 2928477 A JP2928477 A JP 2928477A JP 2928477 A JP2928477 A JP 2928477A JP S595175 B2 JPS595175 B2 JP S595175B2
Authority
JP
Japan
Prior art keywords
teeth
magnetic
stator
rotor
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2928477A
Other languages
Japanese (ja)
Other versions
JPS53115435A (en
Inventor
俊美 虻川
啓治 新井
宏史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2928477A priority Critical patent/JPS595175B2/en
Publication of JPS53115435A publication Critical patent/JPS53115435A/en
Publication of JPS595175B2 publication Critical patent/JPS595175B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0412Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
    • F16C32/0414Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly with facing axial projections

Description

【発明の詳細な説明】 本発明は分離装置などの回転体に使用される磁気軸受に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic bearing used in a rotating body such as a separation device.

従来のこの種磁気軸受は第1図に示すように、回転自在
に設けられた軸1に取付けられた磁性体10製回転子ヨ
ーク2の外側部に回転子歯2、a、2bが一体に形成さ
れ、この回転子歯2a、2bをはさみ込むように配置さ
れた固定子歯5a、5bを有する固定子ヨーク4a、4
bを永久磁石3の両端にそれぞれ取付け、前記固定子歯
5a、5bを15包み込むように非磁性体導電体6a、
6bを前記固定子ヨーク4a、4bにそれぞれ取付けた
構造からなる。
As shown in FIG. 1, a conventional magnetic bearing of this type has rotor teeth 2, a, and 2b integrally formed on the outside of a rotor yoke 2 made of magnetic material 10, which is attached to a rotatably provided shaft 1. stator yokes 4a, 4 having stator teeth 5a, 5b arranged to sandwich the rotor teeth 2a, 2b;
b are respectively attached to both ends of the permanent magnet 3, and a non-magnetic conductor 6a is attached so as to surround the stator teeth 5a, 5b.
6b are attached to the stator yokes 4a and 4b, respectively.

上記のように構成した軸受では第2図に示すように、永
久磁石3により発生した磁束Tは破線の20ように永久
磁石3−固定子ヨーク4a−固定子歯5a−回転子歯2
a、2b−固定子歯5b−固定子ヨーク4b−永久磁石
3の循環回路を形成する。
In the bearing configured as described above, as shown in FIG.
A, 2b - stator teeth 5b - stator yoke 4b - permanent magnet 3 form a circulation circuit.

いま軸1が振動したときには回転子歯2a、2bも振動
するため、磁路の振動により磁束Tも変化25する。こ
のとき非磁性導電体6a、6b中を通る磁束量の変化に
より渦電流が発生し、これが制振力として働らき回転体
の制振を行う。上記渦電流による制振効果を第2図につ
いて説明するに、回転子ヨーク2の振動により非磁性導
30重体6a、6b中では渦電流11が発生する。
Now, when the shaft 1 vibrates, the rotor teeth 2a and 2b also vibrate, so the magnetic flux T also changes 25 due to the vibration of the magnetic path. At this time, an eddy current is generated due to a change in the amount of magnetic flux passing through the nonmagnetic conductors 6a and 6b, and this acts as a damping force to damp the vibration of the rotating body. The vibration damping effect due to the eddy current will be explained with reference to FIG. 2. The vibration of the rotor yoke 2 causes eddy currents 11 to occur in the non-magnetic conductors 30 and the heavy bodies 6a, 6b.

制振効果に関係する渦電流11の大きさは非磁性導、重
体6a、6b中を通る磁束Tの急激な変化と磁束量で決
定される。特に非磁性導電体のたれこみ部9a、9b、
10a、10bおよびその付近に35多くの磁束Tを通
過させることが渦電流11を増加させることになる。し
かし従来のもの(第1図)では、磁束Tが磁性体の固定
子歯5a、5b回転子歯2a.2bに集中し、非磁性導
電体のたれこみ部9a,9b,10a,10bを通る磁
束量は少ないので、渦電流11の発生も減少するから制
振効果は低減する。しむがつて回転体の振動を抑制する
ことができないため、回転体を高速で安定運転すること
が不可能であり、かつ回転子歯の残留磁気により助長さ
れる低速時の振れ回り現象を防止することができない。
The magnitude of the eddy current 11 related to the damping effect is determined by the rapid change in the magnetic flux T passing through the non-magnetic conductors and the heavy bodies 6a, 6b, and the amount of magnetic flux. In particular, the recessed portions 9a, 9b of non-magnetic conductive material,
Passing 35 more magnetic fluxes T through 10a, 10b and their vicinity increases the eddy current 11. However, in the conventional system (FIG. 1), the magnetic flux T is caused by magnetic stator teeth 5a, 5b and rotor teeth 2a, 5b. Since the amount of magnetic flux concentrated in 2b and passing through the recessed portions 9a, 9b, 10a, and 10b of the nonmagnetic conductor is small, the generation of eddy current 11 is also reduced, and the damping effect is reduced. Because it is impossible to suppress the vibration of the rotating body, it is impossible to operate the rotating body stably at high speed, and to prevent the whirling phenomenon at low speeds that is promoted by the residual magnetism of the rotor teeth. I can't.

その対策として制振効果を大にするために、第3図に示
すように回転子歯2aと2bの高さh1と同一高さを有
する内側補助リング8aを回転子ヨーク2の内側に取付
けたものである。このように構成すれば、従来のもの(
第1図)に比べて固定子歯5aから内側補助リング8a
へ通る磁束が発生するため、非磁性導電体のたれこみ部
9a付近に発生する渦電流が増加するので、制振効果は
従来のものに比べて増大する。しb・し第3図に示す構
造のものでは、回転体1,2を安定的に回転させるのに
十分な制振効果をうることができない。即ち、第3図の
従来例では、回転軸1が回転子歯2a,2bの高さを越
えて延びてはいるが、これによつて千分な制振効果を得
られるものではない。
As a countermeasure for this, in order to increase the vibration damping effect, an inner auxiliary ring 8a having the same height as the height h1 of the rotor teeth 2a and 2b is attached to the inside of the rotor yoke 2, as shown in Fig. 3. It is something. If configured like this, the conventional one (
(Fig. 1), from the stator tooth 5a to the inner auxiliary ring 8a.
Since a magnetic flux passing through the magnetic conductor is generated, the eddy current generated near the recessed portion 9a of the non-magnetic conductor increases, so that the vibration damping effect is increased compared to the conventional one. b. With the structure shown in FIG. 3, it is not possible to obtain a vibration damping effect sufficient to stably rotate the rotating bodies 1 and 2. That is, in the conventional example shown in FIG. 3, although the rotating shaft 1 extends beyond the height of the rotor teeth 2a and 2b, this does not provide a sufficient vibration damping effect.

回転軸1が回転子歯2aを越える部分を上部突出部1a
とすると、もし回転軸1が磁性体で構成されている場合
には、固定子歯5aと該上部突出部1aとの間に確かに
磁束が通過する。しかしながら、固定子歯5aと回転軸
1の上部突出部1aとの空隙長tが大きいので、通過磁
束量は少なく、制振効果も小さくて、十分なものではな
い。本発明は上記にかんがみ制振効果の大である磁気軸
受を提供することを目的とするもので、回転子歯を有す
る回転子ヨークの内側端および外側端のいづれか一方ま
たは双方に補助リングを設け、この補助リングの高さを
回転子歯の高さより大に形成したことを特徴とするもの
である。以下本発明の実施例を図面を参照して説明する
The part where the rotating shaft 1 exceeds the rotor teeth 2a is called the upper protruding part 1a.
In this case, if the rotating shaft 1 is made of a magnetic material, magnetic flux will certainly pass between the stator teeth 5a and the upper protrusion 1a. However, since the gap length t between the stator teeth 5a and the upper protrusion 1a of the rotating shaft 1 is large, the amount of passing magnetic flux is small, and the vibration damping effect is also small, which is not sufficient. In view of the above, it is an object of the present invention to provide a magnetic bearing with a large vibration damping effect, in which an auxiliary ring is provided at one or both of the inner and outer ends of a rotor yoke having rotor teeth. The auxiliary ring is characterized in that the height of the auxiliary ring is greater than the height of the rotor teeth. Embodiments of the present invention will be described below with reference to the drawings.

第4図〜第12図に示す符号のうら第1図および第3図
と同一符号は同一部分を示すものとする。第4図に示す
実施例は回転子ヨーク2と一体に形成した内側補助リン
グ8bの高さH2を回転子歯2aと2bの高さh1より
高くした点が第3図のものと異なる。このように構成す
れば第5図に示すように、永久磁石または電磁石3より
発生した磁束7は従来と同様に固定子4aから固定子歯
5aを通つて回転子歯2aに至るものと〜固定子歯5a
から非磁性導電体6aを通つて内側補助リング8bに至
るもの二つの磁束路が形成される。前記内側補助リング
8bの高さH2は回転子歯2aと2bの高さh1より大
に形成されているので、磁性体の内側補助リング8bは
固定子歯5aに接近して設けられているため、固定子歯
5aから非磁性導電体6aを通つて内側補助リング8b
に至る磁束量は従来のものに比べて増加する。上記と同
様に磁束は回転子歯2bおよび内側補助リング8bから
固定子ヨーク4bを通つて永久磁石3に戻る磁束路を形
成することはもらろんである。したがつて非磁性導電体
6a,6bのたれこみ部9a,10a側を通る磁束量は
従来のものに比べて増加するので、軸1の振動による磁
束7の変化により発生する渦電流が増大するため、従来
のものに比べて大きな制振効果をうることができる。こ
の第4図の実施例と、第3図に示した従来例との、制振
効果の差を実測した結果を、第13図に示す。第13図
のグラフIが第3図の従来例の制振効果で、これを10
0%としている。グラフが第4図の本実施例の制振効果
を示すものである。第13図から明らかなように、本発
明の実施例のものでは、約140(fl)の大きさの制
振効味が得られる。このことは、第4図の実施例の方が
、第3図の従来例に比し、1.4倍も非磁性導電体に発
生する渦電流損が大きいことを示している。従つて、本
実施例にあつては、制振効果が大きくなるので、回転体
の振動を強力に抑制することができる。第6図に示す他
の実施例は回転子の内側補助リング8aの上、下部に磁
性リング12a,12bを取付け、内側補助リング8a
の高さH3を回転子歯2aと2bの高さh1より高いよ
うに形成したものである。また第7図に示すように、内
側補助リング8bの上側(または下側)のみを高くし、
あるいは内側補助リング8bを第8図に示すような形状
に形成してもよい。さらに第9図に示すように回転子ヨ
ーク2の外周端に内側補助リング8bと同一高さの外側
補助リング8dを設けてもよい。第10図に示す他の実
施例は回転子歯2aと2bの高さより高い内側補助リン
グ8bを設けると共に、固定子歯5a,5bの内側およ
び外側の双方(またはいづれか一方)に補助固定子歯5
へ,5S,5ち,5〜を設けたものである。
The same reference numerals as in FIGS. 1 and 3 indicate the same parts behind the reference numerals shown in FIGS. 4 to 12. The embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 3 in that the height H2 of the inner auxiliary ring 8b formed integrally with the rotor yoke 2 is higher than the height h1 of the rotor teeth 2a and 2b. With this configuration, as shown in FIG. 5, the magnetic flux 7 generated by the permanent magnet or electromagnet 3 will reach the rotor teeth 2a from the stator 4a through the stator teeth 5a, as in the conventional case. Child tooth 5a
Two magnetic flux paths are formed from the inner auxiliary ring 8b through the non-magnetic conductor 6a. Since the height H2 of the inner auxiliary ring 8b is larger than the height h1 of the rotor teeth 2a and 2b, the inner auxiliary ring 8b made of magnetic material is provided close to the stator teeth 5a. , from the stator tooth 5a through the non-magnetic conductor 6a to the inner auxiliary ring 8b.
The amount of magnetic flux that reaches this increases compared to the conventional one. Similarly to the above, the magnetic flux naturally forms a flux path from the rotor teeth 2b and the inner auxiliary ring 8b, through the stator yoke 4b, and back to the permanent magnet 3. Therefore, the amount of magnetic flux passing through the recessed portions 9a, 10a of the non-magnetic conductors 6a, 6b increases compared to the conventional one, and the eddy current generated due to changes in the magnetic flux 7 due to vibration of the shaft 1 increases. , it is possible to obtain a greater vibration damping effect than conventional ones. FIG. 13 shows the results of actually measuring the difference in damping effect between the embodiment shown in FIG. 4 and the conventional example shown in FIG. 3. Graph I in Figure 13 shows the damping effect of the conventional example in Figure 3, which is 10
It is set at 0%. A graph shows the vibration damping effect of this embodiment shown in FIG. As is clear from FIG. 13, in the example of the present invention, a damping effect of about 140 (fl) can be obtained. This shows that the eddy current loss generated in the nonmagnetic conductor is 1.4 times larger in the embodiment shown in FIG. 4 than in the conventional example shown in FIG. 3. Therefore, in this embodiment, the vibration damping effect is increased, so that the vibration of the rotating body can be strongly suppressed. In another embodiment shown in FIG. 6, magnetic rings 12a and 12b are attached to the upper and lower parts of the inner auxiliary ring 8a of the rotor.
The height H3 of the rotor teeth 2a and 2b is higher than the height h1 of the rotor teeth 2a and 2b. Further, as shown in FIG. 7, only the upper side (or lower side) of the inner auxiliary ring 8b is made higher,
Alternatively, the inner auxiliary ring 8b may be formed in the shape shown in FIG. Further, as shown in FIG. 9, an outer auxiliary ring 8d having the same height as the inner auxiliary ring 8b may be provided at the outer peripheral end of the rotor yoke 2. Another embodiment shown in FIG. 10 is provided with an inner auxiliary ring 8b that is higher than the height of the rotor teeth 2a and 2b, and has auxiliary stator teeth on both (or one of) the inner and outer sides of the stator teeth 5a and 5b. 5
, 5S, 5chi, 5~ are provided.

第11図に示す他の実施例は回転子ヨーク2の回転子歯
2a,2cと対向して、非磁性導電体6aを介して固定
子歯14a.14bおよび永久磁石3を設け、かつ内側
補助リング8cの高さを回転子歯2a.2eの高さより
も高く形成したものである。
In another embodiment shown in FIG. 11, stator teeth 14a, 2c of rotor yoke 2 are arranged opposite to rotor teeth 2a, 2c through a non-magnetic conductor 6a. 14b and the permanent magnet 3, and the height of the inner auxiliary ring 8c is set to the rotor tooth 2a. It is formed higher than the height of 2e.

また第12図に示すように上記固定子歯14a,14b
の外側(あるいは内側または内、外側)に補助固定子1
4c,14dをそれぞれ設けてもよい。上述した第6図
〜第12図に示す実施例は第4図に示す実施例と同様な
効果を奏することは言うまでもないことである。
Further, as shown in FIG. 12, the stator teeth 14a, 14b
Auxiliary stator 1 on the outside (or inside, inside, outside) of
4c and 14d may be provided respectively. It goes without saying that the embodiments shown in FIGS. 6 to 12 described above have the same effects as the embodiment shown in FIG. 4.

以上説明したように、本発明によれば大なる制振効果を
うることができるので、回転体の振動を抑制し、回転体
を安定的に高速運転することができ、かつ残留磁気によ
り助長される低速時の振れ回り現象を防止することがで
きる。
As explained above, according to the present invention, it is possible to obtain a large vibration damping effect, so that the vibration of the rotating body can be suppressed, the rotating body can be operated stably at high speed, and it is possible to suppress the vibrations of the rotating body, which is facilitated by residual magnetism. It is possible to prevent the whirling phenomenon at low speeds.

【図面の簡単な説明】 第1図および第3図は従来の磁気軸受の断面図、第2図
は同軸受の磁気作用の説明図、第4図は本発明の磁気軸
受の一実施例を示す断面図、第5図は同軸受の磁気作用
説明図、第6図〜第12図は本発明に係わる他の実施例
の要部断面図である。 第13図は、第4図の実施例の耐振効果を説明するため
のグラフである。1・・・・・・回転軸、2・・・・・
・回転子ヨーク、2a,2b・・・・・・回転子歯、5
a,5b・・・・・・固定子歯、3・・・・・・永久磁
石、5a,5へ,51′ 5b,5b,5″b・・・・
・・補助固定子歯、8b.8c,8d・・・・・・補助
リング。
[Brief Description of the Drawings] Figures 1 and 3 are cross-sectional views of conventional magnetic bearings, Figure 2 is an explanatory diagram of the magnetic action of the bearing, and Figure 4 is an embodiment of the magnetic bearing of the present invention. FIG. 5 is a diagram illustrating the magnetic effect of the bearing, and FIGS. 6 to 12 are sectional views of main parts of other embodiments of the present invention. FIG. 13 is a graph for explaining the anti-vibration effect of the embodiment shown in FIG. 1...Rotation axis, 2...
・Rotor yoke, 2a, 2b...Rotor tooth, 5
a, 5b...Stator tooth, 3...Permanent magnet, 5a, to 5, 51' 5b, 5b, 5''b...
...Auxiliary stator tooth, 8b. 8c, 8d... Auxiliary ring.

Claims (1)

【特許請求の範囲】 1 回転軸およびこの軸に固着されて回転子歯を有する
回転子ヨークからなる回転体と、前記回転子歯をはさみ
込むように配置され、またはギャップを介して前記回転
子歯と対向するように配置された固定子歯と、この固定
子歯を保持しかつ他端に永久磁石または電磁石を配置し
て固定子を構成し、上記回転子歯および固定子歯を包み
込むように配置された非磁性導電体を装備した磁気軸受
において、前記回転子ヨークの内側端および外側端のい
づれか一方または双方に補助リングを設け、この補助リ
ングの高さを前記回転子歯の高さより大に形成したこと
を特徴とする磁気軸受。 2 補助リングの上側または下側のいづれか一方のみの
高さを高くしたことを特徴とする特許請求の範囲第1項
記載の磁気軸受。 3 固定子歯の内側および外側のいづれか一方または双
方に補助固定子歯を設けそことを特徴とする特許請求の
範囲第1項記載の磁気軸受。
[Scope of Claims] 1. A rotating body consisting of a rotating shaft and a rotor yoke fixed to the shaft and having rotor teeth; A stator is constituted by stator teeth arranged to face the teeth, and a permanent magnet or an electromagnet that holds the stator teeth and is arranged at the other end, so as to wrap around the rotor teeth and stator teeth. In a magnetic bearing equipped with a non-magnetic conductor arranged in A magnetic bearing characterized by its large size. 2. The magnetic bearing according to claim 1, wherein only either the upper side or the lower side of the auxiliary ring is increased in height. 3. The magnetic bearing according to claim 1, characterized in that auxiliary stator teeth are provided on either or both of the inside and outside of the stator teeth.
JP2928477A 1977-03-18 1977-03-18 magnetic bearing Expired JPS595175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2928477A JPS595175B2 (en) 1977-03-18 1977-03-18 magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2928477A JPS595175B2 (en) 1977-03-18 1977-03-18 magnetic bearing

Publications (2)

Publication Number Publication Date
JPS53115435A JPS53115435A (en) 1978-10-07
JPS595175B2 true JPS595175B2 (en) 1984-02-03

Family

ID=12271946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2928477A Expired JPS595175B2 (en) 1977-03-18 1977-03-18 magnetic bearing

Country Status (1)

Country Link
JP (1) JPS595175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301252B2 (en) 2000-07-13 2007-11-27 Rolls-Royce Plc Magnetic bearings

Also Published As

Publication number Publication date
JPS53115435A (en) 1978-10-07

Similar Documents

Publication Publication Date Title
US8796894B2 (en) Combination radial/axial electromagnetic actuator
JP4427938B2 (en) Thrust magnetic bearing device
JPS6146683B2 (en)
JPS595175B2 (en) magnetic bearing
JPS5972973A (en) Ultrafine rotary actuator
JP3019651B2 (en) Vibration suppression device for rotating machine
JPS6318428B2 (en)
JPS595174B2 (en) magnetic bearing
JPH0530137B2 (en)
JPH112292A (en) Damper device
JPS597842B2 (en) magnetic bearing
JPS6211218B2 (en)
JPS5826265B2 (en) Magnetic bearing vibration damping device
JPS60129423A (en) Magnetic bearing
JP3022610B2 (en) Rotary magnetic damper device
JPS59113568A (en) Rotation driving motor of recording disc
JPS5847570B2 (en) magnetic bearing
JPS6147326B2 (en)
JPS59217030A (en) Suppressing device for vibration of rotary body
JPS5835027B2 (en) ``Shiyuhasuuhatsudenki''
JPH0538093A (en) Flat oscillation brushless motor
JPS59489Y2 (en) magnetic bearing
JPH09269007A (en) Passive magnetic bearing
RU1778884C (en) Inertia damper
JPS5852428B2 (en) Mirror rotation control element