JPH09269007A - Passive magnetic bearing - Google Patents

Passive magnetic bearing

Info

Publication number
JPH09269007A
JPH09269007A JP8103588A JP10358896A JPH09269007A JP H09269007 A JPH09269007 A JP H09269007A JP 8103588 A JP8103588 A JP 8103588A JP 10358896 A JP10358896 A JP 10358896A JP H09269007 A JPH09269007 A JP H09269007A
Authority
JP
Japan
Prior art keywords
ring
magnetic
shaped
conductor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8103588A
Other languages
Japanese (ja)
Inventor
Tsutomu Murakami
力 村上
Kazuki Sato
一樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8103588A priority Critical patent/JPH09269007A/en
Publication of JPH09269007A publication Critical patent/JPH09269007A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a passive magnetic bearing which does not generate vortex current when a rotor is normally positioned while avoiding rotational drug (loss), and obtains high resetting rigidity. SOLUTION: A bearing is composed of a stator and a rotor. The stator has an axial-symmetric form and generates substantially cylindrical axial magnetic field. The rotor has ring-like or disk-like conductors 24A, 24B, 24C. Each inner diameter of magnetic poles of yoke ends 20A, 20B, 20C, 20D connected to a permanent magnet 11 for generating an axial-symmetric magnetic field is a little larger than each outer diameter of the conductors 24A, 24B, 24C and a little smaller than inner diameter thereof. The magnetic pole has an angularly projected portion in the vicinity of the conductor end of the rotor, which is located near the corner of the conductors 24A, 24B, 24C of the rotor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、受動型磁気軸受に
係り、特にステータ側の磁石の磁気力により、回転して
いるロータ側の導体に渦電流が誘導され、該渦電流が磁
界から受ける力でロータが非接触支持される磁気軸受装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive magnetic bearing, and in particular, the magnetic force of a stator-side magnet induces an eddy current in a rotating rotor-side conductor, and the eddy current is received from a magnetic field. The present invention relates to a magnetic bearing device in which a rotor is supported in a non-contact manner by force.

【0002】[0002]

【従来の技術】上述したタイプの磁気軸受としては、例
えば特開平6−200941号公報、PCT/US95
/03023号国際特許出願等により開示されたものが
知られている。ステータ側に常伝導磁石を利用する全受
動型の上述したタイプの磁気軸受においては、ロータの
回転による渦電流または誘導電流を利用して復元剛性を
得る必要がある。
2. Description of the Related Art As a magnetic bearing of the above-mentioned type, for example, JP-A-6-200941 and PCT / US95.
The thing disclosed by the / 03023 international patent application etc. is known. In the all-passive type magnetic bearing using the normal conductive magnet on the stator side, it is necessary to obtain the restoring rigidity by utilizing the eddy current or induced current due to the rotation of the rotor.

【0003】しかしながら、上述した先行技術の多極型
の磁界中での誘導電流方式は、ロータが正常な位置にあ
っても渦電流が避けられず、従って大きな回転ドラグ
(抵抗)損失が避けられない。また、同じ誘導電流方式
でもヌルフラックスコイル方式もあるが、有害な渦電流
を防ぐためにはコイル構造が複雑、高コストであり、コ
イル構造が簡単であると渦電流損(発熱、回転ドラグ)
が避けられない欠点があった。
However, in the above-mentioned prior art method of inducing current in a multi-pole type magnetic field, eddy current is unavoidable even when the rotor is in a normal position, and thus a large rotary drag (resistance) loss is avoided. Absent. Although there is a null flux coil method even with the same induced current method, in order to prevent harmful eddy currents, the coil structure is complicated and high cost, and if the coil structure is simple, eddy current loss (heat generation, rotating drag)
There was an unavoidable drawback.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の事情に
鑑みなされたものであり、ロータが正常位置にあれば、
渦電流が発生せず、回転ドラグ(抵抗)損失を避けるこ
とができ、且つ高い復元剛性を得ることができる受動型
磁気軸受を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and if the rotor is in the normal position,
An object of the present invention is to provide a passive magnetic bearing that does not generate an eddy current, can avoid a rotational drag (resistance) loss, and can obtain high restoring rigidity.

【0005】[0005]

【課題を解決するための手段】本発明は、ステータとロ
ータから成り、ステータは軸対称でほぼ円筒状の軸方向
の磁界を発生し、ロータは円板状導体を備え、この円板
状ロータ導体の外周端部を、前記磁界に対してこの導体
のラジアル変位によって磁束密度の変化が最大になる付
近に配置したことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention comprises a stator and a rotor, the stator generating an axially symmetric and substantially cylindrical magnetic field in the axial direction, and the rotor having a disk-shaped conductor. It is characterized in that the outer peripheral end of the conductor is arranged in the vicinity where the change in the magnetic flux density is maximized by the radial displacement of the conductor with respect to the magnetic field.

【0006】又、前記円板状導体をリング状として、そ
のリング状導体内周端を、前記軸方向のステータ磁界に
対してこのリング状導体のラジアル変位による磁束密度
の変化が最大になる付近に配置したことを特徴とする。
Further, the disc-shaped conductor is formed into a ring shape, and the inner peripheral end of the ring-shaped conductor is near the maximum change in magnetic flux density due to radial displacement of the ring-shaped conductor with respect to the stator magnetic field in the axial direction. It is characterized by being placed in.

【0007】又、前記リング状導体の外周端を、前記ス
テータ磁界に対してこのリング状導体のラジアル変位に
よって磁束密度の変化が最大になる付近に配置したこと
を特徴とする。
Further, the outer peripheral end of the ring-shaped conductor is arranged in the vicinity of where the change of the magnetic flux density is maximized by the radial displacement of the ring-shaped conductor with respect to the stator magnetic field.

【0008】又、前記円板状導体は、同心円状にリング
型の絶縁体と導体とが交互に配置されたものであること
を特徴とする。
Further, the disk-shaped conductor is characterized in that ring-shaped insulators and conductors are concentrically arranged alternately.

【0009】又、ステータとロータから成り、ステータ
は軸対称でほぼ円筒状の軸方向磁界を発生し、ロータは
円板状又はリング状導体を備え、ステータ側の軸対称磁
界を発生するための永久磁石に接続したヨーク端部であ
る磁極の内径を円板状導体またはリング状導体の外周端
よりもやや大きめに、又はリング状導体の内周端よりも
やや小さめにしたことを特徴とする。
Further, it is composed of a stator and a rotor, the stator generates an axially symmetric, substantially cylindrical axial magnetic field, and the rotor is provided with a disc-shaped or ring-shaped conductor for generating an axially symmetric magnetic field on the stator side. The inner diameter of the magnetic pole, which is the end of the yoke connected to the permanent magnet, is made slightly larger than the outer peripheral end of the disc-shaped conductor or the ring-shaped conductor, or slightly smaller than the inner peripheral end of the ring-shaped conductor. .

【0010】又、前記磁極の対向する部分の一端を、鋭
角状に突出させて相近接し、他端に対してギャップが緩
やかに広がるよう離隔し、前記導体はその角部を前記鋭
角状の磁極先端部に近接し、該導体は前記ギャップの外
側に配置したことを特徴とする。
Further, one ends of the facing portions of the magnetic poles are made to project in an acute angle so as to be in close proximity to each other, and are spaced apart from the other end so as to gradually widen the gap, and the conductor has its corners at the acute magnetic poles. Proximity to the tip and the conductor is arranged outside the gap.

【0011】又、前記鋭角状に突出した磁極を構成する
2本の直線のうち、導体側の直線とギャップ側に傾けた
ことを特徴とする。
Further, the invention is characterized in that, of the two straight lines forming the magnetic pole projecting in an acute angle, the straight line on the conductor side and the straight line on the gap side are inclined.

【0012】又、前記ロータは複数のリング状導体を回
転軸方向に備え、ステータ側の軸対称軸方向の磁界を発
生するための永久磁石に接続したヨーク端部の磁極が前
記複数のリング状導体の外周及び/又は内周両端部に近
接して配置されたことを特徴とする。
Further, the rotor is provided with a plurality of ring-shaped conductors in the rotation axis direction, and a magnetic pole at a yoke end connected to a permanent magnet for generating a magnetic field in the axially symmetrical axial direction on the stator side has the plurality of ring-shaped conductors. It is characterized in that it is arranged close to both ends of the outer circumference and / or the inner circumference of the conductor.

【0013】又、前記円板状ロータは、複数のリング状
導体とリング状絶縁体とが交互に配置され、ステータ側
の軸対称軸方向磁界を発生するための永久磁石に接続し
たヨーク端部の磁極が前記複数のリング状導体の外周端
及び内周端角部に近接して配置されたことを特徴とす
る。
In the disk-shaped rotor, a plurality of ring-shaped conductors and ring-shaped insulators are alternately arranged, and a yoke end connected to a permanent magnet for generating an axially symmetric axial magnetic field on the stator side. The magnetic poles are arranged close to the outer peripheral edge and the inner peripheral edge corners of the plurality of ring-shaped conductors.

【0014】[0014]

【発明の実施の形態】本発明においては、ラジアルの復
元剛性を得るために、ロータ側の導体円板またはリング
状導体板の内周端または外周端を、ステータ側の作る回
転軸方向軸対称磁界中に同心状に配置する。これによっ
て、ロータが正常な位置で回転する場合には、誘導起電
力は発生するが、軸対称のために電流は流れず、ラジア
ル変位のある場合だけ軸対称性が破られて渦電流が流れ
て、それがステータ側の軸対称磁界と作用してラジアル
復元剛性を発生するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in order to obtain radial restoring rigidity, the inner peripheral edge or outer peripheral edge of a rotor-side conductor disc or ring-shaped conductor plate is made axially symmetrical with respect to the rotation axis formed on the stator side. Place concentrically in a magnetic field. As a result, when the rotor rotates in the normal position, induced electromotive force is generated, but current does not flow due to axial symmetry, and axial symmetry is broken and eddy current flows only when there is radial displacement. Then, it interacts with the axially symmetric magnetic field on the stator side to generate radial restoring rigidity.

【0015】渦電流方式の受動型磁気軸受は復元剛性と
ともに回転抵抗またはドラグを発生する。ロータ側導体
の内周または外周のどちらか一方のみを利用する場合に
は、ロータのラジアル変位がなければドラグも発生しな
いので問題はないが、ロータが変位するとラジアル復元
剛性と同時にドラグも発生することは避けられない。こ
のドラグは並進運動に影響を与え、それが姿勢運動と連
成して不安定を招く恐れのあることが知られている。そ
の対策として、比較的に幅の狭いリング導体の内外周に
同時に軸対称磁界を設ければ、ドラグの並進運動への悪
影響を小さくすることができる。つまりほぼ内外周の半
径の差だけの影響にとどめることができる。
The eddy current type passive magnetic bearing generates a rotational resistance or a drag together with a restoring rigidity. When only one of the inner circumference and the outer circumference of the rotor side conductor is used, there is no problem because drag will not occur unless there is radial displacement of the rotor, but when the rotor is displaced, drag will occur at the same time as radial restoration rigidity. It is inevitable. It is known that this drag affects translational movement, which may couple with posture movement and cause instability. As a countermeasure against this, if an axially symmetric magnetic field is simultaneously provided on the inner and outer circumferences of a relatively narrow ring conductor, the adverse effect on the translational movement of the drag can be reduced. In other words, it can be limited to the influence of the difference between the inner and outer radii.

【0016】復元剛性を増大するためには、導体のラジ
アル変位に対する導体が切る磁束密度の変化が急速であ
ればよい。そのためには、磁束がギャップへ出入する磁
極の形状に工夫を凝らす必要がある。本発明では磁極端
面を平面にせず、一端を鋭角にして対向させてその付近
を磁束密度の最大位置とし、鋭角の先端から対向する磁
極面を円錐状にすることによって、磁極間内での磁束密
度のラジアル変化を緩慢にし、逆に、鋭角先端から外側
に対しては変化が急激にすることが可能となる。従っ
て、導体は必ずしも磁極間に挟む必要もなく、鋭角先端
の磁極間の外側にあればよいことになるので、組立が容
易になるというメリットが生じる。
In order to increase the restoring rigidity, it is sufficient that the change in the magnetic flux density cut by the conductor with respect to the radial displacement of the conductor is rapid. For that purpose, it is necessary to devise the shape of the magnetic poles through which the magnetic flux enters and leaves the gap. In the present invention, the magnetic pole end faces are not made flat, but one end is made to have an acute angle to face each other and the vicinity thereof is set to the maximum position of the magnetic flux density, and the magnetic pole faces facing from the tip of the acute angle are made into a conical shape. It is possible to slow the radial change in density and, conversely, make the change abrupt from the sharp tip to the outside. Therefore, the conductor does not necessarily have to be sandwiched between the magnetic poles, and it suffices if the conductor is located between the magnetic poles having the acute-angled tip, and thus there is a merit that the assembly becomes easy.

【0017】以上に述べた方式を、例えばターボ分子ポ
ンプのような高速回転体に応用して無制御の磁気浮上を
施した場合の一例を示せば、ラジアル復元剛性受動型磁
気軸受を、ロータの軸両端付近に2組以上を設けて静止
または低速ではラジアル方向に不安定ではあるが、ある
速度以上で回転すればラジアル方向の安定剛性が得られ
るので高速でのラジアル方向の安定化を計ることができ
る。ロータ重量を支えるための反発磁石をロータとステ
ータ側に対向させて設け、必要ならば一部にはロータ、
ステータ間に吸引作用が発生するように磁石を両者側ま
たは一方側に、他方には吸引のための磁石または磁性材
を配置することによって、ロータ軸を立てた場合の軸方
向の重量を支持する。必要ならば、という意味は、非回
転時では永久磁石間3軸方向の変位に対する剛性の和が
ゼロであるために、回転軸方向の安定剛性が大き過ぎれ
ばラジアル方向の不安定剛性が増大して、渦電流方式の
受動型軸受への負担が増大し、装置全体が大型化し、コ
ストの増大を招くからである。
If one example of applying the above-mentioned method to a high-speed rotating body such as a turbo molecular pump to perform uncontrolled magnetic levitation, a radial restoration rigid passive magnetic bearing is used as a rotor. It is unstable in the radial direction at rest or at low speed by providing two or more sets near both ends of the shaft, but stable rigidity in the radial direction can be obtained by rotating at a certain speed or more, so measure the radial direction at high speed. You can A repulsive magnet for supporting the rotor weight is provided facing the rotor and the stator side, and if necessary, a part of the rotor,
By placing magnets on both sides or one side and magnets or magnetic material for attraction on the other side so that an attraction action is generated between the stators, the axial weight when the rotor shaft is erected is supported. . If necessary, the meaning is that the sum of the rigidity against displacement in the three axial directions between the permanent magnets is zero when not rotating, so if the stable rigidity in the rotating axis direction is too large, the unstable rigidity in the radial direction increases. As a result, the load on the eddy current type passive bearing is increased, the size of the entire device is increased, and the cost is increased.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1から図3は、本発明の原理を模式的に
説明するためのものである。図1においては、回転軸に
対して軸対称に構成したステータ側の永久磁石11とヨ
ーク12とからなる磁気回路に円筒状のギャップ13を
設け、そのギャップ13をロータ側の例えば銅円板14
の外周端14aが磁界Bの一部を通るようにする。円板
14の外周端14aはラジアル変位Δrに対して磁束密
度Bの変化(ΔB/Δr)の最大の位置に置くのが望ま
しい。ロータが正常な位置(ステータ磁界と同心位置)
にあれば、円板状導体14の全周は均等な軸対称磁束密
度Bを周速vで切るので、誘導起電力E E=v×B が発生するが、ラジアル方向の起電力が軸対称なので円
周方向の差が、円板導体14上に存在しないために電流
は流れない。
1 to 3 are schematic views for explaining the principle of the present invention. In FIG. 1, a cylindrical gap 13 is provided in a magnetic circuit composed of a permanent magnet 11 on the stator side and a yoke 12 which are axially symmetric with respect to a rotation axis, and the gap 13 is formed on the rotor side, for example, a copper disk 14 or the like.
The outer peripheral edge 14 a of the magnetic field B passes through a part of the magnetic field B. The outer peripheral end 14a of the disk 14 is preferably placed at the position where the change (ΔB / Δr) in the magnetic flux density B with respect to the radial displacement Δr. Normal position of rotor (concentric with stator magnetic field)
In the case of, since the entire circumference of the disk-shaped conductor 14 cuts the uniform axisymmetric magnetic flux density B at the peripheral speed v, the induced electromotive force E E = v × B is generated, but the electromotive force in the radial direction is axisymmetric. Therefore, no current flows because there is no difference in the circumferential direction on the disc conductor 14.

【0020】図2は、図1において銅円板14が左に変
位した場合の起電力及び電流Iの分布を示す図である。
ラジアル変位が発生すると、円板の一方(左端c付近)
が切る磁束の増大が大きく、反対側(右端c′付近)は
逆に減少が激しいので、発生起電力の全周均等が破ら
れ、磁束増大位置c付近の起電力Eが最大となり、逆の
端c′付近の起電力E’は最小となる。電流Iは起電力
の最大位置c付近の起電力が発生する方向に流れ、逆の
端c′付近では逆方向に電流が流れ、円板外周に添って
戻る電流Iが流れる。
FIG. 2 is a diagram showing the distribution of electromotive force and current I when the copper disk 14 is displaced to the left in FIG.
When radial displacement occurs, one of the disks (near left edge c)
Since the increase in the magnetic flux that cuts is large and the opposite side (near the right end c ') decreases conversely, the electromotive force E in the vicinity of the magnetic flux increasing position c becomes the maximum and the electromotive force E near the magnetic flux increasing position c becomes maximum. The electromotive force E'in the vicinity of the end c'is the minimum. The current I flows in the direction in which the electromotive force is generated near the maximum position c of the electromotive force, the current flows in the opposite direction near the opposite end c ′, and the current I that returns along the outer circumference of the disk flows.

【0021】図3は、円板の回転速度が増大した時のル
ープ電流の変化を示す。この場合、円板の左端付近の磁
束密度が増大していることを念頭において、円板の回転
速度vが増大すると、電流回路の電気抵抗と自己インダ
クタンスによって電流の流れに遅れが発生するために、
図3のように一方のループ電流IAは強力になるととも
に、回転方向に流される形を取る。他方のループ電流I
Bは弱くなり、磁束密度最大付近の位置cから離れた場
所に流される。その結果、これらの電流は磁束密度Bと
の相互作用によってローレンツ力 F=I×B が図3の小さな矢印のように発生する。これらの合力が
復元力である。
FIG. 3 shows the change in the loop current when the rotational speed of the disk increases. In this case, keeping in mind that the magnetic flux density near the left end of the disk is increasing, when the rotational speed v of the disk increases, a delay occurs in the current flow due to the electrical resistance and self-inductance of the current circuit. ,
As shown in FIG. 3, one of the loop currents I A becomes strong and is made to flow in the rotational direction. The other loop current I
B becomes weaker and is made to flow away from the position c near the maximum magnetic flux density. As a result, these currents generate Lorentz force F = I × B as shown by the small arrow in FIG. 3 due to the interaction with the magnetic flux density B. The resultant force is resilience.

【0022】図4乃至図6は、円板状導体をリング状導
体にした場合の例である。図4は、図1における円板状
導体に代えて、その外周部にリング状導体15を装着し
た場合である。リング状導体15の内周側は絶縁体16
となっている。この例においては、磁石11及びヨーク
12によって形成される軸方向円筒状磁界Bは、リング
状導体15の外周端15a及び内周端15bを通るよう
になっている。
4 to 6 show examples in which the disc-shaped conductor is a ring-shaped conductor. FIG. 4 shows a case where a ring-shaped conductor 15 is attached to the outer peripheral portion of the disk-shaped conductor in FIG. An insulator 16 is provided on the inner peripheral side of the ring-shaped conductor 15.
It has become. In this example, the axial cylindrical magnetic field B formed by the magnet 11 and the yoke 12 passes through the outer peripheral end 15 a and the inner peripheral end 15 b of the ring-shaped conductor 15.

【0023】渦電流発生の原理は全く同様であるが、リ
ング状導体15の左変位に対してc付近の磁束密度が増
大してc’付近の磁束密度が減少するので、低速では図
5のように主として4個のループ電流Iが発生する。高
速では2個の電流ループが成長、残りの2個の電流ルー
プが減衰して図3と同様に流され、図6のように主電流
ループは2個になる。そして磁束密度の大きい付近で図
示する小さな矢印Fで示すような復元力が発生する。従
って、リング型にすることによって復元剛性が単純円板
の場合よりも内周端及び外周端で稼げるので増大するこ
とになる。リング状導体の内周端と外周端との併用は並
進運動への影響を小さくするためにも有効である。
The principle of eddy current generation is exactly the same, but the magnetic flux density near c increases and the magnetic flux density near c'decreases with respect to the left displacement of the ring-shaped conductor 15. Thus, mainly four loop currents I are generated. At high speed, two current loops grow and the remaining two current loops decay and are made to flow as in FIG. 3, and the number of main current loops becomes two as shown in FIG. Then, in the vicinity of a high magnetic flux density, a restoring force as shown by a small arrow F is generated. Therefore, by adopting the ring type, the restoring rigidity can be increased at the inner peripheral edge and the outer peripheral edge as compared with the case of the simple disk, so that it will be increased. The combined use of the inner peripheral edge and the outer peripheral edge of the ring-shaped conductor is also effective for reducing the influence on translational motion.

【0024】しかしながら、渦電流形の磁気軸受は復元
剛性とともに回転抵抗またはドラグを発生する。本発明
ではロータのラジアル変位がなければドラグも発生しな
いので問題はないが、変位すると復元剛性と同時にドラ
グも発生することは避けられない。このドラグは並進運
動へ影響を与え、それが姿勢運動と連成して不安定を招
く恐れのあることが知られている。その対策として、比
較的に幅の狭いリング導体の内外周に軸対称磁界を設け
れば、ドラグの並進運動への悪影響を小さくすることが
できる。つまりほぼ内外周の半径の差だけの影響にとど
めることができる。
However, the eddy current type magnetic bearing generates rotation resistance or drag together with restoration rigidity. In the present invention, there is no problem because drag does not occur unless there is radial displacement of the rotor, but when displacement occurs, it is unavoidable that drag occurs simultaneously with restoration rigidity. It is known that this drag affects translational motion, which may couple with posture motion and cause instability. As a countermeasure against this, if an axially symmetric magnetic field is provided on the inner and outer circumferences of the relatively narrow ring conductor, the adverse effect on the translational movement of the drag can be reduced. In other words, it can be limited to the influence of the difference between the inner and outer radii.

【0025】図7は、リングの内外周が同方向の磁束を
切るようにステータ側の磁気回路を構成した場合であ
る。その場合の低速での渦電流は図8のようになり、高
速では図9のようになって復原力を同様に発生する。
FIG. 7 shows a case where the magnetic circuit on the stator side is constructed so that the inner and outer circumferences of the ring cut magnetic flux in the same direction. In that case, the eddy current at low speed is as shown in FIG. 8, and at high speed as shown in FIG. 9, the restoring force is similarly generated.

【0026】図10は図1の磁極を改良した場合の一例
で、磁極付近を拡大した図である。この図は、中心軸d
のまわりに円筒状のヨーク12,12が配置され、図示
しない永久磁石により、ヨーク先端の鋭角状に突出した
磁極間に磁束B1,B2,B3,B4・・・を形成するもの
である。ギャップの磁束B1,B2,B3,B4等は、磁束
の経路を表したもので、磁束B2が磁極間隔が最短であ
るから密度が最大である。次にギャップからはみ出た磁
束B3は、図示のどの経路よりも長いために磁気抵抗が
大きく、磁束密度は最小である。磁束B1,B4は、磁極
12,12の間隔がB3よりも少しずつ離れるので、磁
束密度は少しずつ低くなる。このことは磁束B3付近が
円板状導体のラジアル変化に対して磁束密度変化が極め
て大きいことを示している。従って、導体円板の外周端
はギャップ内に入るよりも、磁束B3付近の磁極間のギ
ャップ外に配置した方がラジアル変位(Δr)に対する
磁束の変化(ΔB/Δr)の効果がより有効となる。更
に、例えば図1のような場合には、円板状導体14をわ
ずかではあるが磁極内周面よりも内側にしておけば、ス
テータ側の磁気回路と円板を備えたロータとの組立が極
めて容易になる。
FIG. 10 is an example in which the magnetic pole of FIG. 1 is improved, and is an enlarged view of the vicinity of the magnetic pole. This figure shows the central axis d
A cylindrical yoke 12, 12 is arranged around the magnet, and a magnetic flux B 1 , B 2 , B 3 , B 4, ... Is formed between the magnetic poles protruding in an acute angle at the tip of the yoke by a permanent magnet (not shown). Is. Flux B 1 of the gap, the B 2, B 3, B 4, etc., a representation of the path of the magnetic flux, since the magnetic flux B 2 is the magnetic pole distance is the shortest density is maximum. Next, the magnetic flux B 3 protruding from the gap has a larger magnetic resistance because it is longer than any of the illustrated paths, and the magnetic flux density is minimum. The magnetic flux density of the magnetic fluxes B 1 and B 4 is gradually decreased because the distance between the magnetic poles 12 and 12 is gradually separated from that of B 3 . This means that the magnetic flux density change is extremely large near the magnetic flux B 3 with respect to the radial change of the disk-shaped conductor. Therefore, the effect of the magnetic flux change (ΔB / Δr) on the radial displacement (Δr) is more effective when the outer peripheral edge of the conductor disk is placed outside the gap between the magnetic poles near the magnetic flux B 3 than in the gap. Becomes Further, in the case of FIG. 1, for example, if the disc-shaped conductor 14 is slightly inside the magnetic pole inner peripheral surface, the magnetic circuit on the stator side and the rotor including the disc can be assembled. It will be extremely easy.

【0027】図11は、図10の改良磁極を3段重ねた
受動型磁気軸受である。中心軸dのまわりに、下部にリ
ング状導体24A,24B,24Cを軸方向に並べた円
筒状ロータ23が、同様に円筒状の外周側ステータと内
周側ステータにより支持される。外周側ステータはリン
グ状の永久磁石11が、同様にリング状のヨーク20
A,20B,20C,20Dにより挟まれた構造となっ
ており、その内周端側は先端が図10に示す鋭角状の磁
極となっている。内周側ステータも同様にリング状の永
久磁石11が、リング状のヨーク21A,21B,21
C,21Dにより挟まれた構造となっており、その先端
が鋭角状の磁極となっている。
FIG. 11 shows a passive magnetic bearing in which the improved magnetic poles of FIG. 10 are stacked in three stages. A cylindrical rotor 23 having ring-shaped conductors 24A, 24B, 24C arranged axially in the lower portion around the central axis d is similarly supported by a cylindrical outer peripheral side stator and inner peripheral side stator. The outer peripheral stator has a ring-shaped permanent magnet 11, and a ring-shaped yoke 20 as well.
The structure is sandwiched by A, 20B, 20C, and 20D, and the tip of the inner peripheral end side thereof has an acute-angled magnetic pole shown in FIG. Similarly, the ring-shaped permanent magnet 11 is provided on the inner circumferential side stator as well as the ring-shaped yokes 21A, 21B, 21.
It has a structure sandwiched between C and 21D, and its tip has an acute-angled magnetic pole.

【0028】この構造によれば、リング状導体24A,
24B,24Cを支持する3段の磁気軸受が積層された
構造であるので、より強い軸受剛性が得られる。また、
円筒状ロータを同様に円筒状の外周側ステータと内周側
ステータ間に挿入するだけで磁気軸受部を製作できるの
で、その組立が容易である。尚、ステータは外周側また
は内周側だけでもよい。
According to this structure, the ring-shaped conductor 24A,
Since it has a structure in which three stages of magnetic bearings supporting 24B and 24C are laminated, stronger bearing rigidity can be obtained. Also,
Similarly, the magnetic bearing portion can be manufactured only by inserting the cylindrical rotor between the cylindrical outer peripheral side stator and the cylindrical outer peripheral side stator, so that the assembly is easy. Incidentally, the stator may be provided only on the outer peripheral side or the inner peripheral side.

【0029】図12は、1枚のロータ円板に異径導体リ
ングを2組配置した例である。ロータ円板30には、中
心軸dのまわりにリング状の導体31,32がリング状
の絶縁体を挟んで固定されている。リング状の導体31
の内周端及び外周端角部に対向した位置にステータ側の
鋭角状の磁極がそれぞれヨークから突出して配置されて
いる。上側及び下側ステータは、円筒状ヨーク33A,
33B,33C間にリング状の永久磁石11が間挿した
ものから構成される。この構造では、ロータとステータ
が入り込むが、1枚のロータ円板に導体リングを同心状
に多数配置することが可能で、その分磁気軸受剛性を高
めることができる。
FIG. 12 shows an example in which two sets of different-diameter conductor rings are arranged on one rotor disk. On the rotor disc 30, ring-shaped conductors 31 and 32 are fixed around a central axis d with a ring-shaped insulator interposed therebetween. Ring-shaped conductor 31
The stator-side acute-angled magnetic poles are arranged so as to project from the yokes at positions facing the inner peripheral edge and outer peripheral edge corners, respectively. The upper and lower stators are cylindrical yokes 33A,
A ring-shaped permanent magnet 11 is inserted between 33B and 33C. In this structure, the rotor and the stator enter, but a large number of conductor rings can be arranged concentrically on one rotor disk, and the magnetic bearing rigidity can be increased accordingly.

【0030】図13は、更に改良された磁気軸受要部の
断面構成を示す。これは図10に示す磁極の構造に更に
改良を加えたものである。ヨーク先端の鋭角状の磁極は
内方(支持対象のロータ導体角部側)に向って突出して
いるのである。即ち、鋭角状の磁極を構成する2本の直
線L1,L2の回転軸方向dとの成す角度が、いずれも9
0°以下となっている。即ち、2本の直線L1,L2のう
ち、導体14側の直線L1をギャップ側に傾けている。
これにより、磁束B3の磁気抵抗が更に高まり、磁束密
度が低減する。従って、磁束B2と磁束B3との間の半径
方向変位(Δr)に対して、磁束密度の変化(ΔB/Δ
r)をより大きくすることができ、磁気軸受剛性を更に
高めることができる。
FIG. 13 shows a sectional structure of a further improved main portion of the magnetic bearing. This is a modification of the structure of the magnetic pole shown in FIG. The acute-angled magnetic pole at the tip of the yoke projects inward (toward the corner portion of the rotor conductor to be supported). That is, the angle formed by the two straight lines L 1 and L 2 forming the acute-angled magnetic pole with the rotation axis direction d is 9
It is less than 0 °. That is, of the two straight lines L 1 and L 2 , the straight line L 1 on the conductor 14 side is inclined toward the gap side.
This further increases the magnetic resistance of the magnetic flux B 3 and reduces the magnetic flux density. Therefore, with respect to the radial displacement (Δr) between the magnetic flux B 2 and the magnetic flux B 3 , the change in the magnetic flux density (ΔB / Δ
r) can be further increased, and the magnetic bearing rigidity can be further increased.

【0031】図14は、上述した磁極構造を図12に示
す円板状ロータを支持する磁気軸受に適用した場合であ
る。図15は、同様に上述した磁極構造を図11に示す
円筒状ロータを示す磁気軸受に適用した場合であり、本
実施例の場合は、円筒状ロータが更に内周側との二重構
造となっている。
FIG. 14 shows a case where the above-mentioned magnetic pole structure is applied to a magnetic bearing for supporting the disc-shaped rotor shown in FIG. FIG. 15 shows a case where the above-mentioned magnetic pole structure is similarly applied to the magnetic bearing showing the cylindrical rotor shown in FIG. 11, and in the case of the present embodiment, the cylindrical rotor has a double structure with the inner peripheral side further. Has become.

【0032】図16はフライホイールやターボ分子ポン
プなどのような外部からの外乱力、トルクが比較的に小
さい場合に有効と思われる全受動式(無制御)磁気浮上
のための本発明の応用例である。ロータ41の上下両端
外周付近に図11に示す構造の受動型磁気軸受40を配
置した。中央部は回転モータ42で、中央下部には反発
磁石系43、上部には吸引磁石系44で、ギャップを調
整することによって、ロータ41の重量支持はもちろ
ん、回転軸d方向の安定剛性を適当に設定できる。図示
はしていないが、これらの反発/吸引磁石43,44近
傍には空間が残されているので、そこのステータ側には
大量の銅を配置して渦電流ダンパとする。さらに、この
付近には低速回転時や緊急事態に備えたタッチダウン軸
受45を配置する。これは本実施例の受動型磁気軸受
は、ある回転速度以上でロータが浮上するので非接触と
なる。また、図示していないが、磁気軸受40,43,
44のステータ側は、振動吸収機能で支持するのも有効
である。
FIG. 16 is an application of the present invention for all-passive (uncontrolled) magnetic levitation which seems to be effective when external disturbance force or torque such as a flywheel or turbo molecular pump is relatively small. Here is an example. The passive magnetic bearings 40 having the structure shown in FIG. 11 are arranged near the outer circumferences of the upper and lower ends of the rotor 41. By adjusting the gap, the rotation motor 42 is provided at the center, the repulsion magnet system 43 is provided at the lower center, and the attraction magnet system 44 is provided at the upper part, so that the rotor 41 is supported not only by weight but also by stable rigidity in the rotation axis d direction. Can be set to. Although not shown, since a space is left in the vicinity of the repulsion / attraction magnets 43 and 44, a large amount of copper is arranged on the stator side thereof to form an eddy current damper. Further, a touchdown bearing 45 is arranged near this in case of low speed rotation or in case of emergency. This is because the passive magnetic bearing of this embodiment is non-contact because the rotor floats above a certain rotation speed. Although not shown, the magnetic bearings 40, 43,
It is also effective to support the stator side of 44 with a vibration absorbing function.

【0033】[0033]

【発明の効果】本発明によれば、ロータが正常な位置で
回転する場合には、渦電流が流れず、発熱及び回転ドラ
グ(抵抗)の発生という問題を生じない。また、導体の
端部をこのラジアル変位の磁束密度の変化が最大になる
付近に設定することにより、高い磁気軸受の復元剛性を
得ることができる。この導体のラジアル変位に対して磁
束密度の変化が最大になるところは、ヨーク先端の磁極
構造を鋭角状にすることにより、特に鋭角を構成する2
本の直線の回転軸方向に対して成す角度を90°以下に
することによって実現できる。
According to the present invention, when the rotor rotates in a normal position, eddy current does not flow, and the problems of heat generation and rotation drag (resistance) do not occur. Further, by setting the end portion of the conductor in the vicinity of the maximum change in the magnetic flux density due to the radial displacement, it is possible to obtain high restoring rigidity of the magnetic bearing. Where the change in the magnetic flux density with respect to the radial displacement of the conductor is maximum, the acute angle is formed by making the magnetic pole structure at the tip of the yoke into an acute angle.
This can be realized by setting the angle formed by the straight line of the book with respect to the rotation axis direction to 90 ° or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の受動型磁気軸受の原理的な構造を示す
断面図。
FIG. 1 is a sectional view showing a principle structure of a passive magnetic bearing of the present invention.

【図2】前記磁気軸受による円板状ロータの起電力及び
渦電流の分布を示す平面図。
FIG. 2 is a plan view showing distributions of electromotive force and eddy current of a disk-shaped rotor formed by the magnetic bearing.

【図3】図2の円板状ロータを高速回転させた時の渦電
流と復原力の分布を示す平面図。
3 is a plan view showing the distribution of eddy currents and restoring force when the disk-shaped rotor of FIG. 2 is rotated at high speed.

【図4】図1に示す磁気軸受でロータをリング状導体と
した構造の断面図。
FIG. 4 is a cross-sectional view of a structure in which the rotor has a ring-shaped conductor in the magnetic bearing shown in FIG.

【図5】図4におけるリング状導体ロータの起電力及び
渦電流の分布を示す平面図。
5 is a plan view showing the distribution of electromotive force and eddy current of the ring-shaped conductor rotor in FIG.

【図6】図5のリング状導体ロータを高速回転させた時
の渦電流と復原力の分布を示す平面図。
6 is a plan view showing the distribution of eddy currents and restoring force when the ring-shaped conductor rotor of FIG. 5 is rotated at high speed.

【図7】図4に示すステータでリング状導体の外周端及
び内周端に同一方向の磁界を印加する構造の断面図。
7 is a sectional view of the structure shown in FIG. 4 in which magnetic fields in the same direction are applied to the outer peripheral edge and the inner peripheral edge of the ring-shaped conductor.

【図8】図7におけるリング状導体ロータの低速時の起
電力及び渦電流の分布を示す平面図。
8 is a plan view showing the distribution of electromotive force and eddy current of the ring-shaped conductor rotor in FIG. 7 at low speed.

【図9】図8のリング状導体ロータを高速回転させた時
の渦電流と復原力の分布を示す平面図。
9 is a plan view showing the distribution of eddy currents and restoring force when the ring-shaped conductor rotor of FIG. 8 is rotated at high speed.

【図10】本発明の第1実施例のステータの磁極構造の
断面図。
FIG. 10 is a sectional view of the magnetic pole structure of the stator according to the first embodiment of the present invention.

【図11】前記磁極構造を用いた磁気軸受構造の断面
図。
FIG. 11 is a cross-sectional view of a magnetic bearing structure using the magnetic pole structure.

【図12】前記磁極構造を用いた他の実施例の磁気軸受
構造の断面図。
FIG. 12 is a sectional view of a magnetic bearing structure of another embodiment using the magnetic pole structure.

【図13】本発明の第2実施例のステータの磁極構造の
断面図。
FIG. 13 is a sectional view of a magnetic pole structure of the stator according to the second embodiment of the present invention.

【図14】図13に示す磁極構造を用いた磁気軸受構造
の断面図。
14 is a sectional view of a magnetic bearing structure using the magnetic pole structure shown in FIG.

【図15】図13に示す磁極構造を用いた他の実施例の
磁気軸受構造の断面図。
15 is a sectional view of a magnetic bearing structure of another embodiment using the magnetic pole structure shown in FIG.

【図16】本発明の受動型磁気軸受を用いた回転機械の
断面図。
FIG. 16 is a sectional view of a rotary machine using the passive magnetic bearing of the present invention.

【符号の説明】[Explanation of symbols]

11 永久磁石 12,20A,20B,20C,20D,21A,21
B,21C,21Dヨーク 13 空隙 14 円板状ロータ 15,24A,24B,24C リング状導体 B1,B2,B3,B4 磁束 E 誘起起電力 I 渦電流 F 復元力
11 permanent magnets 12, 20A, 20B, 20C, 20D, 21A, 21
B, 21C, 21D yoke 13 Air gap 14 Disc rotor 15, 24A, 24B, 24C Ring conductor B 1 , B 2 , B 3 , B 4 Magnetic flux E Induced electromotive force I Eddy current F Restoring force

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ステータとロータから成り、ステータは
軸対称でほぼ円筒状の軸方向の磁界を発生し、ロータは
円板状導体を備え、この円板状ロータ導体の外周端部
を、前記磁界に対してこの導体のラジアル変位によって
磁束密度の変化が最大になる付近に配置したことを特徴
とする受動型磁気軸受。
1. A stator and a rotor, wherein the stator generates an axially symmetric and substantially cylindrical magnetic field in the axial direction, and the rotor includes a disk-shaped conductor. The passive magnetic bearing is characterized in that it is arranged in the vicinity where the change in magnetic flux density is maximized by the radial displacement of this conductor with respect to the magnetic field.
【請求項2】 前記円板状導体をリング状として、その
リング状導体内周端を、前記軸方向のステータ磁界に対
してこのリング状導体のラジアル変位による磁束密度の
変化が最大になる付近に配置したことを特徴とする請求
項1記載の受動型磁気軸受。
2. The disk-shaped conductor is ring-shaped, and the inner peripheral end of the ring-shaped conductor is near the maximum change in magnetic flux density due to radial displacement of the ring-shaped conductor with respect to the stator magnetic field in the axial direction. The passive magnetic bearing according to claim 1, wherein
【請求項3】 前記リング状導体の外周端を、前記ステ
ータ磁界に対してこのリング状導体のラジアル変位によ
って磁束密度の変化が最大になる付近に配置したことを
特徴とする請求項2記載の受動型磁気軸受。
3. The ring-shaped conductor according to claim 2, wherein an outer peripheral end of the ring-shaped conductor is arranged in the vicinity of which the change of the magnetic flux density is maximized by the radial displacement of the ring-shaped conductor with respect to the stator magnetic field. Passive magnetic bearing.
【請求項4】 前記円板状導体は、同心円状にリング状
の絶縁体と導体とが交互に配置されたものであることを
特徴とする請求項1乃至3のいずれかに記載の受動型磁
気軸受。
4. The passive type conductor according to claim 1, wherein the disc-shaped conductor is one in which ring-shaped insulators and conductors are concentrically arranged alternately. Magnetic bearings.
【請求項5】 ステータとロータから成り、ステータは
軸対称でほぼ円筒状の軸方向磁界を発生し、ロータは円
板状又はリング状導体を備え、ステータ側の軸対称磁界
を発生するための永久磁石に接続したヨーク端部である
磁極の内径を円板状導体またはリング状導体の外周端よ
りもやや大きめに、又はリング状導体の内周端よりもや
や小さめにしたことを特徴とする受動型磁気軸受。
5. A stator and a rotor, the stator generating an axially symmetric and substantially cylindrical axial magnetic field, and the rotor having a disk-shaped or ring-shaped conductor for generating an axially symmetric magnetic field on the stator side. The inner diameter of the magnetic pole, which is the end of the yoke connected to the permanent magnet, is made slightly larger than the outer peripheral end of the disc-shaped conductor or the ring-shaped conductor, or slightly smaller than the inner peripheral end of the ring-shaped conductor. Passive magnetic bearing.
【請求項6】 前記磁極の対向する部分の一端を、鋭角
状に突出させて相近接し、他端に対してギャップが緩や
かに広がるよう離隔し、前記導体はその角部を前記鋭角
状の磁極先端部に近接し、該導体は前記ギャップの外側
に配置したことを特徴とする請求項5記載の受動型磁気
軸受。
6. One end of each of the opposing portions of the magnetic poles projects in an acute angle and is adjacent to each other, and is spaced apart from the other end so that the gap gradually widens, and the conductor has a corner portion of the magnetic pole having the acute angle. 6. The passive magnetic bearing according to claim 5, wherein the conductor is arranged near the tip and outside the gap.
【請求項7】 前記鋭角状に突出した磁極を構成する2
本の直線のうち、導体側の直線をギャップ側に傾けたこ
とを特徴とする請求項6記載の受動型磁気軸受。
7. A magnetic pole projecting in the shape of an acute angle 2
7. The passive magnetic bearing according to claim 6, wherein among the straight lines of the book, the straight line on the conductor side is inclined toward the gap side.
【請求項8】 前記ロータは複数のリング板状導体を回
転軸方向に備え、ステータ側の軸対称軸方向の磁界を発
生するための永久磁石に接続したヨーク端部の磁極が前
記複数のリング状導体の外周及び/又は内周両端部に近
接して配置されたことを特徴とする請求項5乃至7のい
ずれかに記載の受動型磁気軸受。
8. The rotor is provided with a plurality of ring-shaped plate-shaped conductors in a rotation axis direction, and a magnetic pole at a yoke end connected to a permanent magnet for generating a magnetic field in an axially symmetric axial direction on the stator side has the plurality of rings. The passive magnetic bearing according to any one of claims 5 to 7, wherein the passive magnetic bearing is arranged close to both outer and / or inner ends of the conductor.
【請求項9】 前記円板状ロータは、複数のリング状導
体とリング状絶縁体とが交互に配置され、ステータ側の
軸対称軸方向磁界を発生するための永久磁石に接続した
ヨーク端部の磁極が前記複数のリング状導体の外周端及
び内周端角部に近接して配置されたことを特徴とする請
求項5乃至7のいずれかに記載の受動型磁気軸受。
9. The disk-shaped rotor has a plurality of ring-shaped conductors and ring-shaped insulators arranged alternately, and a yoke end connected to a permanent magnet for generating an axially symmetric axial magnetic field on the stator side. 8. The passive magnetic bearing according to claim 5, wherein the magnetic poles are arranged in proximity to the outer peripheral end and the inner peripheral end corner of the plurality of ring-shaped conductors.
JP8103588A 1996-03-29 1996-03-29 Passive magnetic bearing Pending JPH09269007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8103588A JPH09269007A (en) 1996-03-29 1996-03-29 Passive magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8103588A JPH09269007A (en) 1996-03-29 1996-03-29 Passive magnetic bearing

Publications (1)

Publication Number Publication Date
JPH09269007A true JPH09269007A (en) 1997-10-14

Family

ID=14357940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8103588A Pending JPH09269007A (en) 1996-03-29 1996-03-29 Passive magnetic bearing

Country Status (1)

Country Link
JP (1) JPH09269007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024488B2 (en) 2007-06-27 2015-05-05 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024488B2 (en) 2007-06-27 2015-05-05 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor

Similar Documents

Publication Publication Date Title
US6114788A (en) Motor/active magnetic bearing combination structure
US4563046A (en) Flywheel apparatus
US4633149A (en) Brushless DC motor
US6268673B1 (en) Control coil arrangement for a rotating machine rotor
US6727617B2 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US4837474A (en) D.C. motor
US4499407A (en) Brushless DC motor assembly with improved stator pole
US4983870A (en) Radial magnetic bearing
US4285553A (en) Magnetic suspension momentum device
JP2001078389A (en) Magnetic levitation motor
JP2002354767A (en) Magnetic levitation motor
JP3850195B2 (en) Magnetic levitation motor
US5175462A (en) Toroidal coil motor
JPS5883552A (en) Rotary machine
JPS6146683B2 (en)
JPH09269007A (en) Passive magnetic bearing
KR970060640A (en) Double stator coreless bi-DC motor
JPH10131966A (en) Magnetic bearing device
JPS5972973A (en) Ultrafine rotary actuator
JP2004316756A (en) Five-axis control magnetic bearing
US20050253473A1 (en) Alternative magnetic bearing
JPH11166536A (en) Passive magnetic bearing
JPH1162878A (en) Turbo molecular pump
JPH09312958A (en) Motor
US20200021179A1 (en) Axial Gap-Type Rotary Electrical Machine