JPS5951339B2 - Honeycomb catalyst for nitrogen oxide removal - Google Patents

Honeycomb catalyst for nitrogen oxide removal

Info

Publication number
JPS5951339B2
JPS5951339B2 JP52068516A JP6851677A JPS5951339B2 JP S5951339 B2 JPS5951339 B2 JP S5951339B2 JP 52068516 A JP52068516 A JP 52068516A JP 6851677 A JP6851677 A JP 6851677A JP S5951339 B2 JPS5951339 B2 JP S5951339B2
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
oxides
exhaust gas
honeycomb catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52068516A
Other languages
Japanese (ja)
Other versions
JPS542987A (en
Inventor
雄三 名和
忠彰 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP52068516A priority Critical patent/JPS5951339B2/en
Publication of JPS542987A publication Critical patent/JPS542987A/en
Publication of JPS5951339B2 publication Critical patent/JPS5951339B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、排ガス中の硫黄酸化物(以下SOXという)
の被毒を受けることなく排ガス中の窒素酸化物(以下N
Oxという)を高率に除去すると同時に、SOxの内S
O2をSO3に転換する弊害の少ない窒素酸化物除去用
ハニカム触媒に関するものである。
[Detailed Description of the Invention] The present invention deals with sulfur oxides (hereinafter referred to as SOX) in exhaust gas.
Nitrogen oxides (N
At the same time, it removes S of SOx at a high rate.
The present invention relates to a honeycomb catalyst for removing nitrogen oxides that converts O2 into SO3 and has fewer harmful effects.

火力発電所および各種工場より排出される燃焼排ガス中
には、多量のNOx+SOXが含まれており、大気汚染
の主原因となっている。
BACKGROUND OF THE INVENTION Combustion exhaust gases emitted from thermal power plants and various factories contain large amounts of NOx and SOX, which are the main cause of air pollution.

これらの燃焼排ガス中のNOxを除去するには、燃焼排
ガス中にアンモニアガスを吹込み触媒を用いて特にNO
xを選択的に接触還元除去する方法が最近特に注目され
ている。
In order to remove NOx from these combustion exhaust gases, ammonia gas is injected into the combustion exhaust gases and a catalyst is used to remove NOx.
Recently, a method of selectively removing x by catalytic reduction has been attracting particular attention.

そしてアンモニアを用いる接触還元法によるNOx除去
用触媒としては、NOxの除去率が高くかつ排ガス中の
SOx等による被毒がなく、しかも排ガス中のSOxの
内SO3をSO3に転換する弊害の少ないことが重要で
あり、さらに使用時において排ガス中のダストなどによ
る目詰りを起したり圧力損失の増大を招くことの少ない
触媒が要求されている。
As a NOx removal catalyst using ammonia-based catalytic reduction method, it has a high NOx removal rate, is not poisoned by SOx in the exhaust gas, and has few harmful effects of converting SO3 of the SOx in the exhaust gas to SO3. is important, and there is a need for a catalyst that does not cause clogging due to dust in exhaust gas or increase pressure loss during use.

従来排ガス中のNOxをアンモニア添加により選択的に
接触還元除去する触媒としては、ペレット状の触媒とハ
ニカム状触媒とがそれぞれ知られている。
Conventionally, pellet-shaped catalysts and honeycomb-shaped catalysts are known as catalysts that selectively catalytically reduce and remove NOx in exhaust gas by adding ammonia.

しかしながら前者は触媒層における圧力損失が大きく、
大きな空間速度が得られないため大型設備が必要となり
、また、排ガス中に含まれるダストによって触媒層が目
詰りを起し、より圧力損失を大きくするという欠点があ
るので、後者のハニカム状触媒が最近特に注目されてい
る。
However, the former has a large pressure loss in the catalyst layer,
The latter type of honeycomb-shaped catalyst has the disadvantage of not being able to obtain a large space velocity, requiring large-scale equipment, and of clogging the catalyst layer due to dust contained in the exhaust gas, which increases pressure loss. It has received particular attention recently.

このハニカム状触媒としては、コージェライト、ムライ
トなどよりなるハニカム担体表面上に、■。
This honeycomb-shaped catalyst is prepared by applying (1) on the surface of a honeycomb carrier made of cordierite, mullite, or the like.

Fe、 Cu、 Mn、 Mo、 Co、 W等の触媒
金属酸化物と酸化チタンあるいは活性アルミナ等の調合
物を担持した触媒が知られている。
Catalysts are known in which a mixture of catalytic metal oxides such as Fe, Cu, Mn, Mo, Co, W, etc. and titanium oxide or activated alumina is supported.

しかしながらこのようなハニカム触媒はハニカム抗体と
触媒金属酸化物との密着強度が非常に弱く、使用中外部
からの振動、衝撃や排ガス自体の風圧により剥離し、外
部に飛散するなどしてNOx除去効果を著るしく低下さ
せる致命的欠点がある。
However, in such a honeycomb catalyst, the adhesion strength between the honeycomb antibody and the catalytic metal oxide is very weak, and during use, it may peel off due to external vibrations, shocks, or the wind pressure of the exhaust gas itself, and scatter to the outside, reducing the NOx removal effect. It has a fatal flaw that significantly reduces the

これらを改善するためハニカム担体自体を酸化チタンで
作り、これに多種触媒金属酸化物を含浸担持させ、触媒
とハニカム担体との密着強度をあけることも提案されて
いるが、触媒担持に適した表面状態での酸化チタンの焼
結強度が非常に弱く、実用的な触媒が未だ得られていな
い。
In order to improve these problems, it has been proposed that the honeycomb carrier itself be made of titanium oxide and impregnated with various catalyst metal oxides to increase the adhesion strength between the catalyst and the honeycomb carrier. The sintering strength of titanium oxide in this state is very low, and a practical catalyst has not yet been obtained.

されに従来の触媒は排ガス中のSO2を803に転換す
る効果が大きく、従ってアンモニアガスの滴加により容
易に多量の硫安を生成して触媒層の閉塞を起したり、よ
り大型の脱硫安の設備が必要になるなどNOx除去用触
媒として好ましい触媒は未だ開発されなかった。
On the other hand, conventional catalysts have a large effect of converting SO2 in exhaust gas into 803, and therefore, when ammonia gas is added dropwise, a large amount of ammonium sulfate is easily generated, causing clogging of the catalyst layer, or a larger amount of desulfurized ammonium sulfate is generated. A catalyst suitable for NOx removal has not yet been developed, as it requires equipment.

本発明の窒素酸化物除去用ハニカム触媒は、従来のこれ
らの欠点および問題点を解決した。
The honeycomb catalyst for removing nitrogen oxides of the present invention solves these conventional drawbacks and problems.

SOXによる被毒を受けることが少なくNOxを高率に
除去できるとともにSO2のSO3への転換常置の少な
いハニカム触媒であり、排ガス中の窒素酸化物をアンモ
ニアの存在下で触媒と接触させ還元除去する窒素酸化物
除去用触媒において、バナジウム、ニオブ、モリブチ゛
ン、タングステン、クロム、鉄、銅、コバルト、ニッケ
ル、マンガンの酸化物のうち少なくとも1種以上1〜2
0重量%(以下同じ)と主成分である酸化チタンとを、
リン、アンチモン、ヒ素、ビスマス、ゲルマニウム、ス
ズの少なくとも1種以上を1%以上含むガラス成分2〜
20%で均質に結合した窒素酸化物除去用ハニカム触媒
である。
It is a honeycomb catalyst that is less susceptible to poisoning by SOX, can remove NOx at a high rate, and does not require permanent conversion of SO2 to SO3. It reduces and removes nitrogen oxides in exhaust gas by contacting it with the catalyst in the presence of ammonia. In the catalyst for removing nitrogen oxides, at least one or more oxides of vanadium, niobium, molybutine, tungsten, chromium, iron, copper, cobalt, nickel, and manganese.
0% by weight (the same applies hereinafter) and titanium oxide, which is the main component,
Glass component 2 or more containing 1% or more of at least one of phosphorus, antimony, arsenic, bismuth, germanium, and tin
This is a 20% homogeneously bonded honeycomb catalyst for removing nitrogen oxides.

特に、本発明は、燃焼排ガス中のSOxによる被毒を受
けなくするために主成分として酸化チタンを用い、それ
にNOx除去に優れた特定触媒金属酸化物としてバナジ
ウム、ニオブ、モリブチ゛ン、タングステン、クロム、
鉄、銅、コバルト、ニッケル、マンガンの酸化物の少な
くとも1種を組合わせ、かつSO2のSO3への転換弊
害を防止するリン、アンチモン、ヒ素、ビスマス、ゲル
マニウム、スズの何れか1種を1%以上含んだ特定ガラ
スにより強固に、均質に結合したハニカム状触媒である
In particular, the present invention uses titanium oxide as the main component to prevent poisoning by SOx in combustion exhaust gas, and specific catalytic metal oxides excellent in NOx removal such as vanadium, niobium, molybutin, tungsten, chromium,
A combination of at least one of the oxides of iron, copper, cobalt, nickel, and manganese, and 1% of any one of phosphorus, antimony, arsenic, bismuth, germanium, and tin that prevents the harmful effects of SO2 conversion to SO3. It is a honeycomb-shaped catalyst that is firmly and homogeneously bonded by the specific glass contained above.

次に本発明のハニカム触媒の製造法の一例を説明すると
、好ましくはアナターゼ型の酸化チタンと、バナジウム
、ニオブ、モリブデン、タングステン、クロム、鉄、銅
、コバルト、ニッケル、マンガン等の酸化物のうち少な
くとも1種以上1〜20%と、リン、アンチモン、ヒ素
、ビスマス、ゲルマニウム、スズの少なくとも1種以上
1%以上をガラス成分中に含み、好ましくは軟化点が8
00℃以下のフリット粉砕物(ガラス)の1〜20%と
を混合し、この混合物に水と有機質可塑剤(例えば、メ
チルセルロース、酢酸ビニル、ポリエチレンオキサイド
など)を加え混線機を用いて押出し、成形可能な可塑性
のある粘調性組成物に充分混練し、調整された調合物を
押出物の貫通孔の断面形状が、三角形、四角形、六角形
、円などからなる金型を用いて、ハニカム構造体に押出
し成形し、ついで乾燥して水分を除去した後、酸化雰囲
気中で1000℃以下の温度、好ましくは500℃〜9
00℃の温度で焼成することにより本発明の触媒が得ら
れる。
Next, an example of the method for manufacturing the honeycomb catalyst of the present invention will be described. Preferably, anatase type titanium oxide and oxides of vanadium, niobium, molybdenum, tungsten, chromium, iron, copper, cobalt, nickel, manganese, etc. The glass component contains 1 to 20% of at least one kind, and 1% or more of at least one kind of phosphorus, antimony, arsenic, bismuth, germanium, and tin, and preferably has a softening point of 8.
Mix 1 to 20% of frit pulverized material (glass) at 00°C or less, add water and an organic plasticizer (for example, methyl cellulose, vinyl acetate, polyethylene oxide, etc.) to this mixture, and extrude it using a mixer to form it. A viscous composition with possible plasticity is sufficiently kneaded and the prepared mixture is molded into a honeycomb structure using a mold in which the cross-sectional shape of the through-holes of the extrudate is triangular, square, hexagonal, circular, etc. After extrusion into a body and then drying to remove moisture, it is heated in an oxidizing atmosphere at a temperature below 1000°C, preferably between 500°C and 90°C.
The catalyst of the present invention can be obtained by calcining at a temperature of 00°C.

そして前述のとおり好ましくは軟化点が800℃以下の
リン、アンチモン、ヒ素、ビスマス、ゲルマニウム、ス
ズを含有するガラス成分(フリツI・粉砕物)としては
、例えば、P2O5等の5価金属酸化物およヒSiO2
,TiO2,ZrO2等の4価金属酸化物の1成分又は
2成分以上が3〜80モル%、A1゜03.B2O3,
5b203等の3価金属酸化物成分の1成分又は2成分
以上が0〜55モル%、pbo 。
As mentioned above, the glass component containing phosphorus, antimony, arsenic, bismuth, germanium, and tin (frits I/pulverized material) preferably has a softening point of 800°C or lower, such as pentavalent metal oxides such as P2O5, etc. Yohi SiO2
, TiO2, ZrO2, etc., one component or two or more components is 3 to 80 mol%, A1°03. B2O3,
0 to 55 mol% of one or more trivalent metal oxide components such as 5b203, pbo.

ZnO,Cab、 MgO,BaO等の2価金属酸化物
成分の1成分又は2成分以上が0〜80モル%、Na2
O,に20.Li2O等の1価金属酸化成分の1成分又
は2成分以上が0〜50モル%を含む組成からなる調合
原料を700℃〜1400℃で溶融して、水中に急冷し
、更にボールミルなどにて粉砕することによって容易に
得られるものである。
One or more divalent metal oxide components such as ZnO, Cab, MgO, BaO, etc. are 0 to 80 mol%, Na2
O, 20. A blended raw material containing 0 to 50 mol% of one or more monovalent metal oxidizing components such as Li2O is melted at 700°C to 1400°C, rapidly cooled in water, and then pulverized using a ball mill or the like. It can be easily obtained by doing.

なお、フリット粉砕物の粒度は細かい方が強度増加効果
が大きく平均粒子径は10ミクロン以下にするこことが
望ましい。
Note that the finer the particle size of the frit pulverized product, the greater the strength increasing effect, and the average particle size is desirably 10 microns or less.

次に、本発明の限定理由を述べれば、バナジウム、ニオ
ブ、モリブチ゛ン、タングステン、クロム、鉄、銅、コ
バルト、ニッケル、マンガンの少なくとも1種以上の添
加量を1〜20%に限定する理由は、これらの添加量が
1%に満たない場合には、触媒のNOx除去効果が少な
く、また20%を越すと触媒としての比表面積を低下さ
せ、NOxの除去効果を低下させるためである。
Next, the reasons for the limitations of the present invention are as follows: This is because if the amount added is less than 1%, the NOx removal effect of the catalyst is small, and if it exceeds 20%, the specific surface area of the catalyst is reduced, reducing the NOx removal effect.

ガラス成分の含有量をを2〜20%としたのは、;2%
に満たない工業的に耐える強度の製品にならないからで
あり、NOxの除去効果が低下するからである。
The glass component content was set to 2% to 20%;
This is because the product will not have a strength that can withstand industrial use, and the NOx removal effect will decrease.

また、ガラス成分中にリン、アンチモン、ヒ素、ビスマ
ス、ゲルマニウム、スズを1%以上含むと限定したのは
、ガラス成分中のリン、アンチモン、ヒ素、ビスマス、
ゲルマニウム、スズの含有量が1%に満たないと排ガス
中のSO2をSO3に転換することを防止する効果が発
揮できないためであり、リン、アンチモン、ヒ素、ビス
マス、ゲルマニウム、スズの含有をガラス成分中と限定
したのはリン、アンチモン、ヒ素、ビスマス、ゲルマニ
ウム、スズを酸化物の形で添加した場合、初期において
は同等の効果を生ずるが、NOxを除去している間に排
ガス中の水分によって反応し、S02を803に転換す
るのを防止する効果がなくなるだけでなく、かえって触
媒寿命を短かくしてしまうためである。
In addition, the glass components that contain 1% or more of phosphorus, antimony, arsenic, bismuth, germanium, and tin are limited to phosphorus, antimony, arsenic, bismuth, and tin in the glass components.
This is because if the content of germanium and tin is less than 1%, it will not be effective in preventing the conversion of SO2 in exhaust gas to SO3. The reason for this is that when phosphorus, antimony, arsenic, bismuth, germanium, and tin are added in the form of oxides, the same effect is produced initially, but during NOx removal, water in the exhaust gas This is because not only will the effect of preventing the reaction and conversion of S02 into 803 be lost, but also the catalyst life will be shortened.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表に記載する化学組成(モル%)となるように原料
を調合し、1100℃〜1400℃の温度で溶融後、水
砕し、第1表に記載のA−Xの24種類のフリットを得
た。
The raw materials are mixed to have the chemical composition (mol%) listed in Table 1, melted at a temperature of 1100°C to 1400°C, and then pulverized to produce 24 types of frits A-X listed in Table 1. I got it.

なお、このフリット中のP。Sb、 As、 Bi、
Ge、 Snノ化学分析を行った結果は第1表に示すと
おりである。
In addition, P in this frit. Sb, As, Bi,
The results of chemical analysis of Ge and Sn are shown in Table 1.

そして、これら24種類のフリット粉砕物と、54m2
/gの比表面積を有するアナターゼ型酸化チタン粉末と
、第2表に記載する触媒成分重金属酸化物とを第2表に
記載する調合割合で混合し、この混合物100重量部に
水55重量部、メチルセルロース6重量部を加え、ニー
ダで充分に混合し、真空押出し成形機にて貫通孔の断面
形状が六角形で開孔率が65%のハニカム形状の成形体
に押出した。
These 24 types of frit pulverized materials and 54 m2
Anatase-type titanium oxide powder having a specific surface area of /g and the catalyst component heavy metal oxide listed in Table 2 were mixed in the proportions listed in Table 2, and 100 parts by weight of this mixture was mixed with 55 parts by weight of water, 6 parts by weight of methylcellulose was added, thoroughly mixed in a kneader, and extruded into a honeycomb-shaped molded body with a hexagonal cross-section of through holes and a porosity of 65% using a vacuum extrusion molding machine.

この成形体を乾燥後、500℃〜900℃の焼成温度で
3時間焼成して本発明のハニカム触媒A1〜I6゜11
1と参考側触媒A 112〜A156を得た。
After drying this molded body, it was fired at a firing temperature of 500°C to 900°C for 3 hours to produce the honeycomb catalysts A1 to I6 of the present invention.
1 and reference catalysts A112 to A156 were obtained.

このそれぞれのハニカム触媒について、BET法による
比表面積、水銀圧入式ポロシメータによる全細孔容積、
ハニカムの軸方向の圧壊強度を測定した。
For each honeycomb catalyst, the specific surface area by BET method, total pore volume by mercury intrusion porosimeter,
The axial crushing strength of the honeycomb was measured.

結果は第2表に示す通りである。次に、この156種類
のハニカム触媒について350℃におけるNOxの除去
率およびSO2のSO3への転換率を測定した結果を同
じ第2表に示す。
The results are shown in Table 2. Next, the results of measuring the NOx removal rate and SO2 conversion rate at 350°C for these 156 types of honeycomb catalysts are shown in Table 2.

なお、NOx除去率の測定条件は次の通りであった。The conditions for measuring the NOx removal rate were as follows.

ガス組成 NO200ppm NH3200ppm5
0211000pp H2O10% 2 02 3% CO212% N2 残余 ガス空間速度 10,0001 /Hr NH3/NO比 1.0 NOx除去率とSO2の803への転換率は下記のよに
定義した。
Gas composition NO200ppm NH3200ppm5
0211000pp H2O 10% 2 02 3% CO2 12% N2 Residual gas space velocity 10,0001 /Hr NH3/NO ratio 1.0 The NOx removal rate and the conversion rate of SO2 to 803 were defined as below.

第2表の結果から明らかなように、触媒中のガラス含有
量が増加するに従いハニカム触媒の軸方向の圧壊強度が
向上し、ガラス成分含有量が2%以上において実用的な
強度が得られる。
As is clear from the results in Table 2, as the glass content in the catalyst increases, the axial crushing strength of the honeycomb catalyst improves, and practical strength is obtained when the glass component content is 2% or more.

しかしガラス成分含有量が20%を越すとハニカム触媒
の比表面積、細孔容積が減少し、NOxの除去率が低下
する。
However, when the glass component content exceeds 20%, the specific surface area and pore volume of the honeycomb catalyst decrease, and the NOx removal rate decreases.

またフリツ1〜の種類より明白なごとくガラス成分中に
リン、アンチモン、ヒ素、ビスマス、ゲルマニム、スズ
の含有量が1%より少ないと、SO2のSO3への転換
率が高くなりり、実用に適さなくなる。
Furthermore, as is clear from the types of Fritz 1~, if the content of phosphorus, antimony, arsenic, bismuth, germanium, and tin in the glass component is less than 1%, the conversion rate of SO2 to SO3 will be high, making it unsuitable for practical use. It disappears.

さらに触媒金属酸化物の量が20%を越すとNOx除去
率がかえって低下するとともに、SO2のSO3の転換
率が増加し、実用上好ましくない。
Furthermore, if the amount of catalytic metal oxide exceeds 20%, the NOx removal rate will decrease and the conversion rate of SO2 to SO3 will increase, which is not preferred in practice.

以上述べたとおり、本発明の窒素酸化物除去用ハニカム
触媒は、主成分である酸化チタンとバナジム、ニオブ、
モリブデン、タングステン、クロム、鉄、銅、コバルl
−、ニッケル、マンガンの触媒金属の酸化物の少なくと
も1種以上の1〜20%とを、リン、アンチモン、ヒ素
、ビスマス、ゲルマニウム、スズを1%以上含むガラス
成分2〜20%で均質に結合したハニカム状の触媒であ
るので、比表面積が大のまま圧壊強度を強くすることが
でき、さらに排ガス中のSO2をSO3に転換する弊害
がないので、従ってSOXによる触媒被毒が少なく、N
Oxを高率に除去できるものであり、さらに目詰現象が
ほとんどみられない触媒であるので各種燃焼排ガス中の
NOxとして産業上極めて有用なものである。
As described above, the honeycomb catalyst for removing nitrogen oxides of the present invention contains titanium oxide, vanadium, niobium, and
Molybdenum, tungsten, chromium, iron, copper, cobal
- homogeneously bond 1 to 20% of at least one of the oxides of catalytic metals such as -, nickel, and manganese with 2 to 20% of a glass component containing 1% or more of phosphorus, antimony, arsenic, bismuth, germanium, and tin. Because it is a honeycomb-shaped catalyst, the crushing strength can be increased while maintaining a large specific surface area.Furthermore, there is no adverse effect of converting SO2 in exhaust gas to SO3, so there is less catalyst poisoning by SOX, and N
Since it is a catalyst that can remove Ox at a high rate and has almost no clogging phenomenon, it is extremely useful industrially as a catalyst for NOx in various combustion exhaust gases.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス中の窒素酸化物をアンモニアの存在下で触媒
と接触させ還元除去する窒素酸化物除去用触媒において
、バナジウム、ニオブ、モリブデン、タングステン、ク
ロム、鉄、銅、コバルト、ニッケル、マンガンの酸化物
のうちの少なくとも一種以上の1〜20重量%と、主成
分である酸化チタンとを、リン、アンチモン、ヒ素、ビ
スマス、ゲルマニウム、スズの少なくとも一種以上を1
重量%以上含むガラス成分2〜20重量%で均質に結合
したことを特徴とする窒素酸化物除去用ハニカム触媒。
1 In a nitrogen oxide removal catalyst that reduces and removes nitrogen oxides in exhaust gas by contacting the catalyst in the presence of ammonia, oxides of vanadium, niobium, molybdenum, tungsten, chromium, iron, copper, cobalt, nickel, and manganese are used. 1 to 20% by weight of at least one of the following, titanium oxide, which is the main component, and at least one of at least one of phosphorus, antimony, arsenic, bismuth, germanium, and tin.
A honeycomb catalyst for removing nitrogen oxides, characterized in that a glass component containing 2 to 20% by weight or more is homogeneously bonded.
JP52068516A 1977-06-10 1977-06-10 Honeycomb catalyst for nitrogen oxide removal Expired JPS5951339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52068516A JPS5951339B2 (en) 1977-06-10 1977-06-10 Honeycomb catalyst for nitrogen oxide removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52068516A JPS5951339B2 (en) 1977-06-10 1977-06-10 Honeycomb catalyst for nitrogen oxide removal

Publications (2)

Publication Number Publication Date
JPS542987A JPS542987A (en) 1979-01-10
JPS5951339B2 true JPS5951339B2 (en) 1984-12-13

Family

ID=13375951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52068516A Expired JPS5951339B2 (en) 1977-06-10 1977-06-10 Honeycomb catalyst for nitrogen oxide removal

Country Status (1)

Country Link
JP (1) JPS5951339B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539600B2 (en) * 1985-07-10 1996-10-02 株式会社アドバンテスト Timing generator

Also Published As

Publication number Publication date
JPS542987A (en) 1979-01-10

Similar Documents

Publication Publication Date Title
AU620479B2 (en) A method of reducing nitrogen oxides from waste gases
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
RU2115470C1 (en) Catalyst for reducing nitrogen oxide content in flow medium and method of preparation thereof
JP6671163B2 (en) Exhaust gas treatment honeycomb catalyst and method for producing the same
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
JP4538198B2 (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
CN106268786A (en) A kind of low-temperature denitration catalyst and preparation method thereof
JPH0368456A (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
CA1269971A (en) Catalyst for reduction of nitrogen oxides
JPS63185448A (en) Catalyst and method for removing nitrogen oxide in exhaust gas
JPS6164334A (en) Production of catalyst for purifying nitrogen oxide
WO2015036748A1 (en) Vanadium containing catalyst and process for nitric oxide reduction in a waste gas
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
CN113198487A (en) Low-temperature denitration catalyst and preparation method thereof
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
EP0257307A1 (en) A method for denitrizing nitrogen oxides contained in waste gas
JPH04227056A (en) Oxidation catalyst of sulfur dioxide, its manufacture and oxidation method of sulfur dioxide
JPS5951339B2 (en) Honeycomb catalyst for nitrogen oxide removal
JP2007014960A (en) Production method of catalyst for removing nox in exhaust gas
JP4344102B2 (en) Catalyst slurry for exhaust gas denitration and method for producing the same
JPH05244A (en) Catalyst for removing nitrogen oxide
JPS60212234A (en) Honeycomb shaped deodorizing catalyst
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same