JPS595094B2 - Container manufacturing method - Google Patents

Container manufacturing method

Info

Publication number
JPS595094B2
JPS595094B2 JP10619778A JP10619778A JPS595094B2 JP S595094 B2 JPS595094 B2 JP S595094B2 JP 10619778 A JP10619778 A JP 10619778A JP 10619778 A JP10619778 A JP 10619778A JP S595094 B2 JPS595094 B2 JP S595094B2
Authority
JP
Japan
Prior art keywords
tablet
sheet
forged
forging
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10619778A
Other languages
Japanese (ja)
Other versions
JPS5534902A (en
Inventor
正浩 竹内
恭輔 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP10619778A priority Critical patent/JPS595094B2/en
Publication of JPS5534902A publication Critical patent/JPS5534902A/en
Publication of JPS595094B2 publication Critical patent/JPS595094B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、プラスチックシートから薄肉容器を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing thin-walled containers from plastic sheets.

本発明の目的は、スクラップを全く生ぜずに肉厚分布、
腰の強さ、外観等の良好な熱可塑性樹脂の薄肉容器を熱
成形する方法を提供することである。
The object of the present invention is to improve wall thickness distribution without any scrap.
To provide a method for thermoforming a thin-walled thermoplastic resin container with good stiffness and appearance.

本発明の他の目的は経済的に有利な熱成形法を提供する
ことである。
Another object of the invention is to provide an economically advantageous thermoforming process.

フ 近年石油資源の有限性に対する認識の深まりと共に
、プラスチックシートからスクラップを全〈発生しない
で薄肉容器を熱成形する方法が省資源化技術として注目
されている。
In recent years, with the deepening recognition of the finite nature of petroleum resources, a method of thermoforming thin-walled containers from plastic sheets without generating any scrap has been attracting attention as a resource-saving technology.

真空成形、圧空成形など従来のシート熱成形法5 は、
成形機械及び金型が比較的安価で、薄肉成形品の多数個
取り成形が可能であるという長所を有する為広く普及し
ているが、従来のシート熱成形法ではシートの40%乃
至60%に達する大量のスクラップを発生するといラ大
きな欠点を持つて・o いる。
Conventional sheet thermoforming methods such as vacuum forming and pressure forming5 are:
Molding machines and molds are relatively inexpensive and have the advantage of being able to mold multiple thin-walled products, so they are widely used. However, in conventional sheet thermoforming methods, 40% to 60% of It has a major disadvantage in that it generates a large amount of scrap.

スクラップを全く生じない薄肉容器の成形法の開発はこ
のような意味から注目されており、既に射出成形機によ
つて圧縮成形型内へ注入した溶融樹脂を圧縮してダイア
フラムを成形し、次いでこフ5 のダイアフラムを圧空
成形して薄肉容器を製造する方法が提案されてぃる(例
えば特公昭47−5427号公報など)。
The development of a molding method for thin-walled containers that does not produce any scrap has been attracting attention in this sense, and it has already been developed to mold a diaphragm by compressing molten resin injected into a compression mold using an injection molding machine, and then molding the diaphragm. A method of manufacturing a thin-walled container by forming the diaphragm of the container under pressure has been proposed (for example, Japanese Patent Publication No. 47-5427).

然し乍らこの方法では、(1)ダイアフラム全面の配向
度の均質性が十分でない為、圧空成形して製造した薄肉
容器の肉厚分布、30強度等に位置による不均一がある
、(2)射出成形で樹脂を供給する為、ゲートの痕跡が
容器の底部に・残つて外観を損う、(3)多層容器の成
形が出来ない等の短所がある。その他、スクラップを全
<生じない薄肉容器成35形法として、プラスチックシ
ートからカットサイズのタブレットを作り、タブレット
の表面に潤滑油を塗布し、このタブレットを樹脂の軟化
点以上、溶融点以下の温度に予熱し、上下一対の鍛造型
内へ供給して、このタブレツトを熱成形可能な薄いシー
ト状に成形し、次いでこの鍛造シートを圧空成形等によ
り、薄肉容器に成形する方法が提案されている(例えば
特開昭47−4588号公報など)。
However, with this method, (1) the degree of orientation over the entire surface of the diaphragm is not sufficiently homogeneous, so the wall thickness distribution, strength, etc. of the thin-walled container manufactured by pressure forming may be uneven depending on the position; (2) injection molding Since the resin is supplied by the method, there are disadvantages such as: traces of the gate remain on the bottom of the container, spoiling the appearance, and (3) multi-layered containers cannot be formed. In addition, as a method for forming thin-walled containers that does not generate any scrap, cut-sized tablets are made from plastic sheets, lubricating oil is applied to the surface of the tablets, and the tablets are heated at temperatures above the softening point and below the melting point of the resin. A method has been proposed in which the tablet is preheated and fed into a pair of upper and lower forging molds to form the tablet into a thin heat-formable sheet, and then this forged sheet is formed into a thin-walled container by air pressure forming or the like. (For example, Japanese Patent Application Laid-Open No. 47-4588, etc.).

この方法によつて、単層或いは多層押出シートからスク
ラップを全く生じることなしに薄肉容器を成形すること
が出来る。然し乍らこの成形法により、角形のタブレツ
トに潤滑油を塗布し、予熱後鍛造して半成形品の鍛遺シ
ートにすると、鍛造シートの肉厚分布が不均一となり、
角形のタブレツトの4隅の部分の樹脂が鍛造によつても
十分シートの全面に均等に廻り切らず、半成形品の鍛造
シートの周辺部で他の部分より偏肉の強い部分が4個所
出来る。その為最終製品の容器のフランジ部及び側壁上
部の仕上りが悪くなる。この方法でタブレツトを鍛造す
ると、半成形品の鍛造シートの周縁部のシート移送体へ
の圧入が起りにく〜・o移送体の間隙へ十分に樹脂を圧
入する為には、著しく高い鍛造圧力を必要とし、この鍛
造圧力が二不十分である場合、樹脂が移送体の間隙部の
中へ十分入り切らず、その為次の熱成形工程で移送体か
ら鍛遺シートが外れて成形不良を生じやすくなる。鍛造
シートを移送体から外れ難くする為には、移送体の形状
に特別の工夫を必要とし、容器のフ〉ランジ部の形状が
限定されてくるという欠点がある。本発明者らは、従来
提案された方法では到達し得なかつたタブレツトの鍛造
圧が小さくて済み、鍛造シートの肉厚分布が均一で、容
器のフランジ3部の形状が限定されず、容器の力学的性
質、外観等が従来のスクラツプレスの薄肉容器製造法で
作られた成形品のそれよりも良好なスクラツプレスの薄
肉容器製造法を得んとして研究した結果、鍛造型に供給
するカツトサイズの角形タブレツトの3中央部をその樹
脂の溶融点以下の温度に予熱するのに対し、タブレツト
の周縁部を溶融点以上の温度に予熱して溶融状態にして
おくことによつて、鍛造に要する圧力を大幅に下げるこ
とが出来、鍛造シートの仕上りが良好になることを見出
し、更φにこの知見に基づき種々研究を進めて本発明を
完成させるに至つたものである。
By this method, thin-walled containers can be formed from single-layer or multi-layer extruded sheets without producing any scrap. However, with this forming method, when a rectangular tablet is coated with lubricating oil and forged after preheating to form a semi-formed forged sheet, the thickness distribution of the forged sheet becomes uneven.
Even through forging, the resin at the four corners of a square tablet does not spread evenly over the entire surface of the sheet, resulting in four areas with stronger uneven thickness than other areas around the forged sheet as a semi-formed product. . As a result, the finish of the flange and the upper part of the side wall of the final product container deteriorates. When a tablet is forged using this method, it is difficult for the peripheral edge of the forged sheet of the semi-formed product to be press-fitted into the sheet transport body. If this forging pressure is insufficient, the resin will not fully enter the gap of the transfer body, and the forge sheet will come off from the transfer body in the next thermoforming process, resulting in molding defects. more likely to occur. In order to make it difficult for the forged sheet to come off the transfer body, special measures are required for the shape of the transfer body, which has the drawback that the shape of the flange portion of the container is limited. The present inventors have found that the forging pressure of the tablet, which could not be achieved with the previously proposed method, can be reduced, the thickness distribution of the forged sheet is uniform, the shape of the three flange parts of the container is not limited, and the shape of the container is As a result of research into a method for manufacturing thin-walled containers using a scratch press that has better mechanical properties and appearance than those of molded products made using the conventional thin-walled container manufacturing method using a scratch press, we have developed a rectangular shape with the cut size to be fed to a forging die. While the central part of the tablet is preheated to a temperature below the melting point of the resin, the peripheral part of the tablet is preheated to a temperature above the melting point and kept in a molten state, thereby reducing the pressure required for forging. They found that it was possible to significantly reduce the φ and improve the finish of the forged sheet, and based on this knowledge, they proceeded with various studies and completed the present invention.

本発明の容器の製造方法は、単層または複数の層から成
る熱可塑性樹脂シートを裁断して角形のタブレツトとし
、該タブレツトの中央部の温度(Tc)を該樹脂のビカ
ツト軟化点(Tv)乃至溶融点(Tm)の範囲内の温度
に予熱し、該タブレツトの周縁部の温度(TE)を(T
m+10)゜C以上の温度に予熱して溶融した後、向き
合つて配せられた一対の鍛造面を有し、(Tc−10)
℃乃至(Te+10)℃の範囲内の温度に加熱されたプ
レス鍛造型の間隙と該鍛造型の周囲の位置に配せられ、
該鍛造型より低い温度に保持された一対の環状移送体の
間隙部とで形成された空間内へ該タブレツトを導入して
、該鍛造型の中央部に該タブレツトを置き、次いで該タ
ブVツトを該鍛造型によりプレス加圧して所定の厚みに
達するまで鍛造型の間隙を減少せしめ、該タブレツトの
中央部を鍛造すると共に溶融状態にある該タブレツトの
周縁部を該移送体の間隙部へ圧入して容器のフランジ部
を形成せしめ、次いで鍛造シートを該移送体により成形
型上へ移し、成形型内へ該鍛造シートを熱成形して冷却
することを特徴としている。
The method for producing a container of the present invention involves cutting a thermoplastic resin sheet consisting of a single layer or a plurality of layers into square tablets, and determining the temperature (Tc) at the center of the tablet as the Vikato softening point (Tv) of the resin. The tablet is preheated to a temperature within the range of the melting point (Tm), and the temperature (TE) of the periphery of the tablet is set to (Tm).
After being preheated and melted to a temperature of m+10)°C or higher, it has a pair of forged surfaces facing each other, and (Tc-10)
Disposed in the gap of a press forging die heated to a temperature within the range of °C to (Te + 10) °C and at a position around the forging die,
The tablet is introduced into the space formed by the gap between the pair of annular transfer bodies held at a lower temperature than the forging die, the tablet is placed in the center of the forging die, and then the tab V-shaped is pressed by the forging die to reduce the gap between the forging die until a predetermined thickness is reached, and the central part of the tablet is forged, and the peripheral edge of the molten tablet is press-fitted into the gap of the transfer body. The method is characterized in that the flange portion of the container is formed by using the forged sheet, and then the forged sheet is transferred onto a mold by the transfer body, and the forged sheet is thermoformed into the mold and cooled.

以下図面に従つて、本発明の方法を説明する。The method of the present invention will be explained below with reference to the drawings.

第1図は、本発明を実施した成形装置の側面図であり、
A,bはタブレツトの鍛造装置、cは鍛造シートの熱成
形装置を示す。図中1,2は各々鍛造型の上型及び下型
であり、3は環状移送体、4は角形タブレツト、5は移
送体の間隙部である。角形タブレツト4の中央部は斜線
を引いてあり、周縁部は黒く塗りつぶしてある。初め、
中央部をTv乃至Tmの範囲内の温度に予熱し、周縁部
を(Tm+10)℃以上の温度に予熱して醇融した角形
タブレツト4をプレス鍛造型1,2と環状移送体3とで
囲まれた空間内へ導入して、下型2の鍛造面の中央部に
置き、このタブレツト4を鍛造型1,2でプレス加圧し
て、bに示した所定の厚みに達するまで鍛造型1,2の
間隙を減少せしめ、斜線で示したタブレツトの中央部を
鍛造すると共に、黒くぬりつぶして示した洛融状態にあ
るタブレツトの周縁部を移送体3の間隙部5へ圧入して
容器のフランジ部6を形成せしめ、次いでcに示すよう
に鍛造シート7を移送体3により成形型8上に移し、成
形型内へ鍛造シート7を熱成形して冷却し、容器9を製
造する。本発明において、熱可塑性樹脂はポリエチレン
、ポリプロピレン、ポリエチレンテレフタレート等の結
晶性樹脂及びポリスチレン、ポリ塩化ビニル、ABS等
の非結晶性樹脂であり、特にポリエチレン、ポリプロピ
レン等の結晶性プラスチツクが好ましい。
FIG. 1 is a side view of a molding device implementing the present invention,
A and b are forging devices for tablets, and c is a thermoforming device for forged sheets. In the figure, 1 and 2 are the upper and lower dies of a forging mold, respectively, 3 is an annular transfer body, 4 is a rectangular tablet, and 5 is a gap between the transfer bodies. The center of the square tablet 4 is shaded, and the periphery is filled in black. beginning,
A square tablet 4 whose central part is preheated to a temperature within the range of Tv to Tm and whose peripheral part is preheated to a temperature of (Tm+10)°C or higher and melted is surrounded by press forging molds 1 and 2 and an annular transfer body 3. The tablet 4 is placed in the center of the forging surface of the lower die 2, and the tablet 4 is press-pressed by the forging dies 1 and 2 until it reaches the predetermined thickness shown in b. 2, the central part of the tablet shown with diagonal lines is forged, and the peripheral part of the tablet in the molten state shown in black is press-fitted into the gap part 5 of the transfer body 3 to form the flange part of the container. Then, as shown in c, the forged sheet 7 is transferred onto a mold 8 by the transfer body 3, and the forged sheet 7 is thermoformed into the mold and cooled to produce a container 9. In the present invention, thermoplastic resins include crystalline resins such as polyethylene, polypropylene, and polyethylene terephthalate, and amorphous resins such as polystyrene, polyvinyl chloride, and ABS, and crystalline plastics such as polyethylene and polypropylene are particularly preferred.

単数又は複数の層から成る熱可塑性樹脂シートは溶融押
出法でTダイより押出した後、冷5却固化したシートが
好ましく、Tダイを出た後冷却ロールで引取る際、なる
べく、表裏から対称的に冷却し、巻き取らずに平らなま
ま裁断して角形のタブレツトを得るのが好ましい。溶融
押出シートを表裏から非対称に冷却すると、再加熱して
プICレ又鍛造するまでの工程で反りが発生し、成形装
置のトラブルの原因となる。同様にシートを巻き取ると
巻きぐせを生じ、再加熱によつて反りを生じる原因とな
る。結晶性プラスチツクの場合、鍛造及び熱成形の1!
際の加工性を良くする為には、低結晶化度の押出シート
を作ることが好ましい。
A thermoplastic resin sheet consisting of a single layer or multiple layers is preferably a sheet that is extruded from a T-die using a melt extrusion method and then cooled and solidified, and when taken off with a cooling roll after exiting the T-die, it is preferably symmetrical from the front and back. It is preferable to cool the tablet and cut it flat without rolling it up to obtain a square tablet. If a melt-extruded sheet is cooled asymmetrically from the front and back, warping will occur during the process of reheating and forging, which will cause problems with the molding equipment. Similarly, when the sheet is rolled up, curling occurs, which causes warping when reheated. For crystalline plastics, forging and thermoforming 1!
In order to improve processability, it is preferable to produce an extruded sheet with a low degree of crystallinity.

結晶性ポリプロピレンの場合、40%乃至55%の結晶
化度の押出シートが好ましい。結晶化度の低いポリプロ
ピレンシートを溶融押出法で製造する方法として、T2
(ダイを出た直後の溶融ポリプロピレンシートを冷却ロ
ールの間隙へ入れて急冷する公知の方法があるが、本発
明の方法に使用する厚さ1mm乃至5mmのシートでは
、溶融押出直後の冷却ロール間隙における急冷のみでは
シートの内部まで十分な冷却2効果が得られず、結晶化
度の低いシートを作ることが困難である。本発明の方法
に使用するのに適したポリプロピレンシートの製造方法
として、Tダイを出た直後の樹脂温度が210℃乃至2
70℃の溶融シートをシート徐冷装置内の通過により、
31『C/秒以下のシート冷却速度で徐々に冷却し乍ら
140℃乃至180℃の範囲内の温度まで冷却し、次い
で単数又は複数の冷却ロールの表面との接触により、3
『C/秒以上のシート冷却速度で40℃乃至100℃の
シート温度まで急冷するjのが好ましい。この方法によ
つて、シートの結晶化度が40%乃至55%である本発
明の成形去に適した成形性の良好なシートを製造するこ
とができる。ポリプロピレンを主体とする多層共押出シ
ート・も上述の方法で製造することによつて、本発明の
成形法に適した成形性の良好なシートを得ることができ
る。
For crystalline polypropylene, extruded sheets with a crystallinity of 40% to 55% are preferred. T2 is a method for producing polypropylene sheets with low crystallinity by melt extrusion.
(There is a known method in which the molten polypropylene sheet immediately after exiting the die is put into the gap between the cooling rolls and rapidly cooled. However, in the case of a sheet with a thickness of 1 mm to 5 mm used in the method of the present invention, It is difficult to produce a sheet with a low degree of crystallinity because a sufficient cooling effect to the inside of the sheet cannot be obtained by quenching alone.As a method for producing a polypropylene sheet suitable for use in the method of the present invention, The resin temperature immediately after leaving the T-die is 210℃~2
By passing the molten sheet at 70°C through a sheet slow cooling device,
31'C/sec or less by cooling the sheet gradually to a temperature within the range of 140°C to 180°C, and then by contact with the surface of one or more cooling rolls.
``It is preferable to rapidly cool the sheet to a sheet temperature of 40° C. to 100° C. at a sheet cooling rate of C/sec or more. By this method, it is possible to produce a sheet with good moldability, which is suitable for the molding process of the present invention and has a crystallinity of 40% to 55%. By producing a multilayer coextruded sheet mainly composed of polypropylene by the method described above, a sheet with good moldability suitable for the molding method of the present invention can be obtained.

多層シートの構成は特に限定しないが、例えばポリプロ
ピレン/エチレゾ醋酸ビニル共重合体けん化物/ポリプ
ロピレンの3層シートで、表面のポリプロピレン層が中
心のエチレゾ醋酸ビニル共重合体けん化物層に比べて十
分厚い場合には、主成分のポリプロピレンの成形条件で
鍛造及び熱成形が可能である。
The structure of the multilayer sheet is not particularly limited, but for example, it is a three-layer sheet of polypropylene/saponified ethylene-rezo-vinyl acetate copolymer/polypropylene, where the surface polypropylene layer is sufficiently thicker than the saponified ethylene-rezo-vinyl acetate copolymer layer at the center. In some cases, forging and thermoforming are possible under the molding conditions of the main component polypropylene.

成形加工性の良好な多層シートの構成として、ポリプロ
ピレン/接着性ポリオレフイン/エチレン醋酸ビニル共
重合体樹脂けん化物又はポリアミド/接着性ポリオレフ
イン/ポリプロピレンの5層共押出シートがガスバリア
性良好な透明容器用として本発明の成形法に特に適して
いる。
As a multilayer sheet structure with good moldability, a five-layer coextruded sheet of polypropylene/adhesive polyolefin/saponified ethylene-vinyl acetate copolymer resin or polyamide/adhesive polyolefin/polypropylene is used for transparent containers with good gas barrier properties. It is particularly suitable for the molding method of the present invention.

押出シートの厚みはIm乃至5mm程度が好ましい。The thickness of the extruded sheet is preferably about Im to 5 mm.

1m似下の厚みではタブレツトを鍛造して更に薄くする
ことが次第に困難になり、5龍以上の厚みではタブレツ
トを予熱してタブレツト中央部の温度を内部まで均一に
するのに長時間を要する。
When the thickness is less than 1 meter, it becomes increasingly difficult to forge the tablet to make it even thinner, and when the thickness is 5 mm or more, it takes a long time to preheat the tablet and make the temperature in the center of the tablet uniform all the way to the inside.

押出シートを裁断して角形のタブレットにする際、角形
タブレツトの大きさは鍛造型の鍛造面の中へおさまる寸
法に裁断する。例えば角形タブレツトの上下面の対角線
方向の長さは、丸型の鍛造型の場合、その鍛造面の直径
の90(f)乃至50%程度であることが好ましい。角
形タブレツトの大きさが鍛造面の大きさに近づくと、タ
ブレツトの角の部分が鍛造によつても十分鍛造型の周縁
部分に廻り切らず、肉厚分布の不良を生じやすくなる。
本発明の方法によつて鍛造シートの肉厚分布はかなり改
良されるが、それでも角形タブレツトの対角線方向の長
さは鍛造面の直径の90%以下であることが好ましい。
角形タブレツトの中央部は、樹脂のビカツト軟化点(T
v)乃至溶融点(Tm)の範囲内の温度に予熱し、タブ
レツトの周縁部を(Tm+10)゜C以上の温度に予熱
して溶融するが、ここで、ビカツト軟化点(Tv)はA
STMD−1525:58Tの方法で測定したものであ
り、樹脂の溶融点(Tm)は結晶性樹脂では結晶融点で
あり、非晶囲樹脂では流動開始温度である。
When cutting the extruded sheet into square tablets, the square tablets are cut to a size that will fit into the forging surface of the forging die. For example, in the case of a round forging die, the diagonal length of the upper and lower surfaces of a square tablet is preferably about 90(f) to 50% of the diameter of the forging surface. When the size of the rectangular tablet approaches the size of the forging surface, the corner portions of the tablet cannot be sufficiently wrapped around the periphery of the forging die even during forging, which tends to result in poor wall thickness distribution.
Although the method of the invention considerably improves the wall thickness distribution of the forged sheet, it is still preferred that the diagonal length of the prismatic tablet is less than 90% of the diameter of the forged surface.
The central part of the square tablet is located at the Vikatsu softening point (T
v) to the melting point (Tm), and preheat the peripheral edge of the tablet to a temperature of (Tm+10)°C or higher to melt it.
It was measured by the method of STMD-1525:58T, and the melting point (Tm) of the resin is the crystal melting point for crystalline resins, and the flow start temperature for amorphous resins.

タブレツトは中央部と周縁部から成り、(Tm+10)
℃以上に予熱する周縁部の体積は、鍛造によつて移送体
の間隙部、即ち容器のフランジ部に相当する部分へ圧入
される体積に等しいか、それより若干大きいことが好ま
しい。
The tablet consists of a central part and a peripheral part, (Tm+10)
It is preferable that the volume of the peripheral portion to be preheated to a temperature of .degree.

第2図は角形タブレツトの中央部10及び周縁部11を
示すものであり、周縁部11の体積(E)は、角形タブ
レツトの二辺の長さをA,b周縁部の幅をそれぞれ端か
ら△A,△bとして、タブレツトの厚みをcとすると、
VE={2(△Alb+△b−a)−4△a・△b}c
である。
Figure 2 shows the central part 10 and peripheral part 11 of a square tablet, and the volume (E) of the peripheral part 11 is defined by the length of the two sides of the square tablet as A, and the width of the peripheral part as measured from the end. If △A and △b are the thickness of the tablet, then
VE={2(△Alb+△b-a)-4△a・△b}c
It is.

一方タブレツトの中央部10の体積(Vc)は、Vc−
(a−2△a)(b−2△b)・cで表わされる。
On the other hand, the volume (Vc) of the central portion 10 of the tablet is Vc-
It is expressed as (a-2Δa)(b-2Δb)·c.

第3図は円板状の鍛造シートの中央部12及び、フラン
ジ部13を示すものであり、円板状の鍛造シートの直径
をd、移送体の間隙部へ圧入され、形成されたフランジ
部の幅を△dとし、鍛潰シートの厚みをtとすると、フ
ランジ部13の体積(r)は近似的に次式で表わされる
FIG. 3 shows the central part 12 and flange part 13 of a disc-shaped forged sheet. The volume (r) of the flange portion 13 is approximately expressed by the following equation, where the width of the flange portion 13 is Δd and the thickness of the forged sheet is t.

7′EL−πt・△d−d(Tm+10)℃
以上に予熱するタブレツトの周縁部の体積は、〉 VE−V/E であることが好ましい。
7'EL-πt・△d-d(Tm+10)℃
It is preferable that the volume of the peripheral portion of the tablet to be preheated is 〉VE-V/E.

2第3図において、円板状
の鍛造シートのフランジ部13を除いた中央部12の体
積(V5c)は、であり、 Vc≦v′cであること
が好ましい。
2 In FIG. 3, the volume (V5c) of the central portion 12 of the disc-shaped forged sheet excluding the flange portion 13 is as follows, and it is preferable that Vc≦v'c.

(Tm+10)℃以上に予熱するンブレツトの周縁部と
Tv乃至Tmの範囲内の温度に予熱するタブレツトの中
央部との境界は必ずしも明確である必要はない。このよ
うにタブレツトの中央部と周縁部とに温度差を付けて鍛
造すると、鍛造の際にタブレツトの中央部と周縁部で延
伸の不均一を生じ、鍛造シートの配向度、力学特囲等が
中央と周縁で不均質となり、その為次の熱成形工程で成
形不良を生じることが懸念されるが、実際にはむしろタ
ブレツトを全面均一に加熱した場合よりも鍛造シートの
外観、配向度、力学特性等は均一となり、特に容器のフ
ランジ部を形成する鍛造シートの周縁部の仕上りが良好
となり、全面均一加熱の場合の50%以下の鍛造圧力で
良好な鍛造シートを得ることが出来る。
The boundary between the periphery of the tablet, which is preheated to above (Tm+10)°C, and the central part of the tablet, which is preheated to a temperature within the range of Tv to Tm, does not necessarily have to be sharp. If the tablet is forged with a temperature difference between the center and the periphery, uneven stretching will occur between the center and the periphery of the tablet during forging, and the degree of orientation, mechanical strength, etc. of the forged sheet will be affected. There is a concern that this will result in non-uniformity between the center and the periphery, resulting in forming defects in the subsequent thermoforming process, but in reality, the appearance, degree of orientation, and mechanics of the forged sheet will be better than if the tablet was heated uniformly over the entire surface. The properties, etc. become uniform, and in particular, the finish of the peripheral edge of the forged sheet forming the flange of the container becomes good, and a good forged sheet can be obtained with a forging pressure of 50% or less of that in the case of uniform heating over the entire surface.

この点が本発明の方法の顕著な効果であるが、この効果
は以下のような理由によつて発現するものと考えられる
。中央部が固相状態、周縁部が溶融状態に予熱されたタ
ブレツトを鍛造すると、鍛造の過程でタブレツトの全面
が厚み方向へ均一に圧縮され、鍛造面に平行な方向へは
一様に延伸されていくが、タブレツトの周縁部が鍛造面
を移動してその端部へ到達すると、次に移送体の間隙へ
圧入され、容器のフランジ部を形成するに至る。
This point is a remarkable effect of the method of the present invention, and this effect is thought to be produced for the following reasons. When a tablet is forged that has been preheated so that the central part is in a solid state and the peripheral part is in a molten state, the entire surface of the tablet is compressed uniformly in the thickness direction during the forging process, and is uniformly stretched in the direction parallel to the forging surface. As the peripheral edge of the tablet travels along the forging surface until it reaches its end, it is then pressed into the gap in the carrier to form the flange of the container.

このようにタブレツトは鍛造過程において、実際には鍛
造面間における鍛造と、移送体の間隙への圧入という二
つの異なつた種類の変形を受ける。タブレツトの中央部
は鍛造面間で圧縮変形され、周縁方向へ拡がつていくだ
けであるが、タブレツトの周縁部は鍛造面間で圧縮変形
された後、移送体の間隙へ圧入していくことが必要であ
る。移送体の間隙へ圧入する過程では、シートの厚み方
向への圧力は受けず、シートの中央部から周縁部への樹
脂圧力によつて、樹脂はフランジ部へ流動してゆく。従
つてこのような流動過程では、樹脂は洛融状態にある方
が有利であり、タブレツトの周縁部を溶融することによ
つて仕上りの良好な鍛造シートを得ることが出来る。又
浩融状態にあるタブレットの周縁部が移送体れ間隙へ圧
入されると、この部分の弾性的性質が小さい為鍛造成形
後の弾性回復が起らず、鍛造シートが移送体から収縮力
によつて脱離するという問題が解消し、その後の熱成形
が容易になる。単にタブレツトの全体積の10%程度の
周縁部分を(Tm+10)℃以上の温度に加熱しておく
ことによって、従来困難であつた肉厚分布の均一な鍛造
シートの成形が低い鍛造圧力が可能となり、又移送体の
間隙へのシートの圧入が容易になつた為、移送体から鍛
潰シートがはずれるという問題が解消し、容器のフラン
ジ部の形状の自由度が増大した。
Thus, during the forging process, the tablet actually undergoes two different types of deformation: forging between the forging surfaces and press-fitting into the gap of the carrier. The central part of the tablet is compressed and deformed between the forged surfaces and only expands toward the periphery, but the periphery of the tablet is compressed and deformed between the forged surfaces and then press-fitted into the gap of the transfer body. is necessary. In the process of press-fitting into the gap of the transfer body, the resin is not subjected to pressure in the thickness direction of the sheet, and the resin flows toward the flange part due to the resin pressure from the center of the sheet to the peripheral edge. Therefore, in such a flow process, it is advantageous for the resin to be in a molten state, and by melting the peripheral edge of the tablet, a forged sheet with a good finish can be obtained. Furthermore, when the peripheral edge of the tablet in a fully molten state is press-fitted into the gap between the conveying bodies, the elasticity of this part is small, so elastic recovery does not occur after forging, and the forged sheet is subject to contractile force from the conveying body. This eliminates the problem of desorption and facilitates subsequent thermoforming. By simply heating the peripheral portion, which is about 10% of the total volume of the tablet, to a temperature of (Tm+10)°C or higher, it becomes possible to form a forged sheet with a uniform thickness distribution, which was previously difficult, at a low forging pressure. Also, since the sheet can be easily press-fitted into the gap of the conveying body, the problem of the forged sheet coming off from the conveying body is solved, and the degree of freedom in the shape of the flange portion of the container is increased.

タブレツト全体のうち、(Tm+10)℃以上に予熱す
る周縁部の体積は5%乃至30%程度が好ましい。
Of the entire tablet, the volume of the peripheral portion to be preheated to (Tm+10)°C or higher is preferably about 5% to 30%.

5%以下では、角形タブレツトの4隅の部分に由来する
鍛造シートの偏肉の解消が不十分であり、鍛造圧力も次
第に大きくなる。
If it is less than 5%, the uneven thickness of the forged sheet originating from the four corners of the square tablet will not be sufficiently eliminated, and the forging pressure will gradually increase.

又30%以上では、鍛造シート、更には熱成形された容
器の側壁部の匁観が悪化する。特にポリプロピレン等の
結晶性樹脂の場合、(Tm+10)℃以上に加熱するタ
ブレツト周縁部の体情が3001)以上になると、容器
側壁部の透明性が悪化し、容器の剛性も低下し、本発明
の方法の利点が次第に失われてくる。
If the content exceeds 30%, the momme appearance of the forged sheet and even the side wall of the thermoformed container deteriorates. Particularly in the case of crystalline resins such as polypropylene, if the temperature of the peripheral edge of the tablet heated above (Tm+10)°C exceeds 3001), the transparency of the side wall of the container deteriorates and the rigidity of the container decreases. The advantages of this method gradually disappear.

プレス鍛造型は、向き合つて配せられた一対の鍛造面を
有するものであり、一対の鍛造面はいずれも平らである
ことが好ましい。
The press forging die has a pair of forging surfaces arranged facing each other, and it is preferable that both of the pair of forging surfaces are flat.

然し必ずしも鍛造面は平板状である必要はなく、深絞り
の容器の成形においては、周縁部より中央部の厚みの大
きい鍛造シートを作る為、僅かに中央部の凹んだ鍛造面
を有する鍛造型でタブレツトを鍛造するのが好ましい。
このような鍛造型で作つた中央部が肉厚の鍛造シートを
熱成形して深絞りの容器を製造1すると、底部が適度に
肉厚で腰の強い容器を得ることが出来る。鍛造型の材質
は、鉄、アルミ等の金属が好ましいが、鍛造面の潤滑性
を良くする為、表面を高度に研磨してクロムメツキする
のが良い。
However, the forging surface does not necessarily have to be flat, and when forming deep-drawn containers, a forging die with a slightly concave forging surface in the center is used to create a forged sheet that is thicker at the center than at the periphery. Preferably, the tablet is forged in a.
When a deep-drawn container is manufactured by thermoforming a forged sheet with a thick center portion made using such a forging die, a sturdy container with an appropriately thick bottom portion can be obtained. The material of the forging die is preferably a metal such as iron or aluminum, but in order to improve the lubricity of the forging surface, it is preferable to highly polish the surface and chrome plate it.

アルミ型 ノの場合、鍛造面を酸化して多孔質に処理し
た後、この面を弗素樹脂で加工して滑り性を向上させる
のが好ましい。シリコン油、グリセリン等の潤滑剤をあ
らかじめタブレツト又は鍛造面に塗布しておくと、鍛造
トシートの仕上りを良くすることが出来る。
In the case of aluminum molds, it is preferable to oxidize the forged surface to make it porous, and then process this surface with a fluororesin to improve slipperiness. Applying a lubricant such as silicone oil or glycerin to the tablet or forged surface in advance will improve the finish of the forged sheet.

この場合潤滑剤が鍛潰シートの表面に付着する為、成形
後に潤滑剤を除去することが必要である。鍛造型の温度
はタブレツトの中央部の温度をTcとすると(Tc−1
0)℃乃至(Tc+10)℃の範囲内である。
In this case, since the lubricant adheres to the surface of the forged sheet, it is necessary to remove the lubricant after molding. The temperature of the forging die is Tc, which is the temperature at the center of the tablet (Tc-1).
0)°C to (Tc+10)°C.

鍛造型の温度が(Tc−10)℃以下では、鍛造シート
が冷えすぎて次の熱成形が困難となり、鍛造型の温度が
(Tc+10)℃以上では、鍛造シートが鍛造型表面に
粘着する恐れがある。一対の環状移送体は鍛造型より低
い温度に加熱しておく、移送体の温度が高すぎると、移
送体に圧入した鍛造シートのフランジ部のシート保持力
が弱くなり、シートが収縮して移送体から脱離する恐れ
がある。
If the temperature of the forging die is below (Tc-10)℃, the forged sheet will become too cold and the next thermoforming will be difficult, and if the temperature of the forging die is above (Tc+10)℃, the forging sheet may stick to the surface of the forging die. There is. The pair of annular transfer bodies is heated to a lower temperature than the forging die. If the temperature of the transfer bodies is too high, the sheet retention force of the flange of the forged sheet press-fitted into the transfer body will be weakened, causing the sheet to contract and be transferred. There is a risk of it coming off the body.

溶融状態にあるタブレツトの周縁部が移送体に圧入して
フランジ部を形成し、移送体からシートが脱離しない程
度に移送体の温度を下げておくのが好ましいが、移送体
を強制的に冷却することは必ずしも必要でない。鍛造シ
ートの所定厚みまで鍛造型の間隙を減少せしめて後、鍛
造型間の距離を0.2秒乃至3秒間一定に保持するのが
好ましい。
It is preferable to lower the temperature of the transfer body to such an extent that the peripheral edge of the molten tablet is press-fitted into the transfer body to form a flange and the sheet does not detach from the transfer body. Cooling is not necessary. After reducing the gap between the forging dies to a predetermined thickness of the forging sheet, it is preferable to maintain the distance between the forging dies constant for 0.2 seconds to 3 seconds.

この操作によつてタブVツトの中央部が鍛造されると共
に、溶融状〕態にあるタブレツトの周縁部が移送体の間
隙部へ十分に圧入され、仕上りの良好な容器のフランジ
部を形成することが出来る。
Through this operation, the central part of the tab V-piece is forged, and the peripheral edge of the tablet, which is in a molten state, is sufficiently press-fitted into the gap of the transfer body, forming a well-finished flange of the container. I can do it.

本発明の方法によつて、平均厚みが0.5m似下の薄い
鍛造シートの製造が可能となつた。
The method of the present invention has made it possible to produce thin forged sheets with an average thickness of approximately 0.5 m or less.

鍛造シートは成形型上へ移送して、成形型表面へ熱成形
して冷却する。
The forged sheet is transferred onto a mold, thermoformed onto the mold surface, and cooled.

熱成形法はストレート圧空成形、プラグアシスト圧空成
形等が好ましい。本発明の方法によつて、従来法に比べ
て、鍛造の際のプレス圧力を50(fl)以下に下げる
ことが出来、薄い鍛造シートの製造が可能となり、又鍛
造の際樹脂の移送体間隙部への圧入が容易になった為、
フランジ部の成形性が著しく改善され、鍛造シートが移
送体から脱離する恐れがなくなつた。以下実施例によっ
て本発明を更に詳しく説明する。実施例 1 40m7!Lφ押出機により、Tダイ溶融押出法で製造
した厚さ2.1m7fL1幅150m7fLの結晶性ポ
リプロピレン樹脂シートを75罪角に裁断して角形のタ
ブレツトを作り、このタブレツトを2枚の熱板の間で1
50〜160℃まで加熱し、次いでタブレツトの周縁部
に熱風を吹きつけ、全周にわたつて端から3mm入つた
点まで170全C〜2000Cに加熱して溶融し、この
タブレットを前もつて145〜155℃に加熱した直径
100rfLTfLの丸型の鍛造面を有する一対の鍛造
型内へ入れ、プレス加圧して鍛造し、タブレツトの周縁
部を移送体の間隙部へ圧入して後、鍛造型の間隙を開い
て移送体で保持された111t7It厚の鍛造シートを
圧空成形型上へ移送し、約135℃に加熱した補助プラ
グを鍛造シート上から挿入して後、圧空を導入して雌型
表面へシートを成形した。
As the thermoforming method, straight pressure forming, plug assist pressure forming, etc. are preferable. By the method of the present invention, the press pressure during forging can be lowered to 50 (fl) or less compared to the conventional method, making it possible to manufacture a thin forged sheet, and also making it possible to reduce the gap between the resin transfer bodies during forging. Because it is easier to press fit into the part,
The formability of the flange portion has been significantly improved, and there is no longer any fear that the forged sheet will separate from the transport body. The present invention will be explained in more detail below with reference to Examples. Example 1 40m7! A crystalline polypropylene resin sheet with a thickness of 2.1 m7fL and a width of 150m7fL produced by the T-die melt extrusion method was cut into 75 sinus squares to make a square tablet using an Lφ extruder, and this tablet was placed between two hot plates.
Heat to 50 to 160°C, then blow hot air around the periphery of the tablet and heat to 170°C to 2000°C all around the circumference to a point 3mm from the edge to melt it. The tablet is placed into a pair of forging molds having a round forging surface with a diameter of 100rfLTfL heated to ~155°C, pressurized and forged, and the peripheral edge of the tablet is press-fitted into the gap of the transfer body. The forged sheet with a thickness of 111t7It, held by the transfer body with a gap opened, is transferred onto the pressure molding mold, and an auxiliary plug heated to approximately 135°C is inserted from above the forged sheet, and then compressed air is introduced to remove the surface of the female mold. A sheet was formed.

成形された容器の寸法はフランジ部の直径が110mへ
深さ100mmであつた。比較の為、75龍角の同様の
タブレツトを150〜160龍Cまで全面均一加熱して
、このタブレツトを145〜155゜Cに加熱した同じ
鍛造型で鍛造して11Lm厚の鍛造シートを作り、これ
をプラグアシスト圧空成形して同じ寸法の容器を成形し
た。
The dimensions of the molded container were a flange diameter of 110 m and a depth of 100 mm. For comparison, a similar tablet of 75 degrees Celsius was uniformly heated over the entire surface to 150 to 160 degrees Celsius, and this tablet was forged in the same forging die heated to 145 to 155 degrees Celsius to make a forged sheet with a thickness of 11Lm. This was plug-assisted air pressure molded to form a container of the same size.

第1表には本発明の方法及び従来法の鍛造条件、鍛造シ
ート及び容器の性能の評価結果を示す。
Table 1 shows the forging conditions of the method of the present invention and the conventional method, and the evaluation results of the performance of the forged sheet and container.

第1表において、樹脂はPP(ポリプロピレン単独重合
体、融点;165℃)及びPPコポリマー(ポリプロピ
レンランダム共重合体、融点;155℃)であり、各々
最適鍛造温度で加工した。第1表で明らかなように、本
発明の方法によると、鍛造荷重を大幅に低下させること
が出来、しかも鍛造シートはフランジ部の仕上りが良好
で、製造した容器は偏肉がなく、透明性も良好である。
比較例では、鍛造荷重が高く、しかも鍛造シートのフラ
ンジ部の仕上りが悪くて、樹脂が移送体の間隙へ十分に
圧入されていない。又容器は側壁上゛部に偏肉が目立つ
。実施例 2 65m1Lφ押出機1台及び40#!71φ押出機2台
を用いて共押出法で製造した厚さ2!N7lLl幅15
0mmの5層シート(ポリプロピレン/接着性ポリオレ
フイン/エチレン醋酸ビニル共重合体樹脂けん化物/接
着性ポリオレフイン/ポリプロピレン)を75關角に裁
断してタブレツトを作り、その表面をシリコン油で潤滑
処理し、次いでタブレツトを熱板で挟んで150〜16
0℃に加熱し、更にタブレツトの全周縁部を端から4j
Uの位置まで18『C〜200℃に加熱して溶融状態と
し、これを実施例1と同じ鍛造型の中央部に置いてプレ
ス加圧して鍛造し、タブレツトの周縁部を移送体の間隙
部へ圧入し、直ちにこの1.0!!LlL厚の鍛造シー
トを移送体により圧空成形型上へ移送し、プラグアシス
ト圧空成形によつてフランジ部の直径が110m7!L
S深さ60mmの容器を製造した。
In Table 1, the resins are PP (polypropylene homopolymer, melting point: 165°C) and PP copolymer (polypropylene random copolymer, melting point: 155°C), each processed at the optimum forging temperature. As is clear from Table 1, according to the method of the present invention, the forging load can be significantly reduced, the forged sheet has a good finish at the flange, and the manufactured containers have no uneven thickness and are transparent. is also good.
In the comparative example, the forging load was high and the finish of the flange portion of the forged sheet was poor, so that the resin was not sufficiently press-fitted into the gap of the transfer body. Also, the container has noticeable uneven thickness at the top of the side wall. Example 2 One 65m1Lφ extruder and 40#! Thickness 2 manufactured by co-extrusion method using two 71φ extruders! N7lLl width 15
A tablet was made by cutting a 0mm 5-layer sheet (polypropylene/adhesive polyolefin/saponified ethylene-vinyl acetate copolymer resin/adhesive polyolefin/polypropylene) into 75 square pieces, and the surface was lubricated with silicone oil. Next, sandwich the tablet between hot plates and heat it to 150-160℃.
Heat to 0°C, and then heat the entire periphery of the tablet 4j from the edge.
Heat the tablet to a temperature of 18°C to 200°C until it reaches a molten state, place it in the center of the same forging mold as in Example 1, pressurize it, and forge it. Press it into the 1.0 immediately! ! The forged sheet with a thickness of LlL is transferred onto the pressure forming mold by a transfer body, and the diameter of the flange portion is reduced to 110m7 by plug-assisted pressure forming! L
A container with a depth of 60 mm was manufactured.

比較の為、この5層シートの75mm角のタブレツトを
150〜160℃に全面均一加熱して、同様に鍛造、圧
空成形して、フランジ部の直径110mm1深さ60麟
の容器を製造した。第2表には本発明の方法及び従来法
の鍛造条件鍛造シート及び容器の性能を示す。第2表に
おいて、PPはポリプロピレン単独重合体(MI=1.
0、結晶融点二16rC)、EVはエチレン醋酸ビニル
共重合体樹脂けん化物(結晶融点18『C)ADはポリ
プロピレン系の接着性ポリオレフインであり、各々最適
加工条件で成形を行なつた。
For comparison, a 75 mm square tablet made of this five-layer sheet was uniformly heated to 150 to 160 DEG C., and similarly forged and air-formed to produce a container with a flange diameter of 110 mm and a depth of 60 mm. Table 2 shows the performance of the forged sheet and container under the forging conditions of the method of the present invention and the conventional method. In Table 2, PP is a polypropylene homopolymer (MI=1.
0, crystal melting point 216 rC), EV is a saponified ethylene-vinyl acetate copolymer resin (crystal melting point 18 C), AD is a polypropylene-based adhesive polyolefin, and molding was carried out under optimal processing conditions.

第2表で明らかなように、本発明の方法によつて鍛造荷
重を大幅に低下させることができ、しかも成形した容器
の側壁の偏肉がなく、比較例では鍛造荷重が高いのみで
なく、容器の側壁上部に偏肉が目立つ。
As is clear from Table 2, the forging load can be significantly reduced by the method of the present invention, and there is no uneven thickness of the side wall of the formed container. Uneven thickness is noticeable on the upper side wall of the container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施した製造装置の側面図であ
り、A,bはタブレツトの鍛造装置、Cは鍛造シートの
熱成形装置を示す。 図中、1,2は各々鍛造型の上型及び下型、3は環状移
送体、4は角形タブレツト、5は移送体の間隙部、6は
フランジ部、7は鍛潰シート、8は成形型、9は容器で
ある。第2図は角形タブレツトを示すものであり、10
はその中央部、11はその周縁部であり、タブレツトの
二辺の長さはA,bl周縁部の幅はそれぞれ端から△A
,△b1タブレツトの厚みはcである。 第3図は円板状の鍛造シートを示し、12はその中央部
、13はフランジ部を示す。
FIG. 1 is a side view of a manufacturing apparatus that implements the method of the present invention, with A and b showing a forging apparatus for tablets, and C showing a thermoforming apparatus for forging sheets. In the figure, 1 and 2 are the upper and lower dies of the forging mold, respectively, 3 is the annular transfer body, 4 is the square tablet, 5 is the gap of the transfer body, 6 is the flange, 7 is the forged sheet, and 8 is the molded The mold, 9 is a container. Figure 2 shows a square tablet, with 10
is the center part, 11 is the peripheral part, the length of the two sides of the tablet is A, and the width of the peripheral part of the tablet is ΔA from the end.
, Δb1 The thickness of the tablet is c. FIG. 3 shows a disc-shaped forged sheet, with reference numeral 12 indicating its central portion and 13 indicating its flange portion.

Claims (1)

【特許請求の範囲】[Claims] 1 単数または複数の層から成る熱可塑性樹脂シートを
裁断して角形のタブレットとし、該タブレットの中央部
の温度(Tc)を該樹脂のピカツト軟化点(Tv)乃至
溶融点(Tm)の範囲内の温度に予熱し、該タブレット
の周縁部の温度(T_E)を(Tm+10)℃以上の温
度に予熱して溶融した後、向き合つて配せられた一対の
鍛造面を有し、(Tc−10)℃乃至(Tc+10)℃
の範囲内の温度に加熱されたプレス鍛造型の間隙と該鍛
造型の周囲の位置に配せられ、該鍛造型より低い温度に
保持された一対の環状移送体の間隙部とで形成された空
間内へ該タブレットを導入して、該鍛造型の中央部に該
タブレットを置き、次いで該タブレットを該鍛造型によ
りプレス加圧して所定の厚みに達するまで鍛造型の間隙
を減少せしめ、該タブレットの中央部を鍛造すると共に
、溶融状態にある該タブレットの周縁部を該移送体の間
隙部へ圧入して、容器のフランジ部を形成せしめ、次い
で鍛造シートを該移送体により成形型上へ移し、成形型
内へ該鍛造シートを熱成形して冷却することを特徴とす
る容器の製造方法。
1 A thermoplastic resin sheet consisting of one or more layers is cut into square tablets, and the temperature (Tc) at the center of the tablet is within the range of the Picato softening point (Tv) to the melting point (Tm) of the resin. The temperature of the peripheral edge of the tablet (T_E) is preheated to a temperature of (Tm + 10) °C or higher and melted, and then the tablet has a pair of forged surfaces arranged facing each other, and (Tc- 10)°C to (Tc+10)°C
The gap is formed by a gap between a press forging die heated to a temperature within the range of Introducing the tablet into the space and placing the tablet in the center of the forging die, then pressing the tablet with the forging die to reduce the gap between the forging die until a predetermined thickness is reached, and At the same time, the periphery of the tablet in a molten state is press-fitted into the gap of the transfer body to form the flange of the container, and then the forged sheet is transferred onto the mold by the transfer body. . A method for manufacturing a container, comprising thermoforming the forged sheet into a mold and cooling it.
JP10619778A 1978-09-01 1978-09-01 Container manufacturing method Expired JPS595094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10619778A JPS595094B2 (en) 1978-09-01 1978-09-01 Container manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10619778A JPS595094B2 (en) 1978-09-01 1978-09-01 Container manufacturing method

Publications (2)

Publication Number Publication Date
JPS5534902A JPS5534902A (en) 1980-03-11
JPS595094B2 true JPS595094B2 (en) 1984-02-02

Family

ID=14427439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10619778A Expired JPS595094B2 (en) 1978-09-01 1978-09-01 Container manufacturing method

Country Status (1)

Country Link
JP (1) JPS595094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103085263A (en) * 2013-02-27 2013-05-08 苏州仕通电子科技有限公司 Mobile forming mechanism for vacuum forming machine and forming method thereof

Also Published As

Publication number Publication date
JPS5534902A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
US4329196A (en) Method of making a three-dimensional laminate
US3075868A (en) Method of bonding polymer plastics to substrate webs of dissimilar materials
US3508992A (en) Method of making laminated material having cells between the layers
US5571473A (en) Process for thermoforming thermoplastic resin sheet
US3957940A (en) Wrinkle free extrusion coating of heat fusible foam sheet
US4118454A (en) Method for producing transparent plastic molded articles
GB2055324A (en) Thin-wall deep-drawn container for thermoplastic resin and process for producing same
US3933559A (en) Process for manufacturing a body of moisture-proof container for packaging
US4140457A (en) Method for producing transparent plastic molded articles and thermoforming apparatus therefor
US7074289B2 (en) Method for preparing laminating materials
JPS595094B2 (en) Container manufacturing method
ZA933713B (en) Production of a metal-plastic film laminate the metal-plastic film laminate and use thereof for manufacturing packaging containers
EP0435234B1 (en) Process for thermoforming thermoplastic resin sheet and apparatus therefor
JPS6144051B2 (en)
CN1334185A (en) Lusterless hot formed film
JPH07102608B2 (en) Method for manufacturing polyester molded products
JPH0133336B2 (en)
CA1052962A (en) Manufacture of thin walled containers
JP2907685B2 (en) Polyethylene terephthalate sheet molded heat-resistant container and method for producing the same
JPS63147624A (en) Method and apparatus for heat forming of thermoplastic resin sheet
JPS58203019A (en) Manufacture of embossed sheet
JPS5953852B2 (en) Method for manufacturing transparent containers
CN109689331B (en) Method for three-dimensional formation of laminated film
JPS637136B2 (en)
JPS6022615B2 (en) Container manufacturing method