JPS6022615B2 - Container manufacturing method - Google Patents

Container manufacturing method

Info

Publication number
JPS6022615B2
JPS6022615B2 JP155377A JP155377A JPS6022615B2 JP S6022615 B2 JPS6022615 B2 JP S6022615B2 JP 155377 A JP155377 A JP 155377A JP 155377 A JP155377 A JP 155377A JP S6022615 B2 JPS6022615 B2 JP S6022615B2
Authority
JP
Japan
Prior art keywords
sheet
temperature
rolling
melting point
ripening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP155377A
Other languages
Japanese (ja)
Other versions
JPS5386762A (en
Inventor
武 神谷
勝哉 矢崎
俊 井上
力雄 黒田
省治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP155377A priority Critical patent/JPS6022615B2/en
Publication of JPS5386762A publication Critical patent/JPS5386762A/en
Publication of JPS6022615B2 publication Critical patent/JPS6022615B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明は、熱可塑性合成樹脂成形品の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thermoplastic synthetic resin molded article.

更に詳しく述べれば従来公知の方法で得られる熱可塑性
合成樹脂シートを圧延処理したシートを用いて熟成形時
のシートのしわ、たるみなどの問題を伴うことなく熟成
形を行なう方法に関するものである。従来、食品容器、
医薬品容器等としてポリスチレン、ポリ塩化ビニルシー
トを通常の圧空、真空成形等の熟成形によって得られた
ものが使用されてきており、これ等樹脂はその成形性に
優れ、且つ製品の透明性も非常に優れたものである事は
周知の如くである。
More specifically, the present invention relates to a method of ripening a sheet obtained by rolling a thermoplastic synthetic resin sheet obtained by a conventionally known method without causing problems such as wrinkling or sagging of the sheet during ripening. Conventionally, food containers,
Polystyrene and polyvinyl chloride sheets obtained by conventional aging processes such as compressed air and vacuum forming have been used for pharmaceutical containers, etc., and these resins have excellent moldability and the transparency of the product is also very high. It is well known that it is an excellent product.

しかるに、近年、これ等樹脂成形品においてその耐熱性
、,衛生性、廃棄時の焼却公害等が問題視されており、
これらの樹脂と異なり前記問題がないような樹脂、即ち
、ポリエチレン、ポリプロピレン等のポリオレフィン系
樹脂、ナイロン、ポリエステル等の樹脂のシートを熟成
形して成形品を作るような技術が開発されている。然し
、通常の方法で得られること等の樹脂シートを圧空成形
又は真空成形せんとする場合、熟成形時の加熱溶融段階
でシートがたるみ、或いは周辺にしわが入り、得られる
成形品はしわの入った歪みのあるものしか得られない。
However, in recent years, issues such as heat resistance, hygiene, and incineration pollution during disposal of these resin molded products have been raised.
Techniques have been developed for producing molded products by aging sheets of resins that, unlike these resins, do not have the above-mentioned problems, ie, polyolefin resins such as polyethylene and polypropylene, nylon, and polyester resins. However, when pressure-forming or vacuum-forming a resin sheet obtained by a conventional method, the sheet may sag during the heating and melting stage during ripening, or wrinkles may form around the periphery, resulting in a molded product with wrinkles. The only thing you can get is something that is distorted.

最近、前述の様な成形時のシートのたるみ、しわを除き
、良好な成形品を得る方法として、特関昭47一114
8y号公報にみられるように高いメルトフロ−値を有す
るポリオレフィンを用い、シート成形時に溶融温度、冷
却速度、ロール表面粗度等を高度に細かく制御して得た
シートを、融点以下の固相状態でプラグァシスト法によ
り成形品を得る方法が提案されている。
Recently, as a method for obtaining good molded products by removing the sagging and wrinkles of sheets during molding as mentioned above, Tokukan Sho 47-114
As seen in Publication No. 8y, a polyolefin with a high melt flow value is used, and the sheet obtained by highly finely controlling the melting temperature, cooling rate, roll surface roughness, etc. during sheet forming is processed into a solid state below the melting point. proposed a method of obtaining molded products using the plugassist method.

然し、この場合第一に使用するポリオレフインが著しく
高いメルトフロー値を持つものに限られる事、又シート
成形に高度の技術を要する事、即ちシ山ト厚み等は簡単
に変えられない等未だ不満足な諸点を有する。又、騒く
最近においては、侍開昭50一158652号公報にみ
られるように不透明なポリプロピレンシートを加熱溶融
急冷の熱処理をすることにより得,た透明ポリプロピレ
ンシートを融点以下の温度で熟成形する方法も提案され
ている。該方法はその方法も簡便で、且つその効果も顕
著でポリプロピレンのメルトフロー値にも限定されず有
用な方法と言えるが、該技術は成形用シートを一旦加熱
溶融するため、シート自体が厚み変化を発生しやすく、
さらに、加熱、冷却むらも伴なつて均一な厚さのシート
を得ることははなはだ困難であり、よって通常の熟成形
しても良好な成形品を得ることはむずかしい。本発明は
斯る諸問題、即ち材料に限定されず、尚且つ簡略な方法
と装置により成形時のシートのたるみ、しわを防止し、
偏肉にない良好な成形品を得る方法を提供する事を目的
とするものである。
However, in this case, the polyolefin used in the first place is limited to those with extremely high melt flow values, and sheet forming requires advanced technology, which means that the sheet thickness cannot be easily changed, etc., which is still unsatisfactory. It has various points. Also, recently, as seen in Samurai Publication No. 50-158652, an opaque polypropylene sheet is obtained by heat-melting and rapidly cooling, and the transparent polypropylene sheet is aged at a temperature below its melting point. A method has also been proposed. This method is simple and effective, and is not limited to the melt flow value of polypropylene, so it can be said to be a useful method.However, since this technique heats and melts the sheet for molding, the sheet itself may change in thickness. is likely to occur,
Furthermore, it is extremely difficult to obtain a sheet with a uniform thickness due to uneven heating and cooling, and therefore it is difficult to obtain a good molded product even by normal aging. The present invention solves such problems, that is, it is not limited to materials, but also uses a simple method and device to prevent sheet sagging and wrinkles during molding.
The purpose of this invention is to provide a method for obtaining a good molded product that does not have uneven thickness.

本発明者等は、熱可塑性合成樹脂シートをその融点より
低いか又は流動開始点(明確な融点を示さない樹脂につ
いてのみ用いる)より低い温度にてロール圧延する事に
より得られたシートをその融点又は流動開始点より高い
温度で熟成形すれば、材質、分子量の大小等の諸因子に
は殆んど影響されずに上記の成形時の問題を解決しうる
事を見出し、この知見を基に本発明に至ったものである
The present inventors have developed a sheet obtained by rolling a thermoplastic synthetic resin sheet at a temperature lower than its melting point or lower than its flow initiation point (used only for resins that do not have a clear melting point). Alternatively, we found that the above-mentioned problems during molding can be solved by aging at a temperature higher than the flow start point, almost unaffected by various factors such as material and molecular weight, and based on this knowledge, This led to the present invention.

すなわち本発明の通常の方法で熱可塑性合成樹脂シート
を得、これをその融点又は流動開始点より低い温度にお
いて互いに反対方向へ回転せしめられ、且つ該シートの
厚さよりも小さい間隔に設定された一対の圧延ロール間
隙を通過させる事により、薄化シートを得、次いで該圧
延シートを周緑を緊統した状態でその融点又は流動開始
点より高くかつそれより20℃以上高くない温度に加熱
して圧空成形又は真空成形する事によって成形性を改善
して、従来の汎用の圧空成形機又は真空成形機にて良好
な製品を得ようとするものである。シートのしわ、たる
みの程度を小さくする為にはシートの温度を低く保つ事
も一つの有力な方法である。然し、この場合、特に、厚
肉の容器等を得る際には、シート賦形時の所要圧力が大
きくなり、熟成形機の強力化が必要なことがある。即ち
具体的には真空成形の様な大気圧では出来ず、圧空成形
を使用、且つその圧空圧を相当に大きくしなくてはなら
ない事もあるのである(後記の比較例2参照)。この様
の特に融点より低い温度、又は流動開始点より低い温度
での実施は特に透明性の良好な成形品を得るのに有利で
あるが、熟成形時の賦形所要圧力が高くなり、装置コス
トの上で大中に不利となる。所が熟成形時にシート温度
を融点又は流動開始点より高くしてもその配向性からく
る熱収縮によるシートの張り能力は低下しないので、高
度の透明性を特に厳しく必要としない様な状況の下では
、この事実を圧空成形又は真空成形に利用することによ
り、前述の問題を解決しうるのである。本方法に使用さ
れる熱可塑性合成樹脂は、特に限定はされず、例えばポ
リアミド系樹脂、ポリエステル系樹脂、ポリオレフィン
系樹脂、ポリスチロール系樹脂、ポリ塩化ビニル系樹脂
等である。
That is, a pair of thermoplastic synthetic resin sheets obtained by the usual method of the present invention, rotated in opposite directions at a temperature lower than the melting point or flow start point, and set at an interval smaller than the thickness of the sheet. A thinned sheet is obtained by passing the rolled sheet through a nip between rolling rolls, and then the rolled sheet is heated under tight conditions to a temperature higher than its melting point or flow initiation point and not more than 20°C higher than that. The aim is to improve moldability by air pressure forming or vacuum forming, and to obtain a good product using a conventional general-purpose air pressure forming machine or vacuum forming machine. In order to reduce the degree of wrinkling and sagging of the sheet, one effective method is to keep the sheet temperature low. However, in this case, especially when obtaining thick-walled containers, etc., the pressure required during sheet shaping becomes large, and it may be necessary to strengthen the ripening machine. That is, specifically, there are cases where it is not possible to use atmospheric pressure such as vacuum forming, and it is necessary to use air pressure forming and to increase the air pressure considerably (see Comparative Example 2 below). This process, particularly at a temperature lower than the melting point or lower than the flow start point, is advantageous in obtaining a molded product with particularly good transparency, but it increases the pressure required for molding during ripening, and It is disadvantageous to large players in terms of cost. However, even if the sheet temperature is made higher than the melting point or flow start point during ripening, the sheet tensioning ability due to heat shrinkage due to its orientation will not decrease, so it can be used in situations where a high degree of transparency is not particularly required. By utilizing this fact in pressure forming or vacuum forming, the above-mentioned problem can be solved. The thermoplastic synthetic resin used in this method is not particularly limited, and includes, for example, polyamide resin, polyester resin, polyolefin resin, polystyrene resin, polyvinyl chloride resin, and the like.

特に、結晶性熱可塑性樹脂には本方法はその効果が大き
い。すなわち、結晶性熱可塑性樹脂は一般にその融点以
上における溶融張力が小さく、従ってシ−トの熟成形の
際の予張り(子熟)時に自己保持力がなく、なるみ、し
わを大きく発生しやすいのであるが、本発明に従って配
向を与え、その熱収縮力によって自己保持力を増加せし
めて前記阻害因子を除去する効果は大きい。例えばポリ
エチレン、ポリプロピレン等の結晶ポリオレフィン系樹
脂は特に本方法に妥当な樹脂である。これ等材料におい
て、その分子量の大小は本方法の実施に支障を与えるも
のではない。本方法の圧延処理に用いるシートはどんな
成形法で得られたものでもよく何等限定されない。
This method is particularly effective for crystalline thermoplastic resins. In other words, crystalline thermoplastic resins generally have low melt tension above their melting point, and therefore lack self-holding power during pre-stretching (ripening) when ripening sheets, and are prone to curling and wrinkles. However, by providing orientation according to the present invention and increasing the self-retention force by the heat shrinkage force, the effect of removing the above-mentioned inhibiting factors is great. For example, crystalline polyolefin resins such as polyethylene and polypropylene are particularly suitable resins for this method. The molecular weight of these materials does not pose a hindrance to the implementation of this method. The sheet used in the rolling process of this method may be obtained by any forming method and is not limited in any way.

即ち通常用いられる押出し成形法でも良いし、又プレス
成形、カレンダー成形等の方法を用いても差支えない。
かようなシートを圧延処理して熟成形用シートとするも
のであるが、該シートの厚さはこれも本質的に限定され
るものではないが、通常、最終の圧延シート厚としては
、0.02側〜2.0肋の範囲が好ましく、特に、0.
1肋〜1.5柵が好ましい。過度の厚さはロール圧延時
の所要の圧延圧力が過大となり圧延ロールは著しく大型
とせざるを得ず、経済的な観点から実施の有利性を判断
せねばならない。シートのロール圧延に際しては、シー
トが該ロール間で圧延される際に固相状態でなければな
らないが、圧延時の温度が該融点又は流動開始点より著
しく低いと所要圧延圧力の大中な増大を招く。通常は該
シートの材質の融点又は流動開始点より5ぴ○低い温度
までの範囲内、好ましくは3び○低い温度までの範囲内
の温度で圧延される。該温度範囲内ではできるだけ高温
下で圧延する方が剛性の点で良い。ロール圧延の方法は
従釆公知の方法のいずれでも良いが、圧延後の材料の弾
性回復を防止し、又所要圧延圧力を低下させる等の圧延
効率を上昇させる点において、一対の圧延ロールの周速
度を互いに異ならしめる、いわゆる非等周速圧延が好ま
しい。より好ましくは両ロールの瀞速度を異ならしめ且
つ圧延ロールから排出する薄化された圧延シートをその
まま周速度の高い方のロール表面上に沿わせた後引きと
るか、又は該高周速度ロールの表面速度と同一の速度で
これをひきとるとより良好な結果が得られる。本発明に
おける圧延では実質的に中の変化がないので、圧延倍率
は、(圧延前シール厚さ/圧延後シール厚さ)で表わさ
れるが、上記圧延の場合、圧延倍率は5を超えない範囲
が良い。5を超えると圧延シールは圧延方向に著しく分
子配向化が進行し、その結果シートの長さ方向の強度が
上昇し、中方向の強度に比しその差が大となり、その方
向性のため熟成形性は低下する。
That is, a commonly used extrusion molding method may be used, or a method such as press molding or calendar molding may be used.
Such a sheet is rolled to form a sheet for ripening, and although the thickness of the sheet is not essentially limited, the final rolled sheet thickness is usually 0. The range of .02 side to 2.0 ribs is preferable, especially 0.02 side to 2.0 ribs.
1 to 1.5 fences is preferred. If the thickness is excessive, the required rolling pressure during roll rolling becomes excessive, and the rolling rolls must be extremely large, so the advantage of implementation must be judged from an economical point of view. When roll rolling a sheet, the sheet must be in a solid state when rolled between the rolls, but if the rolling temperature is significantly lower than the melting point or flow initiation point, the required rolling pressure will increase significantly. invite. Usually, rolling is carried out at a temperature up to 5 mm lower, preferably 3 mm lower than the melting point or flow initiation point of the material of the sheet. Within this temperature range, rolling at as high a temperature as possible is better in terms of rigidity. The roll rolling method may be any conventionally known method, but the circumference of the pair of rolling rolls is effective in preventing elastic recovery of the material after rolling and increasing rolling efficiency by reducing the required rolling pressure. So-called non-uniform circumferential speed rolling, in which the speeds are made different from each other, is preferred. More preferably, the shearing speeds of both rolls are made different, and the thinned rolled sheet discharged from the rolling roll is passed along the surface of the roll having a higher circumferential speed and then taken off, or Better results are obtained if it is pulled at the same speed as the surface speed. Since there is virtually no change in the rolling process in the present invention, the rolling ratio is expressed as (seal thickness before rolling/seal thickness after rolling), but in the case of the above rolling, the rolling ratio does not exceed 5. is good. When the number exceeds 5, the molecular orientation of the rolled seal progresses significantly in the rolling direction, and as a result, the strength in the longitudinal direction of the sheet increases, and the difference is larger than that in the middle direction, and due to this directionality, aging is difficult. The shape decreases.

通常は圧延倍率1.0a〆上で3.0以下、好ましくは
1.5以下、2.0以下が良好な結果を与える。すなわ
ち、熟成形の子張り(予熱)時にシートにたるみ、しわ
等が発生せず、且つ方向性の障害もあらわれないという
良好な結果を与える。又、圧延ロール表面は平滑性に優
れる程得られる圧延シートの表面は平滑となり、通常0
.4S以下の表面粗度、好ましくは、0.$以下の表面
組度(JIS試験法B−0601による表示)とする事
により目的は充分達せられる。かようにして作られた圧
延シートを圧空成形又は真空成形するのであるが、比較
的厚手、深絞り成形品の場合はプラグを併用するのが好
ましい。いずれの成形方式による場合も特に条件の設定
は特殊な事は必要とせず、該シートをその融点又は流動
開始点より高くかつそれより20qC以上高くない温度
に加熱し、かつ好ましくは該温度に保つ時間を5分以内
として熟成形を行なう。熟成形の際の圧延シートの予熱
は特に限定はないが赤外線鰻射等の非接触方式の加熱装
置及び熱板などの接触方式が使用される。本発明に際し
ての子熱時にはたるみ、しわ等の発生は認められないが
、ダィ周辺緑は緊締する必要がある。成形用の金型はそ
の材質として金属、木、石膏等速常用いられる如何なる
ものでも良いが、シートの接触する部分は平滑な程良く
、従って鏡面仕上げをした金属製がより良好な結果を与
える。
Usually, a rolling ratio of 1.0a or less of 3.0 or less, preferably 1.5 or less, and 2.0 or less gives good results. That is, good results are obtained in that the sheet does not sag, wrinkles, etc., and does not have any directional problems during the preheating of the matured sheet. In addition, the smoother the surface of the rolling roll, the smoother the surface of the resulting rolled sheet, which usually has a 0.
.. Surface roughness of 4S or less, preferably 0. The purpose can be fully achieved by setting the surface assembly degree (indicated by JIS test method B-0601) to be less than $. The thus-produced rolled sheet is subjected to pressure forming or vacuum forming, and in the case of relatively thick, deep-drawn products, it is preferable to use a plug in combination. Regardless of the molding method, there is no need to set any special conditions; the sheet is heated to a temperature higher than its melting point or flow start point, but not higher than 20 qC or more, and preferably kept at this temperature. Aging is performed within 5 minutes. Preheating of the rolled sheet during ripening is not particularly limited, but non-contact heating devices such as infrared rays and contact methods such as hot plates are used. In the present invention, no sagging, wrinkles, etc. are observed during heating, but the green around the die must be tightened. The mold for molding may be made of metal, wood, or plaster of any material commonly used, but the smoother the contacting part of the sheet, the better; therefore, metal with a mirror finish will give better results. .

型の温度は特に加熱又は冷却の必要はないが通常成形サ
イクルの短縮の為冷却されているものが良い。プラグ等
を用いる方式の場合、プラグ先端に温度はシート温度に
近い温度が望ましい。
There is no particular need for heating or cooling the temperature of the mold, but it is preferable that the mold be cooled to shorten the molding cycle. In the case of a method using a plug, etc., the temperature at the tip of the plug is preferably close to the seat temperature.

特に金属製の場合、シート温度に比し、その温度が低過
ぎるとシートのプラグへの接触部は冷却され、伸び変形
が起り難く、結果として偏肉が起りやすくなる。逆にプ
ラグ先端部の温度がシートに比し高過ぎる場合(融点ま
たは流動開始点よりほぼ20qo以上高い場合)も該接
触部の溶断が起り易く成形が困難となる。加熱について
詳述すると、一般に熟成形に於いてはシートの加熱方法
には大きく分けて熱線鯛射方式(赤外線ヒーター等)及
び熱オーブン方式が採用されている。
Particularly in the case of metal, if the temperature is too low compared to the sheet temperature, the contact portion of the sheet to the plug will be cooled, making it difficult to stretch and deform, resulting in uneven thickness. Conversely, if the temperature at the tip of the plug is too high compared to the sheet (approximately 20 qo or more higher than the melting point or flow start point), the contact portion is likely to melt and break, making molding difficult. To explain the heating in detail, in general, in the case of ripening, sheet heating methods are roughly divided into a heat ray ray method (infrared heater, etc.) and a heat oven method.

従来の特にポIJオレフィン等の無配向シートを使う場
合、加熱された時その膨張によって大きくうねり、その
結果たるみやしわが発生する。この状態がもし、頚射加
熱方式の下でおこると△T(熱源とシート間の温度勾配
)が大きい為熱源に近い箇所のシートは益々温度が上昇
し、熱源から遠い所とは大きな温度差が出来、結果とし
てシートに相当な温度分布を生じ、安定な熱成形を困難
ならしめる。一方、熱オープンでは△Tが小さい為、シ
ートを熱源との距離にそれ程温度は影響しない。この様
に加熱方式に意を用いなければならない。但し熱オープ
ン方式も△Tを小にする為には漫然たる熱風炉では雰囲
気そのものに温度ムラが出来てしまい、相当に炉内対流
等には繊密な設計が必要となると思われる。この点、配
向シートはたるみ等が起らず、水平に張られているので
簡単な噴射方式でも使用できるので厳密性を要しないこ
とになる。以下実施例及び比較例をもって本発明を詳細
に説明するが、例中において使用された試験の内容と試
験法は次のとおりである。
When using a conventional non-oriented sheet such as poly-IJ olefin, it expands when heated, causing large undulations, resulting in sagging and wrinkles. If this situation were to occur under the radiation heating method, the temperature of the sheet near the heat source would rise further due to the large △T (temperature gradient between the heat source and the sheet), and there would be a large temperature difference between the sheet near the heat source and the sheet far away from the heat source. This results in a considerable temperature distribution in the sheet, making stable thermoforming difficult. On the other hand, in thermal open, ΔT is small, so the temperature does not have much effect on the distance between the sheet and the heat source. In this way, care must be taken in the heating method. However, in order to reduce ΔT with the thermal open method, if the hot air stove is used in a careless manner, temperature unevenness will occur in the atmosphere itself, and it is thought that a delicate design is required for the convection inside the furnace. In this respect, since the orientation sheet does not sag and is stretched horizontally, it can be used even with a simple spraying method, so strictness is not required. The present invention will be explained in detail below with reference to Examples and Comparative Examples, and the contents and testing methods used in the Examples are as follows.

引張弾性率:剛性のめやすとなり、値が大きい程剛性が
大きくなる。
Tensile modulus: This is a measure of rigidity; the higher the value, the greater the rigidity.

(ASTM D−882準拠座屈強度:成形品容器の腰
の強さのめやすとなり、値が大きい程腰の強い容器であ
る(成形品の側壁の上縁に板をおきテン シロン試験機を用い5仇吻/側の速度で 押しつぶしてゆき、側壁の座屈開始時 の荷重を圧縮型ロードセルにより測定 . した 容器壁の厚さ:成形品の良否のめやすとともに圧空成形
性のめやすとなる(容器の肇を切に開き扇形となし等間
隔で上下各5 ケ所の厚さの平均値)。
(Buckling strength according to ASTM D-882: This is a measure of the stiffness of a molded product container. The higher the value, the stronger the container is.) The container wall is crushed at a forward speed and the load at the start of buckling of the side wall is measured using a compression load cell. Thickness of the container wall: This is a measure of the quality of the molded product as well as its air formability (the container's (Average value of the thickness of 5 places on the top and bottom, evenly spaced in a fan-shaped manner with the arms open).

容器底の厚さ:圧空成形性のめやすとなる(容器の底部
5ケ所の厚さの平均値)。
Thickness of the bottom of the container: This is a measure of air pressure moldability (the average value of the thickness at 5 locations on the bottom of the container).

実施例 1〜2 MIO.3夕/1畔分、密度0.959夕/榊、融点1
27℃の市販高密度ポリエチレン(HDPEと称す)を
押出し成形法(押出温度210℃、シーテイングロール
温度9000)により厚さがそれぞれ0.6側、0.9
側で中40W吻のシートとなし、次いでこれらのシート
を11000の予熱温度に保ち表面粗度0.$、径20
0側0、面長50仇岬の、125q0の温度に保たれ、
且つ非等周速(高速ロール5.2凧/分、低速ロール1
.2の/分の一対の圧延ロール間隙(0.3脚)を通過
させることにより各々0.3肌厚の熟成形用シートをし
た。
Examples 1-2 MIO. 3 evenings/1 ridge, density 0.959 evening/Sakaki, melting point 1
Commercially available high-density polyethylene (referred to as HDPE) at 27°C was extruded to a thickness of 0.6 and 0.9, respectively (extrusion temperature 210°C, sheeting roll temperature 9000°C).
These sheets were then kept at a preheating temperature of 11,000 °C to obtain a surface roughness of 0. $, diameter 20
0 side 0, surface length 50mm, kept at a temperature of 125q0,
And non-uniform circumferential speed (high speed roll 5.2 kites/min, low speed roll 1
.. A maturing sheet of 0.3 skin thickness was formed by passing through a pair of rolling rolls (0.3 legs) at a speed of 0.2 mm/min.

該シートの物性を第1表に示す。この圧延倍率2.03
.0のシートを周囲を繁締した後、赤外線鍵射装置で1
5砂間加熱し、シート温度を134qoとした。
The physical properties of the sheet are shown in Table 1. This rolling ratio is 2.03
.. After tightening the surrounding area of the 0 sheet, 1
The sheet was heated to a temperature of 134 qo.

シート温度はシート下面に熱電対を耐熱テープにて貼付
けて測定した。次いで110℃に加熱されたプラグを用
いてプラグアシスト圧空成形方式により4.5k9/地
の圧力下に周○径4仇肋、底部経38肋、深さ92柳の
円形カップ状成形品を得、この成形品の各部厚さ、各部
曇り度、さらに座屈強度を測定した。結果わ第1表に記
す。熟成形時にシ−トがその融点以上に保持された時間
は約1硯砂であった(第1図参照)。比較例 1実施例
1〜2にて使用したものと同一の樹脂を用い、押出し成
形方式により0.3厚の熟成形用シートを得、次いで圧
延する事なく、実施例1と同様にして熟成形を行なった
The sheet temperature was measured by attaching a thermocouple to the bottom surface of the sheet using heat-resistant tape. Next, using a plug heated to 110°C, a circular cup-shaped molded product with a diameter of 4 ribs, a diameter of the bottom of 38 ribs, and a depth of 92 ribs was obtained under a pressure of 4.5 k9/ground using a plug-assisted pressure forming method. The thickness of each part of this molded article, the degree of haze of each part, and the buckling strength were measured. The results are shown in Table 1. The time that the sheet was held above its melting point during ripening was about 1 quartz (see Figure 1). Comparative Example 1 Using the same resin as that used in Examples 1 and 2, a 0.3-thick maturing sheet was obtained by extrusion molding, and then aged in the same manner as in Example 1 without rolling. performed the form.

熟成形用シートの物性と成形品の物性を第1表に示した
Table 1 shows the physical properties of the sheet for ripening and the physical properties of the molded product.

比較例 2 実施例1で圧空成形に使用したシートと同じシート(倍
率2.0で圧延したもの)を、熟成形時にシート融点よ
り低い115qCのシート温度に保持し、熟成形機とし
て、実施例1と同一の圧空成形機を使用した結果得られ
たカップは型決り(型忠実性)が悪く、底部のコーナー
部は金型寸法通りのRがつかず、ゆるやかなRを示して
おり、成形品として不完全であった。
Comparative Example 2 The same sheet as the sheet used for pressure forming in Example 1 (rolled at a magnification of 2.0) was maintained at a sheet temperature of 115 qC, lower than the sheet melting point, during ripening, and as a ripening machine, Example The cup obtained by using the same air pressure forming machine as in 1 had poor molding (mold fidelity), and the bottom corners were not rounded according to the mold dimensions, showing a gentle rounding. It was defective as a product.

これを更に圧延圧を高めていった処7k9/塊の圧延圧
で始めて、実施例1と同様の成形品が得られた。7k9
/地という圧力は通常の熟成形機では高過ぎる圧力であ
る。
The rolling pressure was further increased to 7k9/lump, and a molded product similar to that of Example 1 was obtained. 7k9
This pressure is too high for normal aging machines.

実施例 3MF12.0夕/1ひげ、密度0.910夕
/地、融点168℃の市販アイソタクチツクポリプロピ
レン(jso−PPと称す)を用い、押出し温度245
q0、シーブィングロール温度10500、シート圧延
時の予熱温度140qo、圧延ロール温度1500○、
熟成形時シート温度170qCをなし、0.3肋厚シー
トの圧延倍率を2.0とし、プラグ温度を158午○と
した以外は全て実施例1と全く同様にして円形カップ状
成形品を得た。
Example 3 Using commercially available isotactic polypropylene (referred to as jso-PP) having a MF of 12.0 m/1, a density of 0.910 m/m, and a melting point of 168°C, the extrusion temperature was 245°C.
q0, sieving roll temperature 10500, preheating temperature during sheet rolling 140qo, rolling roll temperature 1500○,
A circular cup-shaped molded product was obtained in the same manner as in Example 1, except that the sheet temperature during ripening was 170 qC, the rolling ratio of the 0.3 rib sheet was 2.0, and the plug temperature was 158 pm. Ta.

該シ−トの物性及び成形品の物性を第1表に示す。熟成
形時にシートがその融点以上に保持された時間は、約1
晩抄であった。比較例 3 実施例3にて使用したものと同一の樹脂を用い、押出温
度、シーティングロール温度、熟成形時温度を実施例3
と同一にした以外はすべて比較例1と同様にして円形カ
ップ状成形品を得た。
Table 1 shows the physical properties of the sheet and the molded product. The time the sheet was held above its melting point during ripening was approximately 1
It was Bansho. Comparative Example 3 The same resin as that used in Example 3 was used, and the extrusion temperature, sheeting roll temperature, and aging temperature were the same as in Example 3.
A circular cup-shaped molded product was obtained in the same manner as in Comparative Example 1 except that the same procedure was used as in Comparative Example 1.

熟成形用シートの物性及び成形品の物性を第1表に示す
。実施例 4 市販ナイロン6(普通粘度、密度、1.14融点20が
o)を用い、押出し温度26か0、シーティングロール
温度150℃、シート圧延時の予熱温度185℃、圧延
温度190qo、熟成形時シート温度210qoとなし
、0.3肋厚シートの圧延倍率を2.0とし、プラグ温
度を195℃とした以外は全て実施例1と全く同様にし
て円形カップ状成形品を得た。
Table 1 shows the physical properties of the sheet for ripening and the physical properties of the molded product. Example 4 Using commercially available nylon 6 (normal viscosity, density, 1.14 melting point 20 o), extrusion temperature 26 or 0, sheeting roll temperature 150°C, preheating temperature during sheet rolling 185°C, rolling temperature 190qo, aged type. A circular cup-shaped molded product was obtained in the same manner as in Example 1 except that the sheet temperature was 210 qo, the rolling ratio of the 0.3 rib sheet was 2.0, and the plug temperature was 195°C.

熟成形用シートの物性及び成形品の物性を第1表に示す
。熟成形時にシートがその融点以上に保持された時間は
約1町軸であった。比較例 4 実施例4にて使用したものと同一の樹脂を用い、押出温
度、シーテイングロール温度、熟成形時温度を実施例4
と同一にした以外はすべて比較例1と同機にして円形カ
ップ状成形品を得た。
Table 1 shows the physical properties of the sheet for ripening and the physical properties of the molded product. The time that the sheet was held above its melting point during ripening was about 1 hour. Comparative Example 4 The same resin as that used in Example 4 was used, and the extrusion temperature, sheeting roll temperature, and ripening temperature were the same as in Example 4.
A circular cup-shaped molded product was obtained using the same machine as in Comparative Example 1, except that the machine was the same as that of Comparative Example 1.

熱成形用シートの物性及び成形品の物性を第1表に示す
。第1表
The physical properties of the thermoformable sheet and the physical properties of the molded article are shown in Table 1. Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜2および比較例1における熟成形時
のシート温度の経時変化を示し、第2図は各実施例およ
び各比較例における熟成形時のシートのたるみおよびし
わの有無および該たるみ、しわの発生状況を示す。 第1図 第2図
Figure 1 shows the change in sheet temperature over time during ripening in Examples 1 to 2 and Comparative Example 1, and Figure 2 shows the presence or absence of sagging and wrinkles in the sheet during ripening in each Example and Comparative Example. The occurrence of sagging and wrinkles is shown. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性合成樹脂シートをその融点まは流動開始点
より低い温度において該シートの厚さより小さい間隙を
有する一対のロール間を通過させることにより圧延して
得られた一軸配向シートを周縁を緊締した状態でもの融
点または流動開始点より高くかつそれより20℃以上高
くない温度に加熱して圧空成形又は真空成形することを
特徴とする容器の製造方法。
1. A uniaxially oriented sheet obtained by rolling a thermoplastic synthetic resin sheet by passing it between a pair of rolls having a gap smaller than the thickness of the sheet at a temperature lower than its melting point or flow start point, and tightening the periphery. 1. A method for producing a container, which comprises air pressure forming or vacuum forming by heating to a temperature higher than the melting point or flow start point of the container, but not more than 20° C. higher than the melting point or flow start point of the container.
JP155377A 1977-01-12 1977-01-12 Container manufacturing method Expired JPS6022615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP155377A JPS6022615B2 (en) 1977-01-12 1977-01-12 Container manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP155377A JPS6022615B2 (en) 1977-01-12 1977-01-12 Container manufacturing method

Publications (2)

Publication Number Publication Date
JPS5386762A JPS5386762A (en) 1978-07-31
JPS6022615B2 true JPS6022615B2 (en) 1985-06-03

Family

ID=11504708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP155377A Expired JPS6022615B2 (en) 1977-01-12 1977-01-12 Container manufacturing method

Country Status (1)

Country Link
JP (1) JPS6022615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084750A1 (en) * 2009-01-23 2010-07-29 国立大学法人広島大学 Polymer sheet and method for producing same
JP5339350B2 (en) * 2009-01-23 2013-11-13 サンアロマー株式会社 Crystalline resin film or sheet manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPS5386762A (en) 1978-07-31

Similar Documents

Publication Publication Date Title
US4118454A (en) Method for producing transparent plastic molded articles
US4337116A (en) Contoured molded pulp container with polyester liner
US3333032A (en) Treated polymer surfaces of shaped articles
JPS5889319A (en) Heat setting method for thermoformed pet article using male plug as constraining body and article through said method
US5571473A (en) Process for thermoforming thermoplastic resin sheet
US4469270A (en) Article of partially crystalline organic resin and method and apparatus for making same
JPS6141290B2 (en)
US4140457A (en) Method for producing transparent plastic molded articles and thermoforming apparatus therefor
IE49923B1 (en) Process for bonding a polyester liner to a contoured molded pulp base and a plastic lined moulded pulp product
FR2398593A1 (en) PROCESS FOR MANUFACTURING THIN-WALL ARTICLES FROM A THERMOPLASTIC CRYSTALLINE MATERIAL
JPS6022615B2 (en) Container manufacturing method
AU629080B2 (en) Process for thermoforming thermoplastic resin sheet and apparatus therefor
JPS5953852B2 (en) Method for manufacturing transparent containers
JPS6030537B2 (en) Manufacturing method for containers, etc.
US3510549A (en) Process for preparing polypropylene films having thermal shrinkability
JPS6144051B2 (en)
JPS6216171B2 (en)
JP2003276080A (en) Thermoforming material of polyethylene terephthalate resin and method for producing thermoformed molding of polyethylene terephthalate resin
US4374800A (en) Method for making an article of partially crystalline organic resin
JPS5923536B2 (en) Plastic container manufacturing method and manufacturing equipment
JPS636347B2 (en)
US4073857A (en) Deep-drawing of a monoaxially oriented, heat relaxed polyester film
JPH02147317A (en) Method and apparatus for molding plastic container
JPS59199207A (en) Thermoforming of synthetic resin sheet
JPS6315129B2 (en)