JPS5950469B2 - Method for making electrolytic grinding wheels conductive - Google Patents

Method for making electrolytic grinding wheels conductive

Info

Publication number
JPS5950469B2
JPS5950469B2 JP7293075A JP7293075A JPS5950469B2 JP S5950469 B2 JPS5950469 B2 JP S5950469B2 JP 7293075 A JP7293075 A JP 7293075A JP 7293075 A JP7293075 A JP 7293075A JP S5950469 B2 JPS5950469 B2 JP S5950469B2
Authority
JP
Japan
Prior art keywords
plating
grinding wheel
liquid
conductive
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7293075A
Other languages
Japanese (ja)
Other versions
JPS51148894A (en
Inventor
潔 井上
明彦 清水
徳義 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP7293075A priority Critical patent/JPS5950469B2/en
Publication of JPS51148894A publication Critical patent/JPS51148894A/en
Publication of JPS5950469B2 publication Critical patent/JPS5950469B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/10Electrodes specially adapted therefor or their manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】 この発明は電解研削砥石の導電化処理方法に関するもの
であり、特に化学メッキ液の早期老化を防止して比較的
短時間で化学メッキが行え、導電化処理を工業化に則し
て一貫した製作工程で行える工業的に有利な導電化処理
方法に係るものである。
[Detailed Description of the Invention] The present invention relates to a method for making an electrolytic grinding wheel conductive. In particular, it prevents premature aging of a chemical plating solution, allows chemical plating to be performed in a relatively short period of time, and makes conductive treatment industrialized. This invention relates to an industrially advantageous conductive treatment method that can be carried out through a consistent manufacturing process.

一般に電解用研削砥石は被加工体を電解加工するための
導電性部分と、機械的な研削加工を行なわせる砥粒部分
とを備えている。
Generally, an electrolytic grinding wheel includes a conductive part for electrolytically processing a workpiece and an abrasive part for mechanically grinding.

従来、電解研削用砥石として用いられていたグラファイ
ト砥石、メタルボンド砥石等は機械的な研削加工性が弱
いか、或いは砥石の外形をドレッシングしたりトルーイ
ングすることが不可能である等の不利点があった。
Conventionally, graphite grinding wheels, metal bond grinding wheels, etc. that have been used as grinding wheels for electrolytic grinding have disadvantages such as weak mechanical grinding properties or the inability to dress or true the external shape of the grinding wheel. there were.

一方ビトリファイドボンド砥石はドレッシングやトルー
イングが可能であって機械的な研削加工性にも優れてい
るが、砥粒を結合しているビトリファイドボンドが絶縁
体であるため、このビトリファイドボンド砥石を電解研
削用砥石として使用するためには、砥石の表面や気孔壁
面に金属やグラファイト等の導電性材を被膜または粒子
として被着せしめ導電路を形成させる必要がある。
On the other hand, vitrified bond grinding wheels allow dressing and truing and have excellent mechanical grinding properties, but because the vitrified bond that binds the abrasive grains is an insulator, this vitrified bond grinding wheel is used for electrolytic grinding. In order to use it as a grindstone, it is necessary to apply a conductive material such as metal or graphite as a film or particles to the surface of the grindstone or the walls of the pores to form a conductive path.

この導電性金属被膜等の形成手段として、例えば、銀、
ニッケルの微粒子を含有する懸濁液を砥石に含浸させ、
約1000℃の高温で加熱し、還元法によって銀、ニッ
ケルを砥石の表面、気孔内部に焼付けて被覆形成する手
段が公知であるが、砥石は急激な熱変化を受けると割れ
を生じ易く、このために前記の方法では長い時間をかけ
て予熱、除冷を行う必要があり、工業的製作方法として
は不向きであるのみならず、品質的にも電解研削砥石と
して満足される特性が得られなかった。
As a means for forming this conductive metal film, for example, silver,
A grindstone is impregnated with a suspension containing fine nickel particles,
A known method is to heat the grindstone at a high temperature of about 1000°C and use a reduction method to burn silver and nickel onto the surface and inside the pores of the grindstone to form a coating. Therefore, in the above method, it is necessary to perform preheating and slow cooling over a long period of time, which is not only unsuitable as an industrial manufacturing method, but also does not provide satisfactory quality characteristics as an electrolytic grinding wheel. Ta.

更に、このような高温熱処理を施す要のある方法では、
ビトリファイドボンド砥石よりも耐熱性の低いレジノイ
ドボンド砥石、或いはラバーボンド砥石では導電化処理
が実施出来ない。
Furthermore, in methods that require high-temperature heat treatment,
Conductive treatment cannot be performed with a resinoid bond grindstone or a rubber bond grindstone, which has lower heat resistance than a vitrified bond grindstone.

一方、近年になりメッキ方法として最も多く採用されて
いる電解メッキ法から、電気設備を必要としない化学メ
ッキ法が各分野で小規模ながら採用されており、各種化
学メッキ液組成の改良と共に各種化学メッキ液も市販さ
れるに至っている。
On the other hand, in recent years, chemical plating methods that do not require electrical equipment have been adopted on a small scale in various fields, replacing the electrolytic plating method that is most commonly used as a plating method. Plating solutions have also become commercially available.

その一例として化学銅メッキ液の組成の一例を挙げると
、金属源として硫酸銅、緩衝剤としてロッシェル塩、田
調整剤として水酸化ナトリウムを含むA液と、還元剤と
してフォルマリン液のB液との2液組成より成るものそ
の他がある。
As an example, the composition of a chemical copper plating solution is as follows: Solution A contains copper sulfate as a metal source, Rochelle's salt as a buffer, sodium hydroxide as a conditioner, and Solution B is a formalin solution as a reducing agent. There are others that consist of two liquid compositions.

従来、化学メッキを行うには前記A、B2液組成を混合
調製して貯溜しておき、この調製化学メッキ液に被メッ
キ体を浸漬、または砥石を貫通等する流通循環により行
う。
Conventionally, chemical plating is carried out by mixing and preparing the compositions of the two liquids A and B and storing the mixture, and immersing the object to be plated in the prepared chemical plating liquid, or circulating the liquid by passing it through a grindstone or the like.

この際のメッキ作用は周知の如くA液中の銅イオンがB
液の還元剤によって還元され、金属銅となって被メッキ
体に析出メッキされるわけであるが、この化学メッキ液
は電解メッキと異なり、成る期間使用すれば化学メッキ
液が老化してメッキ速度、能力が低下するために、新液
を補充交換する必要がある。
As is well known, the plating action at this time is that the copper ions in the A solution are
It is reduced by the reducing agent in the solution and becomes metallic copper, which is deposited and plated on the object to be plated. However, unlike electrolytic plating, this chemical plating solution ages and reduces the plating speed. , as the capacity decreases, it is necessary to replenish and replace with new fluid.

この場合、既に調製されている化学メッキを新液として
使用する場合のメッキ能力は第1図の如くである。
In this case, the plating ability when using already prepared chemical plating as the new solution is as shown in FIG.

図において、特性線0. I、 II、 IIIは化
学メッキ液調製直後、1日放置後、2日、3日放置後の
メッキ特性を示すものであり、調製後時間が経過するに
つれ、メッキ能力は低下する。
In the figure, the characteristic line 0. I, II, and III indicate the plating properties immediately after preparing the chemical plating solution, after leaving it for one day, and after leaving it for two days and three days, and the plating ability decreases as time passes after preparation.

このことは時間の経過と共に調製液中での還元剤の自然
分解、及び使用以前での銅析出が行われるためである。
This is because the reducing agent naturally decomposes in the preparation solution over time and copper precipitates before use.

そしてこのような事実は、上記またはそれ以外の金属塩
、緩衝剤、還元剤、その他等を適宜組合せた各種の組成
の化学メッキ液についてもはパ共通的に言えることであ
る。
This fact also applies to chemical plating solutions of various compositions in which the above or other metal salts, buffering agents, reducing agents, and the like are appropriately combined.

このために従来でも実際のメッキ作業に際しては、A、
B2液を調製した後は出来る限り早く使用するように行
っているが、それでもその都度調製を行うことはメッキ
の作業能率も当然ながら低くなる。
For this reason, even in the past, during actual plating work, A.
Although we try to use the B2 liquid as soon as possible after preparing it, if we prepare it each time, the efficiency of plating will naturally decrease.

以上のように、従来では一貫した工業的なメッキ作業工
程で連続作業が行えるように化学的メッキ液を調製供給
するプロセスは皆無であり、低い作業能率と低いメッキ
性能で化学メッキ液を使用しているのが現状である。
As mentioned above, in the past, there was no process for preparing and supplying chemical plating solutions that could be used continuously in a consistent industrial plating process, and chemical plating solutions were used with low work efficiency and poor plating performance. The current situation is that

又、特に非導電性材料から製作されている研削砥石に直
接化学金属メッキを施しても砥石表面に金属が析出メッ
キ出来ないので、化学メッキ処理を行うに際しては予じ
め化学メッキの際に核となる物質を被着させておくこと
が必要である。
In addition, even if chemical metal plating is applied directly to a grinding wheel made of a non-conductive material, the metal cannot be deposited on the surface of the grinding wheel. It is necessary to deposit a substance that will

この発明の目的は、上述従来の問題点に鑑み、これ等の
問題点を解決し、化学メッキ液の早期老化を防止して比
較的短時間で導電化の化学メッキを行えるようにすると
共に、工業的な製作工程で能率よく連続作業が行える導
電化処理方法を提供せんとするものである。
In view of the above-mentioned conventional problems, an object of the present invention is to solve these problems, prevent premature aging of a chemical plating solution, and perform conductive chemical plating in a relatively short time. It is an object of the present invention to provide a conductive treatment method that can be carried out efficiently and continuously in an industrial manufacturing process.

上記目的に沿うこの発明の方法は、例えばビトリファイ
ドボンド砥石等、非導電性で多孔質に製作された研削砥
石を先ず前処理容器内に収容配置し、前処理工程で脱脂
、酸洗い、水洗の浄化前処理と、更に化学メッキに際し
て化学メッキの密着力を高め、メッキの核となる物質を
砥石気孔壁面等の全表面に被着させるように例えば塩化
スズによる感受性化前処理、及びスズを例えばパラジウ
ムに置換させる活性化前処理を行った後に、当該研削砥
石をメッキ処理容器に収容配置し、それぞれ分離“独立
のタンクに収容した導電性付与の金属源としての金属塩
を含む液と還元剤を含む液とを各タンクより調整弁等を
介し所定の割合でピストン形送液装置へ混合吸引し、次
に該ピストン形送液装置のピストンを押し出すことによ
り混合メッキ液を前記メッキ処理容器内へ加圧供給する
ことにより、金属塩及び還元剤を夫々含む液を混合して
メッキ処理容器に1回送液する分だけ吸引、供給して多
孔質状研削砥石の気孔内壁面を含めた全表面に導電性金
属を析出させてメッキしたことを要旨とするもので゛あ
る。
In the method of the present invention, which achieves the above object, a non-conductive and porous grinding wheel, such as a vitrified bond grinding wheel, is first housed in a pretreatment container, and in the pretreatment step, it is degreased, pickled, and washed with water. Pre-purification treatment, and pre-sensitization treatment with tin chloride, for example, to increase the adhesion of the chemical plating and coat the entire surface of the grinding wheel pore wall with the substance that will serve as the core of the plating, and tin, for example. After performing activation pretreatment to replace palladium, the grinding wheel is placed in a plating treatment container, and a liquid containing a metal salt as a metal source for imparting conductivity and a reducing agent are separated and stored in separate tanks. A predetermined proportion of the plating solution is sucked from each tank into a piston-type liquid feeding device through a regulating valve, etc., and then the mixed plating solution is pumped into the plating processing container by pushing out the piston of the piston-type liquid feeding device. By supplying under pressure to the plating processing container, the entire surface of the porous grinding wheel, including the inner wall surface of the pores, is mixed with the liquid containing the metal salt and the reducing agent. The gist is that a conductive metal is deposited and plated on the surface.

次にこの発明の実施例を図示装置に従って説明すれば以
下の通りである。
Next, an embodiment of the present invention will be described below with reference to the illustrated device.

第2図において1は前処理工程装置、2は導電化処理工
程装置、3は使用済液の処理装置、4は乾燥装置であり
、導電化処理以前の研削砥石5は点線の如く■〜■のよ
うに各工程装置1,2と乾燥装置4との間を進み完成品
5′となる。
In FIG. 2, 1 is a pre-processing process device, 2 is a conductive process device, 3 is a used liquid processing device, 4 is a drying device, and the grinding wheel 5 before the conductive process is indicated by dotted lines. The finished product 5' is produced by passing between the process devices 1 and 2 and the drying device 4 as shown in FIG.

前処理工程装置1では前処理容器6、前処理液供給タン
ク7、加熱タンク8等を備えて相互が図示のように配管
されている。
The pretreatment process apparatus 1 includes a pretreatment container 6, a pretreatment liquid supply tank 7, a heating tank 8, and the like, which are connected to each other by piping as shown.

導電化処理工程装置2はメッキ処理容器9、各分離独立
した金属塩を含む液Aのタンク10、還元を含む液Bの
タンク11.混合比調整弁12、各タンク10.11及
びメッキ処理容器9との間に介在配置したピストン形送
液装置13のピストンシリンダ13a及びピストンシリ
ンダ13aの操作制御部13bを備えている。
The conductivity treatment process apparatus 2 includes a plating treatment container 9, a tank 10 for liquid A containing separate and independent metal salts, a tank 11 for liquid B containing reduction. It includes a mixing ratio adjustment valve 12, a piston cylinder 13a of a piston-type liquid feeding device 13 interposed between each tank 10.11 and the plating processing container 9, and an operation control section 13b for the piston cylinder 13a.

使用済液処理装置3は貯槽14、中和剤が加えられる中
和槽15を通して外方へ排出する中和装置16、及びメ
ッキ液貯槽17、回収反応槽18より成るメッキ液回収
装置19を備え、公害防止処理と再使用出来る化学メッ
キ液の回収を行っている。
The used liquid processing device 3 includes a storage tank 14, a neutralization device 16 for discharging the liquid to the outside through a neutralization tank 15 into which a neutralizing agent is added, and a plating liquid recovery device 19 consisting of a plating liquid storage tank 17 and a recovery reaction tank 18. We carry out pollution prevention treatment and recover chemical plating solution that can be reused.

前処理工程装置では次の如く前処理が行われる。In the pretreatment process device, pretreatment is performed as follows.

先ず前処理容器6内に収容配置された研削砥石に対して
、水源及び供給タンク7より水洗、10%のNaOHの
脱脂液Cによる脱脂、水洗、3.5%HCIの酸洗液り
による酸洗い、水洗、乾燥の浄化前処理を行う。
First, the grinding wheel housed in the pretreatment container 6 is washed with water from the water source and supply tank 7, degreased with a 10% NaOH degreasing solution C, rinsed with water, and acidified with a 3.5% HCI pickling solution. Perform pre-purification treatment of washing, rinsing with water, and drying.

引続いてSnCl210gハとHCl20〜50gハの
組成よりなる感受性化液Eを供給して含浸させスズを研
削砥石5の表面に被着させる感受性化処理を行い、軽く
水洗いする。
Subsequently, a sensitizing solution E having a composition of 210 g of SnCl and 20 to 50 g of HCl is supplied to impregnate the surface of the grinding wheel 5 to coat the surface with tin, followed by light washing with water.

更に、PdCl20.5g / 1とpH3〜4のpH
調整剤HCIとの活性化液Fを加熱槽8で50℃に加熱
して供給し、スズをパラジウムに置換させて次の化学メ
ッキ処理の際にメッキの核となる物質を砥石5の気孔壁
面等の全表面に被着させる活性化処理が施される。
Additionally, PdCl20.5g/1 and pH 3-4
The activation solution F containing the conditioning agent HCI is heated to 50° C. in a heating tank 8 and supplied to replace tin with palladium, and the material that will become the core of plating during the next chemical plating treatment is applied to the pore walls of the grinding wheel 5. Activation treatment is applied to the entire surface of the surface.

水洗液砥石5はIIのように乾燥炉4で完全に乾燥した
後に、IIIのように次の導電化処理工程装置2のメッ
キ処理容器9へ収容配置される。
After the washing liquid grindstone 5 is completely dried in the drying oven 4 as shown in II, it is placed in the plating processing container 9 of the next conductive processing process apparatus 2 as shown in III.

この導電化処理工程で使用される鋼化学メッキ液の組成
の一例は次の通りである。
An example of the composition of the steel chemical plating solution used in this conductive treatment step is as follows.

硫酸銅CuSO470g / 1 (金属源の金属塩
) A液・・・・・・…℃ツシエル塩 R350g/l
(緩衝剤) 水酸化ナトリウムNaOH100g / 1(pH調整
剤) B液・・・・・・ ホルマリン HCHO(37%)
(還元剤) このA、B液はそれぞれ分離独立したタンク10.11
内に収容されている。
Copper sulfate CuSO470g/1 (metal source metal salt) A solution......℃ Tsusiel salt R350g/l
(Buffer) Sodium hydroxide NaOH 100g/1 (pH adjuster) Solution B... Formalin HCHO (37%)
(Reducing agent) These A and B liquids are each separated and independent tank 10.11
is housed within.

調整弁12はB液がA液の175〜1/10容量となる
ように設定されており、ピストン形送液装置13のピス
トン吸引過程で上記割合でA、 B液がピストンシリン
ダ13a内に混合吸入される。
The regulating valve 12 is set so that liquid B has a volume of 175 to 1/10 of liquid A, and liquids A and B are mixed in the piston cylinder 13a at the above ratio during the piston suction process of the piston type liquid feeding device 13. Inhaled.

この1回の送液液量は操作制御部13bで調整設定され
る。
The amount of liquid sent at one time is adjusted and set by the operation control section 13b.

次のピストン押出し過程でピストンシリンダ13a内の
A、 B混合液はメッキ処理容器9内に加圧供給され、
砥石5に強制的に圧入含浸させられる。
In the next piston extrusion process, the mixed liquids A and B in the piston cylinder 13a are supplied under pressure into the plating processing container 9.
The whetstone 5 is forcibly impregnated with pressure.

この作業はメッキ金属の種類にもよるが銅の場合には通
常、常温で行われ、この含浸状態を所定時間雄接するメ
ッキ処理により研削砥石5の気孔壁面等の全表面に銅が
析出メッキされて導電性被膜が被着される。
This operation depends on the type of plating metal, but in the case of copper, it is usually carried out at room temperature, and by the plating treatment in which this impregnated state is kept in contact for a predetermined period of time, copper is precipitated and plated on the entire surface of the grinding wheel 5, such as the pore walls. A conductive film is applied.

この送液メッキ処理は何回か繰返されて行われ、その後
水洗してIVのように乾燥炉4で乾燥されて完成品5′
となる。
This liquid plating process is repeated several times, and then washed with water and dried in a drying oven 4 as shown in IV to complete the finished product 5'.
becomes.

使用済の化学メッキ液は再生使用出来る範囲ではバルブ
28の切換により回収処理装置19にて回収され、再び
化学メッキ液として再生の上古使用され、完全に老化さ
れたものや、容器9及び砥石5の水洗液は、前処理工程
に於ける各使用済液や容器6の水洗液等と共に中和装置
16等により処理されて外方へ排出される。
The used chemical plating solution is collected in the recovery processing device 19 by switching the valve 28 to the extent that it can be reused, and recycled as chemical plating solution. The rinsing liquid is treated by a neutralizer 16 or the like together with each used liquid in the pre-treatment process, the rinsing liquid in the container 6, etc., and discharged to the outside.

この送液装置13の送液は例えば第3図の如く切換制御
される。
The liquid feeding of this liquid feeding device 13 is controlled by switching, for example, as shown in FIG.

即ち、研削砥石5は容器9内にパツキン20を介して中
央に支持されており、砥石5のスピンドル軸穴は蓋板2
1で閉塞されている。
That is, the grinding wheel 5 is centrally supported in the container 9 via the packing 20, and the spindle shaft hole of the grinding wheel 5 is connected to the cover plate 2.
It is blocked by 1.

容器9の上下空間にはそれぞれ導入管22a、22b及
び送出管23a、23bが接続されている。
Inlet pipes 22a, 22b and delivery pipes 23a, 23b are connected to the upper and lower spaces of the container 9, respectively.

各導入、送出管とピストンシリンダ13aとの間には電
磁切換弁24が介在配設されており、送液時に切換弁2
4を右方へ切換えることにより、化学メッキ液は導入管
22aより加圧導入され、多孔質の砥石5を透過して含
浸される。
An electromagnetic switching valve 24 is interposed between each inlet and delivery pipe and the piston cylinder 13a, and the switching valve 24 is disposed between each inlet and delivery pipe and the piston cylinder 13a.
4 to the right, the chemical plating solution is introduced under pressure from the introduction pipe 22a, passes through the porous grindstone 5, and is impregnated therewith.

しかして、この含浸状態を所定時間保つことにより含浸
化学メッキ液中の金属イオンは還元により大部分が金属
として砥石5気孔の内壁面の被着核物質に被着析出する
By maintaining this impregnated state for a predetermined period of time, the metal ions in the impregnating chemical plating solution are reduced and most of them are deposited as metal on the adhesion core material on the inner wall surface of the pores of the grinding wheel 5.

次いで真空ポンプ26を作動せしめて容器27内を排気
すると、砥石5に含浸されている前記使用済の液は送出
管23bより容器26へ導出される。
Next, when the vacuum pump 26 is activated to evacuate the inside of the container 27, the used liquid impregnated in the grindstone 5 is led out to the container 26 from the delivery pipe 23b.

又左方へ切換えることにより、導入管22bより導入、
送出管23aより送出される。
Also, by switching to the left, it is introduced from the introduction pipe 22b,
It is sent out from the delivery pipe 23a.

このように砥石5の両面からメッキを供給させることに
より砥石5の気孔壁面には全体的に均一厚さのメッキ層
を被膜させることが出来る。
By supplying plating from both sides of the grindstone 5 in this manner, the wall surfaces of the pores of the grindstone 5 can be coated with a plating layer having a uniform thickness throughout.

特に、通液性の大なる砥石では比較的低い送液圧力でメ
ッキ液を透過通流、或いは含浸等させることが出来るが
、粒度がこまかく通液性の低い砥石では送液圧力を高く
設定する必要がある。
In particular, for grinding wheels with high liquid permeability, the plating solution can be passed through or impregnated with a relatively low liquid feeding pressure, but for grinding wheels with fine grain size and low liquid permeability, the liquid feeding pressure must be set high. There is a need.

この送液圧力の設定は操作制御部13bで設定される。This liquid feeding pressure is set by the operation control section 13b.

メッキが進行するに従い析出銅の被覆層は厚くなるので
通液性は低下する。
As the plating progresses, the coating layer of deposited copper becomes thicker, so that the liquid permeability decreases.

従って、設定送液圧力に対してメッキ液の通流が低下す
れば、メッキ処理がほぼ終了したことが判断出来、含浸
送液圧と通流状態との関係、或いはその他メッキ時間、
重量測定から処理の終了時点を判断する。
Therefore, if the flow of the plating solution decreases with respect to the set liquid feeding pressure, it can be determined that the plating process is almost completed.
The end point of the process is determined from the weight measurement.

なお容器9、ピストンシリンダ13aその他の送液配管
などは化学メッキ液に対して不働態化処理を行った金属
材、もしくは樹脂被覆加工したものを使用する。
The container 9, the piston cylinder 13a, and other liquid-feeding piping are made of a metal material that has been subjected to a passivation treatment for the chemical plating solution, or one that has been coated with a resin.

上記のようにこの発明によれば、常温で非導電性材より
製作された研削砥石を導電化処理を施して全表面に導電
金属膜を被着させ、電解研削用砥石を製作することが出
来るので、ビトリファイド砥石、或いは耐熱性の低いレ
ジノイドボンド砥石等にも安全に導電化処理が行える。
As described above, according to the present invention, a grinding wheel made of a non-conductive material at room temperature is subjected to conductive treatment to coat the entire surface with a conductive metal film, thereby producing an electrolytic grinding wheel. Therefore, even vitrified grindstones, resinoid bonded grindstones with low heat resistance, etc. can be safely subjected to conductive treatment.

又、その処理工程は前処理工程とメッキ処理工程とを分
けて別の処理容器に収容配置して行い連続して一貫した
作業が進められるので工業的製作に有利である。
Furthermore, the pretreatment process and the plating process are carried out separately and housed in separate processing containers, so that the work can be carried out continuously and consistently, which is advantageous for industrial production.

しかも金属塩を含む液と還元剤を含む液とは予じめ分離
独立したタンクに収容され、メッキ処理送液時にのみ自
動的に混合調製されるので2液の混合調製液が未使用の
まま放置された状態がなくなり、化学メッキ液の未使用
中の放置老化が防止出来る。
Furthermore, the liquid containing the metal salt and the liquid containing the reducing agent are stored in separate and independent tanks in advance, and are automatically mixed and prepared only when the plating process liquid is sent, so the mixed preparation liquid of the two liquids remains unused. This eliminates the condition of being left unused and prevents the chemical plating solution from aging unused.

又送液装置としてはピストン形のものが採用されている
ので、送液量、送液圧の調整が容易に行える。
Moreover, since a piston-type device is used as the liquid feeding device, the amount of liquid fed and the liquid feeding pressure can be easily adjusted.

従って、メッキ液は常にメッキ能力の高い新液が所定量
、所定液圧でメッキ処理容器に供給されることとなり、
効率よく比較的時間で導電化処理が行えると共に、メッ
キ液の保存管理が容易となり、工業的な処理方法として
は極めて有利となる。
Therefore, a new plating solution with high plating ability is always supplied to the plating processing container in a predetermined amount and at a predetermined liquid pressure.
The conductivity treatment can be carried out efficiently and in a relatively short time, and the plating solution can be easily stored and managed, making it extremely advantageous as an industrial treatment method.

このようにこの発明により各処理工程、メッキ液の保存
管理で有利な工業的な導電化処理方法を提供することが
出来て、導電性と研削性に優れた電解用研削その他の導
電性砥石を製作し得る。
As described above, this invention makes it possible to provide an industrial conductive treatment method that is advantageous in each treatment process and storage management of plating solutions, and to provide electrolytic grinding and other conductive grinding wheels with excellent conductivity and grindability. Can be manufactured.

なお、この発明は、ニッケルの化学メッキにより導電化
処理する場合にも同様に有効な方法であって、また銅や
ニッケルの化学メッキ液としては上記の一実施例に限る
ことなく、導電化処理金属源の金属塩、緩衝剤、必要に
応じて用いられる声調啓開や目的に応する制御剤、及び
還元剤としては各種の公知のものが、公知の組合及び組
成として用いられるものであり、また之等の一種以上の
混合液を前記実施例の如<A、B2液に分離貯蔵する分
離の仕方としても前記の如く金属源としての金属塩を含
む水溶液と還元剤を含む液とを別個に分離すれば、その
他の緩衝剤や田調啓開等は何れの液中に混合されていて
も格別支障はない。
The present invention is also an effective method for conducting conductive treatment by chemical plating of nickel, and the chemical plating solution for copper or nickel is not limited to the above-mentioned example. Various known metal salts as metal sources, buffering agents, tone-enhancing and controlling agents used as needed, and reducing agents are used in known combinations and compositions. In addition, as a method of separating and storing one or more of these mixed liquids into two liquids A and B as in the above embodiment, an aqueous solution containing a metal salt as a metal source and a liquid containing a reducing agent may be separated as described above. As long as they are separated, there will be no particular problem even if other buffering agents, Tachoku Kaikai, etc. are mixed in any liquid.

またホルマリンを還元剤とする銅、ニッケル等、化学メ
ッキ液の再使用のための再生処理方法としては、本発明
者等が先に提案した特願昭50−25397号の方法、
即ち使用済化学メッキ液を金属銅と接触させてホルマリ
ンを分解し、次いで電気透析法により銅またはニッケル
を補充して、金属塩の一部、緩衝剤、及び田調啓開をそ
のま・再使用に供し、化学メッキを行なう際に還元剤と
してのホルマリンを添加補充するようにして還元剤を除
く他の化学メッキ液の殆んど大部分は前述の如く金属イ
オンを補充するだけで再使用に供することができる。
In addition, as a reprocessing method for reusing chemical plating solutions for copper, nickel, etc. using formalin as a reducing agent, the method of Japanese Patent Application No. 50-25397, which was previously proposed by the present inventors,
That is, the used chemical plating solution is brought into contact with metallic copper to decompose the formalin, and then copper or nickel is replenished by electrodialysis, and a portion of the metal salt, buffering agent, and rice cracking are reused as they are. When used for chemical plating, formalin is added as a reducing agent to replenish it, and most of the chemical plating solutions other than the reducing agent can be reused by simply replenishing metal ions as described above. It can be provided to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合調製メッキ液のメッキ特性図、第2図はこ
の発明の実施例による装置の全体工程配置図、第3図は
導電化処理工程における装置の詳細構成配置図を示す。 1・・・・・・前処理工程装置、2・・・・・・導電化
処理装置、5・・・・・・研削砥石、5′・・・・・・
完成品、6・・・・・・前処理容器、9・・・・・・メ
ッキ処理容器、10・・・・・・メッキ液タンク、11
・・・・・・還元剤タンク、12・・・・・・混合比調
整弁、13・・・・・・ピストン形送液装置、A・・・
・・・メッキ液、B・・・・・・還元剤、C,D、 E
、 F・・・・・・前処理液。
FIG. 1 shows a plating characteristic diagram of a mixed and prepared plating solution, FIG. 2 shows an overall process layout of an apparatus according to an embodiment of the present invention, and FIG. 3 shows a detailed structural layout of the apparatus in a conductive treatment process. 1... Pre-treatment process device, 2... Conductivity treatment device, 5... Grinding wheel, 5'...
Finished product, 6... Pre-treatment container, 9... Plating processing container, 10... Plating solution tank, 11
...Reducing agent tank, 12...Mixing ratio adjustment valve, 13...Piston type liquid feeding device, A...
...Plating solution, B...Reducing agent, C, D, E
, F...Pretreatment liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 非導電性の材料より製作された研削砥石を前処理容
器内に収容配置して前処理工程で浄化前処理、更に感受
性化及び活性化前処理を施して化学メッキの際に核とな
る物質を砥石の気孔壁面に被着した後に、該研削砥石を
メッキ処理容器内に収容配置し、それぞれ分離独立のタ
ンクに収容した導電化処理金属源としての金属塩を含む
液と還元剤を含む液とを各タンクより所定の割合で圧送
形送液装置へ混合吸引し、更に該送液装置よりメッキ処
理容器内へ加圧供給して研削砥石に含浸せしめ該含浸状
態を所望時間維持せしめることにより気孔の壁面に導電
性金属を析出メッキし、次いで砥石含浸液を排出させた
後前配圧送形送液装置への混合吸引以後の工程を所望の
回数繰り返し後水洗、乾燥することを特徴とする電解研
削砥石の導電化処理方法。
1. A grinding wheel made of non-conductive material is housed in a pre-treatment container, and in the pre-treatment process, it is subjected to pre-purification treatment, and further sensitization and activation treatment to remove the substance that will become the core during chemical plating. After adhering the grinding wheel to the pore wall surface of the grinding wheel, the grinding wheel was placed in a plating treatment container, and a liquid containing a metal salt and a reducing agent as a source of conductive metal were housed in separate and independent tanks. and a predetermined ratio from each tank to a pressure-feeding type liquid-feeding device, which is then supplied under pressure into a plating processing container to impregnate the grinding wheel and maintain the impregnated state for a desired period of time. The method is characterized in that conductive metal is precipitated and plated on the walls of the pores, and then the grinding wheel impregnation liquid is discharged, and the process after mixing and suction to the front pressure distribution and liquid feeding device is repeated a desired number of times, followed by washing with water and drying. Method for making electrolytic grinding wheels conductive.
JP7293075A 1975-06-16 1975-06-16 Method for making electrolytic grinding wheels conductive Expired JPS5950469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7293075A JPS5950469B2 (en) 1975-06-16 1975-06-16 Method for making electrolytic grinding wheels conductive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7293075A JPS5950469B2 (en) 1975-06-16 1975-06-16 Method for making electrolytic grinding wheels conductive

Publications (2)

Publication Number Publication Date
JPS51148894A JPS51148894A (en) 1976-12-21
JPS5950469B2 true JPS5950469B2 (en) 1984-12-08

Family

ID=13503559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7293075A Expired JPS5950469B2 (en) 1975-06-16 1975-06-16 Method for making electrolytic grinding wheels conductive

Country Status (1)

Country Link
JP (1) JPS5950469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265384U (en) * 1988-11-04 1990-05-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265384U (en) * 1988-11-04 1990-05-16

Also Published As

Publication number Publication date
JPS51148894A (en) 1976-12-21

Similar Documents

Publication Publication Date Title
US4592808A (en) Method for plating conductive plastics
US3033703A (en) Electroless plating of copper
US3437507A (en) Plating of substrates
CN100545305C (en) Activation process for chemical plating of non-metal matrix
CN103882492B (en) Metallic matrix chemical plating pre-treating method
US4381227A (en) Process for the manufacture of abrasive-coated tools
US3024134A (en) Nickel chemical reduction plating bath and method of using same
KR101873154B1 (en) Roll to roll Silver Mirror Coating Apparatus and Silver Mirror Coating Method using Thereof
CN108505022A (en) Diadust chemical nickel plating method and nickel plating diadust, its product and purposes
US3698939A (en) Method and composition of platinum plating
US3423226A (en) Plating of non-metallic bodies
JPS5950469B2 (en) Method for making electrolytic grinding wheels conductive
CN102994989A (en) Chemical silver plating method
US2976180A (en) Method of silver plating by chemical reduction
EP0042715A1 (en) Method of surface treatment of porous material
US3312189A (en) Automatic solution control system
Paunovic Electrochemical aspects of electroless nickel deposition
US1214271A (en) Process of plating.
CN113774366B (en) Aluminum alloy surface plating process
JPS5811518B2 (en) Metal-diamond composite plating method
KR20200008453A (en) Electrolytic polishing method of metal tube using ultrasonic wave
US3664860A (en) Electrolessly nickel plating on a non-metallic basis material
US1787477A (en) Process for chromium plating
US3565667A (en) Method of chemical nickeling and cadmium chemical plating of metallic and nonmetallic substrates
JP5978521B2 (en) Diamond adhesion method using displacement plating and diamond adhesion apparatus used therefor