JPS5950118A - Production of unidirectional silicon steel plate having excellent magnetic characteristic - Google Patents

Production of unidirectional silicon steel plate having excellent magnetic characteristic

Info

Publication number
JPS5950118A
JPS5950118A JP16060282A JP16060282A JPS5950118A JP S5950118 A JPS5950118 A JP S5950118A JP 16060282 A JP16060282 A JP 16060282A JP 16060282 A JP16060282 A JP 16060282A JP S5950118 A JPS5950118 A JP S5950118A
Authority
JP
Japan
Prior art keywords
hot
rolled
silicon steel
strip
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16060282A
Other languages
Japanese (ja)
Other versions
JPH0249371B2 (en
Inventor
Fumihiko Takeuchi
竹内 文彦
Shigeo Kinoshita
木下 繁雄
Isao Matoba
的場 伊三夫
Yoshio Obata
小畑 良夫
Itaru Hishinuma
菱沼 至
Toshio Suzuki
敏雄 鈴木
Shigeki Yamada
茂樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16060282A priority Critical patent/JPS5950118A/en
Publication of JPS5950118A publication Critical patent/JPS5950118A/en
Publication of JPH0249371B2 publication Critical patent/JPH0249371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Abstract

PURPOSE:To obtain a titled unidirectional silicon steel plate by cooling a hot- rolled steel strip of a continuously cast slab of a blank steel for continuous casting of a silicon steel contg. C, Si, Mn, S or/and Se at a prescribed cooling rate after it leaves the final finishing stand then coiling the steel strip and allowing the same to cool. CONSTITUTION:A continuously cast slab of the silicon steel contg., by weight, 0.020-0.080% C, 2.5-4.0% Si, 0.02-0.10% Mn, 0.008-0.050% S or/and Se and contg. <=0.1% Sb according to need is hot-rolled as follows: After said hot- rolled steel strip leaves the final stand, the steel strip is cooled down to the range of the temp. calculated from the equations I , II at 7-40 deg.C/sec cooling rate, whereafter it is coiled and is allowed to cool. If the cooling rate and coiling temp. after the hot rolling are adequately controlled, the uniform crystalline structure is effectively obtained after intermediate annealing by subjecting the hot-rolled strip to cold rolling and annealing even if it has coarse stretched grains. As a result, the perfect secondary crystal structure is formed and the uniform and excellent magnetic characteristics are obtd.

Description

【発明の詳細な説明】 本発明は磁気特性のすぐれた一方向性珪素鋼板の製造方
法に係り、特に連続鋳造スラブからの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a unidirectional silicon steel sheet with excellent magnetic properties, and particularly to a method of manufacturing it from a continuously cast slab.

一方向性珪素鋼板は主として変圧器その他の電気機器の
鉄芯材料として使用されるもので、鉄州値、磁束密度等
の磁気特性がすぐれていることが基本的に重゛皮である
Unidirectional silicon steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are basically important because they have excellent magnetic properties such as iron strength value and magnetic flux density.

一方向性珪素鋼板の製造工程における不可欠の要素e、
j1、いわゆる最終高温焼鈍で一次再結晶粒から+ 1
. 、+ (l l < 001 :)方位の結晶粒に
二次再結晶させることである。このためには−次1g結
晶粒の正常粒の成長を抑制するインヒビターと称する分
散相を必要とする。このインヒビターの代表的なものと
しては、特公昭33−9255号に」:るS 、 ’l
’!1 公昭36 17154 ”5 K l ルS 
e 、 ’f’j公昭、l D −15644号による
AzN、特公昭5 ’] −11469号にょるsh 
とSおよびSeの方法が知られている。
Essential elements in the manufacturing process of unidirectional silicon steel sheets e,
j1, +1 from the primary recrystallized grains in the so-called final high-temperature annealing
.. , + (l l < 001:) oriented crystal grains. For this purpose, a dispersed phase called an inhibitor is required to suppress the growth of normal grains of -order 1g crystal grains. Representative examples of this inhibitor are listed in Japanese Patent Publication No. 33-9255.
'! 1 Kosho 36 17154 ”5 K l S
e, 'f'j Kimiaki, l D-15644 AzN, special public show 5'] -11469 issue sh
The methods of , S and Se are known.

こ71らのインヒビターの抑制効果は、最終高温焼鈍A
iI*でに均一でかつ適正な寸法にインヒビターを分散
させることによって達成される。このため、1μ状では
熱延前にスラブを高温に加熱し、インヒビ々−元素を十
分に固溶させた後、熱延工程以降、二次内結晶1);1
才での工程で析出分散状kuを制fli l−、ている
The inhibitory effect of these 71 inhibitors is due to the final high temperature annealing A
This is achieved by uniformly and appropriately sized dispersing the inhibitor at iI*. For this reason, in the case of 1μ-shaped slabs, the slab is heated to a high temperature before hot rolling to sufficiently dissolve the inhibitory elements, and after the hot rolling process, secondary internal crystals 1);
The precipitated dispersion pattern ku is controlled during the initial process.

従来の一方向性珪素鋼板の製1<1j力法においては、
鋼塊から分塊圧延にて厚さ130〜25(l mhのス
ラブを造り、そのスラブを1250℃以上で加熱し、イ
ンヒビターを固溶させた後熱延板としていた。次に熱延
板を1回ないし2回の冷延によって最終板厚とし、脱炭
焼鈍を行った後、二次再結晶および純化を目的とした最
終高温焼鈍を行うのが一搬的である。
In the conventional 1<1j force method for manufacturing unidirectional silicon steel sheets,
A slab with a thickness of 130 to 25 (l mh) was made from the steel ingot by blooming rolling, and the slab was heated at 1250°C or higher to dissolve the inhibitor in solid solution, and then it was made into a hot rolled sheet. The best practice is to cold-roll once or twice to obtain the final plate thickness, perform decarburization annealing, and then perform final high-temperature annealing for the purpose of secondary recrystallization and purification.

ところで、近年鉄鋼の製造工程において、造塊法から連
続鋳造(以下連鋳と略称する)法に変りつつある。この
方法を一方向tI′珪素鋼板の製造に適用した場合には
分塊圧延による鋳造組織の破壊、再結晶による結晶組織
のg!組化工程が省略される/こめ、連り、1法固有の
急冷凝固による柱状結晶粒が111■記のスラブ加熱で
異常成長を起こし易く、熱延後に粗大な延伸粒として残
る。
Incidentally, in recent years, in the manufacturing process of steel, the ingot forming method is being replaced by a continuous casting method (hereinafter abbreviated as continuous casting). When this method is applied to the production of unidirectional tI' silicon steel sheets, the cast structure is destroyed by blooming, and the crystal structure is destroyed by recrystallization. The assembling process is omitted/Columnar crystal grains due to rapid solidification peculiar to the method 1 tend to grow abnormally when heating the slab as described in 111-2, and remain as coarse drawn grains after hot rolling.

この粗大な結晶粒は冷延、焼鈍を経た後も、再結晶せず
、その部分はインヒビターによる抑制効果が十分であっ
ても最終高温焼鈍でゴス方位の二次再結晶が不完全とな
り、いわゆる帯状細粒組織が主となり磁気特性の劣化を
招く欠点がある。
These coarse grains do not recrystallize even after cold rolling and annealing, and even if the suppressing effect of the inhibitor is sufficient, the secondary recrystallization of the Goss orientation is incomplete in the final high temperature annealing, so-called It has the disadvantage that it mainly has a band-like fine grain structure, which leads to deterioration of magnetic properties.

71¥に通常のコイル幅約10 D Ommから50卿
又は100mm[度の板幅にスラブl−して巻鉄芯用材
とする場合には帯状細粒がスリット幅全体に占めるal
1合が極端に高まり、鉄芯の磁気特性を著l−7<悪化
−するので、変圧器製造業者は極度に注意をはC)って
いる。
71 yen and a normal coil width of about 10 D Omm to 50 mm or 100 mm [degrees] When the slab is made into a rolled iron core material, the band-shaped fine grains occupy the entire slit width.
Transformer manufacturers are taking extreme caution because the 1-coupling becomes extremely high and the magnetic properties of the iron core are significantly deteriorated.

この帯状細粒の防止対策として、特公昭54−2782
0号は一方向性珪素鋼板の製造において、更に牛1公昭
50〜37 (109号は高磁束密度一方向性珪素鋼板
においてそれぞれ連続鋳造したスラブから2回り熱延工
程を経て熱延板を造る技術を提案し2ている。i〜かし
この技術は2回の熱延工程を経て熱延板を造る技術すな
わち、鋼塊法における分塊圧延工程に相当する予備熱延
工程を採る技術であり、連金11法本来の目的からみて
合理的な製造方法とid:イえない。
As a measure to prevent this band-like fine grain,
No. 0 is used in the production of unidirectional silicon steel sheets, and in addition, No. 1 is a high magnetic flux density unidirectional silicon steel sheet that is continuously cast to create hot-rolled sheets from slabs that are continuously cast twice. This technology is a technology that produces hot-rolled sheets through two hot-rolling processes, that is, a preliminary hot-rolling process that corresponds to the blooming process in the steel ingot process. , it cannot be considered a rational manufacturing method from the original purpose of Renkin 11 Law.

一方向性珪素鋼の熱延方法に関し、特公昭38−14 
(1(1(1号の実tイIi9[様によればc<o、o
5.qイ、〜II]S、 0.1 !’i %;、S+
 : 2.75〜359gを含む珪素鋼を925℃以上
で熱延、その温度かも4(じ(゛/秒以上、奸才(、〈
は65F/秒て急冷1.54 (’) ℃以下の温度で
巻取り、480〜31 () ℃の範囲内で一定時間時
効させレンズ状析出物を?lることを目的としている、
この方法1l−L鋼塊を素利とした磁性改善方法に関す
るもので、前記のような連鋳スラブのスラブ加熱で現わ
れるような結晶粒の異常成長が起こらず、成品に帯状細
粒が発生しない。ところがこの方法を連鋳スラブに適用
した。1ノッ合には、帯状細粒を防ぐ効果が不十分な場
合も茅)った。さらにこの方法を実験した場合に、コイ
ル化、7.1Mが仕上圧延機を離れてから巻取機に巻(
=t < 4での間の冷却速度が大きすぎるため、ウェ
イピングが大きくなり、先端部分が折れ曲がったり、1
般送用ローラーの間隙にかみζんでだりして巻取れ々い
事故が頻発し7、操業性および経済性に問題がJ・)っ
た。
Regarding hot rolling method of unidirectional silicon steel, Special Publication No. 38-14
(1 (1 (No. 1 fruit ti Ii 9 [according to c<o, o
5. qI,~II]S, 0.1! 'i%;, S+
: Silicon steel containing 2.75 to 359 g is hot-rolled at 925°C or higher, and the temperature is 4 (2.75~359g or higher),
It is quenched at 65F/sec and wound up at a temperature below 1.54 (') °C, and then aged for a certain period of time within the range of 480 to 31 () °C to remove lens-shaped precipitates. The purpose is to
This method is related to a method for improving magnetism using 1l-L steel ingots, and the abnormal growth of crystal grains that occurs when slab heating of continuously cast slabs as described above does not occur, and band-like fine grains do not occur in the finished product. . However, this method was applied to continuously cast slabs. There were also cases where the effect of preventing band-like fine particles was insufficient for one knot. Furthermore, when we experimented with this method, we found that after coiling, 7.1M leaves the finishing mill and then winds it on the winder (
Because the cooling rate between = t < 4 is too high, waving becomes large, and the tip may be bent or 1
Accidents where the winding could not be unrolled frequently occurred due to jamming in the gap between the general feed rollers7, which caused problems in operability and economy.

又特開昭56−33431号によれば珪素鋼を熱延する
工程において巻取温度を7(10〜1 (j (l f
l ℃の範囲内に制御する方法、および700〜1F’
1F10℃で巻@す、その銅帯を水槽等にf、)〆にし
て、千3伶−ノーろ方法を提案している。これらの画法
はAtN の析出分散状態を改善し、二次再結晶を安定
させることを目的としており、本発明のAtN  を含
有しないH料とけ71象がUなる。
Furthermore, according to JP-A No. 56-33431, in the process of hot rolling silicon steel, the coiling temperature is set at 7 (10 to 1 (j (l f
A method of controlling within the range of 1°C, and 700~1F'
He proposes a method of wrapping the copper strip at 1F and 10℃ and wrapping it in a water tank or the like. These drawing methods are aimed at improving the precipitation and dispersion state of AtN 2 and stabilizing secondary recrystallization.

本発明の1−1的は上記従来技術の問題点を解決し、連
鋳スンプから磁気特性のすぐれた一方向性珪素鋼板の製
造方法を提供するにある。
1-1 of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties from continuous casting.

上記の本発明の目的は次の2発明によって達成きれる。The above objects of the present invention can be achieved by the following two inventions.

第1発明の要旨とするところは次のとおりである。すな
わち屯iII比にて、C: 0.(12fl〜0080
%、S i : 2.5〜4.0X、M n : 0.
02〜0.10%、S 、%=よびSeの何れか1伸又
は2fi1)合計力(1,008〜0.05()%を含
み史に必要によりS b : 0゜]、 +1%以下を
含有する珪素鋼の連続鋳造スラブを熱間圧延する工程を
有して成る一方向性TI素鋼板の製造ノ5法において、
I)jl H14熱延州帯を仕−F最終スタンドを離れ
てから上記の(1)、(2)式より算出される温度の範
囲寸で7〜・40℃/抄の冷却速度で冷却した後巻取放
冷する工、P−を含むことを特徴とする特許れた一方向
性珪素鋼板の製造方法である。
The gist of the first invention is as follows. That is, in the tun III ratio, C: 0. (12fl~0080
%, Si: 2.5-4.0X, Mn: 0.
02 to 0.10%, S, % = any one of 1 or 2 fi 1) total force (1,008 to 0.05 ()% included, depending on the history S b: 0°], +1% or less In method No. 5 of manufacturing a unidirectional TI raw steel plate, which comprises the step of hot rolling a continuously cast slab of silicon steel containing
I) The Jl H14 hot-rolled belt was cooled at a cooling rate of 7 to 40°C/sheet after leaving the final stand in the temperature range calculated from equations (1) and (2) above. This is a patented method for manufacturing a unidirectional silicon steel sheet, which is characterized in that it includes a step of post-rolling and cooling, P-.

〔35×!.01,o■+515〕℃・・・・・(1)
[445x7o9,。V − 5 7 n ] r. 
”’ (2)ただしV;仕上最終スタンドを離れてから
巻11X/る捷での熱延鋼帯の冷却速度(’C/秒)第
2発明の要旨とするところは、第1発明と同一成分の連
続鋳造スラブの熱間圧延において、熱延鋼帯を什−1−
最終スタンドをlqlれてから下記(3)式より算出さ
れる温度以下に7〜3o℃/秒の冷却速度で冷却した後
巻取ね、更に該巻取り鋼帯を水冷する工程を含むことを
特徴と寸る{1悌気特性のすぐれた一方向性珪素鋼板で
ある。
[35×! .. 01,o■+515]℃・・・・・・(1)
[445x7o9,. V-57n] r.
``' (2) However, V: Cooling rate of the hot-rolled steel strip in the winding 11X/second after leaving the final finishing stand ('C/sec) The gist of the second invention is the same as the first invention. In the hot rolling of continuously cast slabs, the hot rolled steel strip is
After cooling the final stand to a temperature calculated from the following formula (3) at a cooling rate of 7 to 3oC/sec, it is coiled, and the coiled steel strip is further cooled with water. Features: 1. Unidirectional silicon steel sheet with excellent thermal properties.

〔20×tOf,o■+555〕℃・・・・・・(3)
本発明者らは一方向性珪素体1連鋳スラブ素材から帯状
細粒のない均一にL7て磁気’Pf性のすぐれた成品を
得る熱延方法に関して鋭意研究をした結果、熱延仕ーヒ
最終スタンドのロール1山過後、巻ηソり寸での間の冷
却速度と巻取福1度に大きな関係のあることを見いだし
た。
[20×tOf,o■+555]℃・・・・・・(3)
The inventors of the present invention have conducted intensive research on a hot rolling method for producing uniformly L7 products with excellent magnetic 'Pf properties without band-like fine grains from a single continuously cast unidirectional silicon slab material. It was found that there is a significant relationship between the cooling rate during the winding η warp size after passing one roll on the final stand and the winding thickness 1 degree.

次に実験データについて説明中る,、すなわち帯状細粒
の発生原因を装量追跡調査したところ、熱延板の結晶組
織の影響を大きく受けていることが判明した。連鋳スラ
ブからスラブ加熱、熱延を経てイ1}られた熱延板の結
晶組織を第1図に示し7たが、板y,iー中心部には粗
大な延伸粒が存在する。
Next, while explaining the experimental data, we conducted a follow-up investigation into the cause of the generation of band-like fine grains, and found that it was largely influenced by the crystal structure of the hot-rolled sheet. The crystal structure of a hot-rolled sheet produced from a continuously cast slab through slab heating and hot rolling is shown in FIG. 1, and coarse drawn grains are present in the center of the sheet.

この粗大々延伸粒は連鋳時にできた粗い柱状晶がスラブ
加熱で異常成長し、熱延で伸ばされたものであり、( 
l o O l < (1 1 1 >まプζは(21
11<’ (l I l >e’jの方位を持っている
。このだめ、後の冷延、炉,鈍を経てもIlとんと安定
で再結晶せず第2図φ)、および第3図<A)のように
中間焼鈍後、脱炭焼鈍後にも未再結晶粒として残る。そ
の結果、成品には第4図(A)に示した.ように帯状細
粒が現われ、この部分の結晶方位が{1101<0(1
1>方位から大きく外れているだめに均一ですぐれた磁
気特性が得られ々い。
These coarsely stretched grains are coarse columnar crystals formed during continuous casting that grow abnormally during slab heating and are elongated during hot rolling.
l o O l < (1 1 1 > map ζ is (21
11<' (l I l >e'j. Even after the subsequent cold rolling, furnace, and blunting, it remains extremely stable and does not recrystallize (Fig. 2 φ), and Fig. 3 <A) Even after intermediate annealing and decarburization annealing, unrecrystallized grains remain. As a result, the finished product is shown in Figure 4 (A). Band-like fine grains appear, and the crystal orientation of this part is {1101<0(1
1> It is difficult to obtain uniform and excellent magnetic properties unless the direction is far off.

この対策として、熱延板の結晶組織改善方法を種々検討
{−、、帯状細粒の発生原因として熱延後の冷却速度と
巻取温度が関係していることが分った。
As a countermeasure to this problem, various methods for improving the crystal structure of hot-rolled sheets were investigated.It was found that the cooling rate after hot-rolling and the coiling temperature are the causes of the formation of band-like fine grains.

すなわち熱延後の冷却速度と巻取温度を適切に制御した
場合には、熱延板にたとえ粗大な延伸粒があっても冷延
、焼鈍を経ることにより中間焼鈍後は第2図(1カおよ
び脱炭焼鈍後の第3図03)に示しだように効果的に均
一な結晶組織が得られる。この結果、最終高温焼鈍で第
4図(13)に示したような完全な二次再結晶組織とな
り、均一ですぐれた磁気特性が得られることを見いだし
た。
In other words, if the cooling rate and coiling temperature after hot rolling are appropriately controlled, even if there are coarse drawn grains in the hot rolled sheet, it will pass through cold rolling and annealing, and after intermediate annealing it will be as shown in Figure 2 (1). As shown in FIG. 3 (03) after heat and decarburization annealing, a uniform crystal structure can be effectively obtained. As a result, it was found that the final high-temperature annealing resulted in a complete secondary recrystallized structure as shown in FIG. 4 (13), resulting in uniform and excellent magnetic properties.

次に本発明の成分限定理由について説明する。Next, the reason for limiting the components of the present invention will be explained.

C : Cは熱延板の結晶組織を細かくするために必要な元素で
ある。次にCの含有耽が結晶組織に及ぼす影響を調べだ
実験について説明する。
C: C is an element necessary to refine the crystal structure of the hot rolled sheet. Next, an experiment to investigate the effect of C content on the crystal structure will be explained.

C:0.009〜0.056%、Si:2.95〜29
8%、Mn : 0.0 6 8 〜0.0 7 3%
、S:0.(118−0(120%、の組成の9種の連
鋳スラブから30 mm厚のシートバーを造り、その一
端から小片のシートバーを切り出し1 33 0 rで
加熱した後、850℃で熱延を終了した。この熱延板を
ただちに24℃/秒の冷却速度で300℃捷で冷却した
。これらの% lE板を酸洗後、いわゆる中間焼鈍を挾
む2回の冷延で0.3 (1mm厚の一方向性珪素鋼板
の成品とし、この成品についてC含イ1量と帯状細粒の
発生面積率との関係を調べ第5図に示しだ。
C: 0.009-0.056%, Si: 2.95-29
8%, Mn: 0.068 to 0.073%
, S:0. (A sheet bar with a thickness of 30 mm was made from nine continuously cast slabs with a composition of 118-0 (120%, The hot-rolled sheets were immediately cooled at 300° C. at a cooling rate of 24° C./sec. After pickling these %lE sheets, they were cold-rolled twice with so-called intermediate annealing to reduce the %lE to 0.3. (The product was made of a unidirectional silicon steel plate with a thickness of 1 mm, and the relationship between the C content and the area ratio of band-shaped fine grains was investigated for this product and is shown in Figure 5.

第5図から明らかな如く、Cの含有量は帯状細粒の発生
に大きな関係を有し、0.02%未満では帯状細粒の発
生率が著しく大きく防止効果がないが002%以トでは
帯状細粒の発生面積率は減少している。
As is clear from Fig. 5, the content of C has a great relationship with the generation of band-shaped fine particles; if it is less than 0.02%, the generation rate of band-shaped fine particles is extremely large and there is no prevention effect; The area ratio of band-like fine grains is decreasing.

このためCの含有量は下限を0.02%とするが、00
8%を越すと最終高温焼鈍前の脱炭が困難となり磁性特
性を劣化させるので、Cを0.02〜008%の範囲に
限定した。
For this reason, the lower limit of the C content is set at 0.02%, but 0.02% is the lower limit.
If it exceeds 8%, decarburization before final high-temperature annealing becomes difficult and magnetic properties deteriorate, so C was limited to a range of 0.02 to 0.008%.

S I : SIは25%未満ではα−γ変態が存在し、最終高温焼
鈍において二次再結晶を阻害する。一方40%を越える
と冷延時に割れを起こし易くなるので2.5〜40%の
範囲に限定した。
SI: When SI is less than 25%, α-γ transformation exists, which inhibits secondary recrystallization in the final high-temperature annealing. On the other hand, if it exceeds 40%, cracks tend to occur during cold rolling, so it is limited to a range of 2.5 to 40%.

Mn : M nはM n Sあるいはへ4nSeを形成させイン
ヒビターの効果をあげる元素であるが、(1,020%
未満ではその形成が不十分であり、0. l o pσ
を越えると熱延前のインヒビターの固溶温度がire、
 <なり、スラブの加熱が困難になるので、(、)、 
(120〜0゛10%の範囲に限定した8 S、Se: S、Seはそれぞれインヒビターの効果を有するが、そ
れぞれの単独あるいけ2種の合計でo、oos%未満で
は完全な二次再結晶が得られないので0.(l 08%
以上が必要である。一方単独あるいV」、2紳の合計で
0.050%を越すと熱延前の固溶温m]が高吐り、又
最終高温焼鈍における脱硫あるいは脱セレニウムが不十
分となるので上限を0. (150%とした。
Mn: Mn is an element that forms MnS or 4nSe and has an inhibitor effect, but (1,020%
If it is less than 0.0, the formation is insufficient. lo pσ
When it exceeds ire, the solid solution temperature of the inhibitor before hot rolling is ire,
<, which makes it difficult to heat the slab (,),
(8 S, Se limited to the range of 120~0゛10%: S and Se each have the effect of an inhibitor, but if each alone or the combination of the two is less than o, oos%, complete secondary regeneration occurs. Since no crystals are obtained, 0.(l 08%
The above is necessary. On the other hand, if it exceeds 0.050% alone or in total of V and 2, the solid solution temperature before hot rolling will be high, and desulfurization or selenium removal in the final high-temperature annealing will be insufficient, so the upper limit should be set. 0. (It was set as 150%.

Sb : sbは粒界に偏析して一次再結晶粒の成長を抑制し、S
、Seの倒れが1種又は2種と共存し磁気特性を向上さ
せることができるが、0.10%を越すとその効果が飽
和するので0.10%以下に限定した。
Sb: sb segregates at grain boundaries and suppresses the growth of primary recrystallized grains,
, Se can coexist with one or two types and improve the magnetic properties, but if it exceeds 0.10%, the effect will be saturated, so it was limited to 0.10% or less.

なお本発明においては、インヒビターと[7てS、8c
およびSbのみならず、その他の公知のインヒビターた
とえば13、B!、A s s P l) b等の1種
又は2種を追加ずiこともできる。
In the present invention, the inhibitor and [7teS, 8c
and Sb as well as other known inhibitors such as 13, B! , A ss P l) b, etc. may be added without adding one or two types.

次に上記の限定成分を有する連続鋳造スラブからの一方
向性珪素鋼板の製造方法について説明する。まず帯状細
粒の発生状況と熱延仕上げ後の冷却速度および巻取温度
、冷却方法との関係を研究し、帯状細粒のない磁気特性
のすぐれた一方向性珪素鋼板の製造方法を得た。
Next, a method for manufacturing a grain-oriented silicon steel sheet from a continuously cast slab having the above-mentioned limited components will be described. First, we studied the relationship between the occurrence of band-shaped fine grains and the cooling rate, coiling temperature, and cooling method after hot-rolling, and obtained a method for manufacturing unidirectional silicon steel sheets with excellent magnetic properties without band-shaped fine grains. .

すなわちC: O,(132%、Si:3.01%、M
n:0.072%、S:0.020%の組成を有する連
鋳スラブから30鰭厚のシートバーを造り、その一部分
を用いて、小片のシートバー116枚を切り出した。こ
のシートバーを]320℃で加熱し、25縮の熱延板に
熱延し850℃で熱延を終了した。この熱延板をただち
に種々の冷却方法で冷却し、巻取温度に対応する温度に
到達した時点で、水槽に浸漬して急冷したものと、銅帯
冷却条件に合せて冷却できる炉をあらかじめ巻取温度に
合せておき、その炉に装入し炉中冷却したものを造った
。この熱延板を酸洗後、いわゆる中間焼鈍を挾む2回の
冷延で(1,35mm厚の一方向性珪素鋼板の成品とし
、この成品について帯状til+粒の発生を調査した。
That is, C: O, (132%, Si: 3.01%, M
A sheet bar with a thickness of 30 fins was made from a continuously cast slab having a composition of n: 0.072% and S: 0.020%, and a portion of the sheet bar was cut out into 116 small pieces of the sheet bar. This sheet bar was heated at 320°C, hot-rolled into a 25-shrinkage hot-rolled plate, and hot-rolled at 850°C. This hot-rolled sheet is immediately cooled by various cooling methods, and when it reaches a temperature corresponding to the coiling temperature, it is immersed in a water bath to be rapidly cooled, and the sheet is pre-rolled in a furnace that can be cooled according to the copper strip cooling conditions. The material was adjusted to the desired temperature, charged into the furnace, and cooled in the furnace. After pickling, this hot-rolled sheet was cold-rolled twice with so-called intermediate annealing (a unidirectional silicon steel sheet having a thickness of 1.35 mm was obtained, and the generation of band-shaped TIL+ grains was investigated for this product.

第6図および第7図に熱延後の冷却速度、巻取温度と成
品における帯状細粒の発生面積率との関係を示した。な
お第6図は巻取径放冷しだ場合、第7図は巻取径水冷し
だ場合を示し、〜ン ている。
FIGS. 6 and 7 show the relationship between the cooling rate after hot rolling, the coiling temperature, and the area ratio of band-like fine grains in the finished product. Note that FIG. 6 shows the case where the winding diameter is air-cooled, and FIG. 7 shows the case where the winding diameter is water-cooled.

第6図から次のことが分る。熱延後の冷却速度が遅い4
℃/秒の場合は巻取温度を下げても帯状細粒の発生を防
止できない。冷却速度7〜b℃以下、[445Xtof
’、 oV−57(VJ℃以上の範囲に冷却して巻取り
、巻取径放冷すると帯状細粒の発生を防止できる。冷却
速度が更に速い70〜b 囲で巻取ることにより帯状細粒の発生を防止する。
The following can be seen from Figure 6. Cooling speed after hot rolling is slow 4
℃/sec, even if the winding temperature is lowered, the generation of band-like fine particles cannot be prevented. Cooling rate 7~b℃ or less, [445Xtof
', oV-57 (VJ℃ or higher, then winding and cooling the winding diameter to prevent the formation of band-like fine particles.The cooling rate is even faster, and by winding at 70~b), the band-like fine particles can be prevented. prevent the occurrence of

しかし、この条件では熱延鋼帯の先端が圧延機を離れて
から巻付くまでの間にウェイピングが大きくなり、先端
部分が折れ曲りたり、搬送用ローラの間隙にかみ込んだ
りして巻取れないことが多く操業性および経済性の点で
実用性が少ない。
However, under these conditions, waving becomes large after the tip of the hot rolled steel strip leaves the rolling mill until it is wound, causing the tip to bend or get caught in the gap between the conveying rollers and unwound. In many cases, there is no such thing, making it less practical in terms of operability and economy.

第7図から巻取径水冷の場合、次のことが分る。From FIG. 7, the following can be seen in the case of water-cooled winding diameter.

熱延後の冷却速度が遅い4℃/秒の場合は巻取径水冷し
ても帯状細粒の発生を防止できない。冷却速度7〜:(
θ℃/秒の場合は巻取温度を〔20×tnf、 n V
−1−555:] ℃以下に冷却し巻取径水冷す水′ ると帯細Ml1口\′lを効果的に防止できる。冷却速
度が四に速い40〜b 取温度から水冷しても帯状細粒の発生を防止できない。
When the cooling rate after hot rolling is slow at 4° C./sec, generation of band-like fine grains cannot be prevented even if the winding diameter is water-cooled. Cooling rate 7~:(
In the case of θ℃/sec, the winding temperature is [20×tnf, n V
-1-555: ] If the winding diameter is cooled to below ℃ and the winding diameter is water-cooled, narrow strips M1\'l can be effectively prevented. 40-b, where the cooling rate is four times faster. Even if water cooling is performed from the preheating temperature, generation of band-like fine particles cannot be prevented.

実施例1 C: O(138%、Si:3.02%、M n : 
(1,075%、S:0.02%、を含む厚さ200 
mmの珪素鋼連鋳スラブ5本を1370℃に加熱した後
、粗圧延機にて:(Omm厚の・/−ドパーとし、続い
てストリップミルにて25關厚の熱延鋼帯に仕上げ、熱
延鋼帯が仕上月−延機のロールを離れてから巻取機せで
の冷却速度を冷却水h1.搬送搬送筒の調節により第1
表に示す冷却φ件で冷却した。これらの熱延銅帯を公知
の方法により酸洗後冷延で(185tramの中間板j
すとし、次いで950℃3分間の焼鈍を行い、II)び
冷延で(1,35隅の最終板厚とし、840℃5分間l
!i+!水未中で脱炭・暁舗しその後M r Oを塗布
し、1170℃10時間水素中で最終高温焼鈍を行い一
方向性1素fM・(iン成品とした−1この成品の帯状
細f1′1の有趣と磁気特性を調査しその結1帖を同じ
く第1で(に示した。
Example 1 C: O (138%, Si: 3.02%, M n :
(thickness 200% including 1,075%, S: 0.02%)
After heating 5 continuously cast slabs of silicon steel with a thickness of 1,300 mm, they were heated to 1,370°C, and then processed into a 25 mm thick hot-rolled steel strip using a rough rolling mill. After the hot-rolled steel strip is finished and leaves the rolls of the rolling mill, the cooling rate at the winding machine is adjusted to the first level by adjusting the cooling water h1.
Cooling was performed according to the cooling conditions shown in the table. These hot-rolled copper strips were pickled by a known method and then cold-rolled (185 tram intermediate plate j
Then, it was annealed at 950°C for 3 minutes, and then cold-rolled (with a final thickness of 1.35 corners and annealed at 840°C for 5 minutes).
! i+! After decarburizing and drying in water, MrO was applied, and a final high-temperature annealing was performed in hydrogen at 1170°C for 10 hours to obtain a unidirectional 1-element fM (i)-1 strip-like product. I investigated the attractiveness and magnetic properties of f1'1, and the results are shown in Chapter 1 (also in Part 1).

第1人から(し軸側A、E利は帯状細粒が発生しイ1h
気特性が芹しく劣り、成品としての価値がないのに比較
して本究明例1:(、C,D材は何れも成品に4’j状
細粒がなくすぐれた磁気特性が得られることが分る。
From the first person (on the shaft side A and E, band-like fine grains are generated)
Compared to this study example 1: (, C and D materials have excellent magnetic properties without 4'j-shaped fine grains in the finished product.) I understand.

実施例2 C: (1,4135%、S + : 2.98%、M
n:0.f”+6796、S:(1,(1(17%、S
e:(1,013%を含む厚さ200団の珪素中津グツ
1スラブ5本全1350℃で加熱し実施例1と同(〜η
のH法により22門厚のP8延鋼帯とし、 ;rc 2
 Wの冷却争件で冷却した、どれらの熱延4岡帯を公′
r11のJj法で酸、先後冷!豪により0.72アの中
間板厚と17.950℃2分間焼鋪ケ侑した後、P+び
冷延によって0.30 mmの最終板厚とし、820℃
5分間湿水素中で脱炭焼鈍後M Y □ を塗布し、I
J70℃10時間水素中で最終高、aす尭鋪奢行い、一
方向(’l: TI:素σ1′1帯成品とし、その出:
状細粒の有無、磁気特性を;調査し、同じく第2表に示
した。
Example 2 C: (1,4135%, S + : 2.98%, M
n:0. f”+6796,S:(1,(1(17%,S
e: (All five slabs of silicone Nakatsu guts with a thickness of 200 layers containing 1,013% were heated at 1350°C and the same as in Example 1 (~η
A P8 rolled steel strip with a thickness of 22 gates was made using the H method of ;rc 2
Which four hot-rolled strips were cooled in the W cooling dispute?
Acid using R11 JJ method, cool before and after! After being tempered for 2 minutes at 17.950°C with an intermediate thickness of 0.72 mm by Australia, it was P+ and cold rolled to a final thickness of 0.30 mm at 820°C.
After decarburizing annealing in wet hydrogen for 5 minutes, M Y □ was applied and I
The final height was 10 hours at 70°C in hydrogen, and the product was made into a unidirectional ('l: TI: elemental σ1'1 band product, and its output:
The presence or absence of fine grains and magnetic properties were investigated and are also shown in Table 2.

第2表から比較例1=”、J材は帯状i、ll1粒が発
生し膳気Irテ件が劣るが、本発明例Cl、 H,I材
は帯状細粒がなくすぐれた磁気特性を示し、インヒビタ
ーが8.Se でも同様の効果のあることが分る。
From Table 2, Comparative Example 1 = ", the J material has one band-like particle I, ll, and is inferior in temperature resistance, but the invention example Cl, H, and I materials have no band-like fine particles and have excellent magnetic properties. It can be seen that the same effect is obtained even when the inhibitor is 8.Se.

実lイ時イ列3 C: (1,n 4 n、”にs SI : 2.95
A、λ4n:0.070%、S:0.005.。6、S
 c : O,O]、 55%sb:0.025%を含
む珪素鋼連間スラブ5本を1370℃で加熱し1、実施
例Jと同様の方法により2.7門厚の熱延鋼帯とし2、
第3表の冷却条件で冷却しプと。これらの熱延鋼帯を公
知の方法により、酸洗後冷延で078−の中間板厚とし
、950℃2分間焼鈍を/nji l−に後、再び冷延
で0.30 mmのIQ終板厚とし7.850℃5分間
湿水素中で脱炭<+’6鈍後M f Oを塗布した。こ
ノ1らの鋼帯をR70tl”で20874間保持した後
1180℃に昇温し10時間水素中で一社終高温焼鈍し
て一方向性珪素鋼帯成品としだ。この成品の帯状細粒の
有無と磁気特性を調査しその結果を同じく第3表に示し
た。
Real time column 3 C: (1,n 4 n,”s SI: 2.95
A, λ4n: 0.070%, S: 0.005. . 6.S
c: O, O], 55% sb: Five continuous slabs of silicon steel containing 0.025% were heated at 1370° C. 1, and a hot rolled steel strip with a thickness of 2.7 was prepared in the same manner as in Example J. Toshi 2,
Cool it under the cooling conditions shown in Table 3. These hot-rolled steel strips were pickled and cold-rolled to an intermediate thickness of 0.78mm by a known method, annealed at 950°C for 2 minutes to /nji l-, and then cold-rolled again to an IQ finish of 0.30mm. The plate thickness was set to 7.850°C for 5 minutes in wet hydrogen, and after decarburization <+'6, M f O was applied. These steel strips were held at R70 tl'' for 20,874 hours, heated to 1180°C, and then subjected to final high-temperature annealing in hydrogen for 10 hours to produce a unidirectional silicon steel strip. The presence or absence of magnetic properties and magnetic properties were investigated, and the results are also shown in Table 3.

第3表から比較材に10材は帯状細粒が発生し、磁気特
性が劣っているのに対し、本発明例り、M、N材は成品
に帯状細粒がなく磁気特性がきわめてすぐれており、イ
ンヒビターS%Se、Sbの相乗効果のあることが分る
Table 3 shows that Comparative Material No. 10 has band-like fine grains and is inferior in magnetic properties, while the present invention examples, M and N, have no band-like fine grains and have extremely excellent magnetic properties. It can be seen that there is a synergistic effect of the inhibitors S%Se and Sb.

本発明は上記実施例からも明らか々如く、成分を限定し
、連鋳スラブからの熱延工程において熱延銅帯を仕上最
終スタンドから巻取る間およびその後の冷却条件を限定
することによって帯状細粒がなく磁気特性のすぐれた一
方向性珪素鋼板を製造することができだ。
As is clear from the above embodiments, the present invention has been achieved by limiting the components and by limiting the cooling conditions during and after winding the hot rolled copper strip from the finishing stand in the hot rolling process from the continuous cast slab. It is possible to produce unidirectional silicon steel sheets with no grains and excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連鋳スラブからの一方向性珪素鋼の熱延後の断
面顕微鏡写真、第2図(A)、の)は連鋳スラブからの
一方向性珪素鋼の中間焼鈍後の断面顕微鏡写真であって
第2図(A)は従来法によるもの、第2図03)は本発
明法によるもの、第3図(A)、σ3)け連鋳スラブか
らの一方向性珪素鋼の脱炭焼鈍後の断面gIR微鏡耳鏡
写真って第3回込)は従来法によるもの、第3図(B)
は本発明法によるもの、第4図(A)、0は一方向性珪
素鋼成品のマクロ組織写真であって第4図(5)は従来
法によるもの、第4図03)は本発明法によるもの、第
5図は、炭素計と帯状細粒の発生面積率との関係を示す
線図、@6図は巻取後故冷の場合の熱延後の冷却速度、
巻取速度と成品における帯状細粒の発生面積率との関係
を示す線図、第7図は巻取径水冷の場合の熱延後の冷却
速度、巻取温度と成品における帯状細粒の発生面積率と
の関係を示す線図である。 代理人 中 路 武 雄 第1図 第2図 (A)       CB) 第3図 (A)       (B) 第4図 crn 第5図 炭寮量(%) 第6図 邊却を度(・07秒) 第7図 0発 明 者 山田茂樹 千葉市川崎町1番地川崎製鉄株 式会社技術研究所内 108
Figure 1 is a cross-sectional micrograph of unidirectional silicon steel from a continuous cast slab after hot rolling, and Figure 2 (A) is a cross-sectional micrograph of unidirectional silicon steel from a continuous cast slab after intermediate annealing. Figure 2 (A) is a photograph taken by the conventional method, Figure 2 (03) is a photograph taken by the method of the present invention, and Figure 3 (A), σ3) is a photograph taken by the method of the present invention. The cross-sectional gIR micro-otoscope photograph after charcoal annealing was taken using the conventional method (Figure 3 (B)).
4(A) is a macrostructure photograph of a unidirectional silicon steel product, FIG. 4(5) is a photograph obtained by the conventional method, and FIG. 4(03) is a photograph obtained by the method of the present invention. Figure 5 is a diagram showing the relationship between the carbon meter and the area ratio of band-shaped fine grains, Figure 6 is the cooling rate after hot rolling in the case of late cooling after coiling.
A diagram showing the relationship between the winding speed and the area ratio of band-like fine grains in the finished product. Figure 7 shows the relationship between the winding diameter and the cooling rate after hot rolling in the case of water cooling, the coiling temperature, and the occurrence of band-like fine grains in the finished product. FIG. 3 is a diagram showing the relationship with area ratio. Agent Takeo Nakaji Fig. 1 Fig. 2 (A) CB) Fig. 3 (A) (B) Fig. 4 crn Fig. 5 Chariot amount (%) Fig. 6 Determination (・07 seconds) ) Figure 7 0 Inventor Shigeki Yamada 108 Kawasaki Steel Co., Ltd. Technical Research Laboratory, 1 Kawasakicho, Chiba City

Claims (2)

【特許請求の範囲】[Claims] (1)重侶比にて、C:0.020〜0.080%、S
r : 2.5〜4.0%、Mn : 0.02〜0.
10%、SおよびSeの何れか1種又は2種の合計が0
008〜0050%を含み更に必要によりSl):0.
10%以下を含有する珪素鋼の連続鋳造スラブを熱間圧
延する工程を有して成る一方向性珪素鋼板の製造方法に
おいて、前記熱延銅帯を仕上最終スタンドを離れてから
下記の(1)、(2)式より算出される温度の範囲まで
7〜b 巻取放冷する工程を含むことを特徴とする特許性のすぐ
れた一方向性珪素鋼板の製造方法。 [ 3 5 X tof,。V+51.5)’C・・・
・・(1)C445×iof,。V−570]℃・・・
(2)ただし■:什ーヒ最終スタンドを離れてから巻取
る神での熱延鋼帯の冷却速度(℃/秒)
(1) By weight ratio, C: 0.020-0.080%, S
r: 2.5-4.0%, Mn: 0.02-0.
10%, the total of any one or both of S and Se is 0
008-0050%, and if necessary, Sl): 0.
In a method for producing a grain-oriented silicon steel sheet comprising the step of hot rolling a continuously cast slab of silicon steel containing 10% or less, after the hot-rolled copper strip is finished and leaves the final stand, the following (1) ), (2) to a temperature range calculated from equation (2). [ 3 5 X tof,. V+51.5)'C...
...(1) C445×iof,. V-570]℃...
(2) However ■: Cooling rate of the hot-rolled steel strip at the coiler after leaving the final stand (°C/sec)
(2)重険比にて、C:o.o2o〜0. (1 8 
0%、S i  :  2. 5 〜4. 0%、Mn
 :  0.(’l 2 〜O. 1  0%、Sおよ
びSeの何れか1種又は2種の合計が0008〜005
0%を含み更に必要にょり81):0.10%以下を含
有する珪素鋼の連続鋳造スラブを熱間圧延する工程を有
して成る一方向性珪素鋼板の製造方法において、前記熱
延銅帯を仕上最終スタンドを離れてから下記(3)式よ
り算出される温度以下に7〜b に該巻取bts+帯を水冷する工程を含むことを特徴と
する磁気特性のすぐれた一方向性珪素鋼板。 [20X7or,oV+555]℃・・・・−(3)た
だし■:仕上最終スタンドを離れてから巻取るまでの熱
延鋼帯の冷却速IO’ ( ℃/秒)
(2) C: o. o2o~0. (1 8
0%, S i :2. 5-4. 0%, Mn
: 0. ('l2~O.10%, the total of any one or two of S and Se is 0008~005
81): In a method for producing a grain-oriented silicon steel sheet comprising the step of hot rolling a continuous cast slab of silicon steel containing 0.10% or less, the hot-rolled copper Unidirectional silicon with excellent magnetic properties characterized by including a step of water cooling the wound bts+strip to a temperature below the temperature calculated from the following formula (3) after finishing the strip and leaving the final stand. steel plate. [20X7or, oV+555] °C...-(3) However, ■: Cooling rate IO' of hot-rolled steel strip from leaving the final finishing stand until winding up (°C/sec)
JP16060282A 1982-09-14 1982-09-14 Production of unidirectional silicon steel plate having excellent magnetic characteristic Granted JPS5950118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16060282A JPS5950118A (en) 1982-09-14 1982-09-14 Production of unidirectional silicon steel plate having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16060282A JPS5950118A (en) 1982-09-14 1982-09-14 Production of unidirectional silicon steel plate having excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS5950118A true JPS5950118A (en) 1984-03-23
JPH0249371B2 JPH0249371B2 (en) 1990-10-30

Family

ID=15718486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16060282A Granted JPS5950118A (en) 1982-09-14 1982-09-14 Production of unidirectional silicon steel plate having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS5950118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597424A (en) * 1990-04-13 1997-01-28 Nippon Steel Corporation Process for producing grain oriented electrical steel sheet having excellent magnetic properties
CN102453844A (en) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 Method for preparing non-oriented silicon steel with excellent magnetic property and high efficiency
CN107267728A (en) * 2017-06-09 2017-10-20 首钢京唐钢铁联合有限责任公司 A kind of cold-drawn hot rolled strip and its production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621379U (en) * 1992-08-12 1994-03-18 株式会社三協精機製作所 Brushless motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597424A (en) * 1990-04-13 1997-01-28 Nippon Steel Corporation Process for producing grain oriented electrical steel sheet having excellent magnetic properties
CN102453844A (en) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 Method for preparing non-oriented silicon steel with excellent magnetic property and high efficiency
CN107267728A (en) * 2017-06-09 2017-10-20 首钢京唐钢铁联合有限责任公司 A kind of cold-drawn hot rolled strip and its production method
CN107267728B (en) * 2017-06-09 2019-04-12 首钢京唐钢铁联合有限责任公司 A kind of cold-drawn hot rolled strip and its production method

Also Published As

Publication number Publication date
JPH0249371B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
US4339287A (en) Process for producing grain-oriented silicon steel strip
US5858126A (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
JPH03219020A (en) Production of nonoriented silicon steel sheet
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JPS5950118A (en) Production of unidirectional silicon steel plate having excellent magnetic characteristic
JPS58136718A (en) Manufacture of nonoriented electrical band steel with superior magnetic characteristic
JPH01306523A (en) Production of non-oriented electrical sheet having high magnetic flux density
JPH10226819A (en) Production of grain oriented silicon steel sheet excellent in core loss characteristic
JP3234594B2 (en) Hot rolling method for grain-oriented silicon steel sheet.
TWI753650B (en) Manufacturing method of non-oriented electrical steel sheet
JP7288215B2 (en) Non-oriented electrical steel sheet
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
CN114651079B (en) Non-oriented electromagnetic steel sheet
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0232327B2 (en) HOKOSEIKEISOKOHANYOSURABUNONETSUKANATSUENHOHO
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS6043432A (en) Manufacture of cold rolled aluminum killed steel sheet
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0686626B2 (en) Method for manufacturing hot rolled sheet for high-grade non-oriented electrical steel sheet
JPS60138014A (en) Manufacture of nonoriented silicon steel sheet
JPH0257125B2 (en)
JPS643564B2 (en)
JPH08157964A (en) Production of grain oriented silicon steel sheet excellent in magnetic property