JPS59500116A - sound equipment - Google Patents

sound equipment

Info

Publication number
JPS59500116A
JPS59500116A JP58500695A JP50069583A JPS59500116A JP S59500116 A JPS59500116 A JP S59500116A JP 58500695 A JP58500695 A JP 58500695A JP 50069583 A JP50069583 A JP 50069583A JP S59500116 A JPS59500116 A JP S59500116A
Authority
JP
Japan
Prior art keywords
sound
acoustic
frequency
absorption
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58500695A
Other languages
Japanese (ja)
Inventor
アムネウス・クリステル
Original Assignee
アムネウス クリステル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アムネウス クリステル filed Critical アムネウス クリステル
Publication of JPS59500116A publication Critical patent/JPS59500116A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 音響装置 この発明は音響により幾何学的延長部を横断して振動するように設定され、室の 区画壁の少くとも一部分を形成する薄板材部材を含む種類の音響減衰装置に関す る。[Detailed description of the invention] sound equipment The invention is configured to acoustically vibrate across the geometric extension of the chamber. Relating to sound attenuating devices of the type comprising a sheet metal member forming at least a part of a partition wall Ru.

音響をある範囲まで吸収し、それにより室の音響状態を補正できることと、騒音 を減衰し、周囲から音源を分離隔離できることとが音響減衰装置には基本的なこ とである。It is possible to absorb sound up to a certain range, thereby correcting the acoustic condition of the room, and to reduce noise. The basic characteristics of an acoustic attenuation device are that it can attenuate the sound and isolate the sound source from the surroundings. That is.

音響は媒体の波状運動により造られ、この波状運動は、音響が進行する媒体の性 質に依存する速度で伝播する。Sound is created by the wave-like motion of a medium, and this wave-like motion is a function of the nature of the medium through which the sound travels. Propagates at a rate that depends on quality.

この媒体は気体でも液体でも固体でもよい。通常の大気圧と約20℃の温度の空 気中では、音速は約344 m/sである。然しこの音速は固体を鴻、て伝播す る場合、内部減衰が小さい場合は速くなり、減衰が高い場合は遅くなる。音響エ ネルギ・−は媒体内の撹乱として発生し、媒体内の質点がつりあい位置のまわり で振動するようにする。音波が伝播する方向と同方向に質点が振動すると、音響 エネルギーは縦波として現われる。空気力・らなる媒体の場合、これが発生し得 る唯一の伝播法である。即ち音響エネルギーは波と同方向に媒体内を流れる。固 体媒体の場合にもまた、複雑な波形が発生する。即ち音響エネルギーは方向を変 え、音が伝播する方向に垂直に流れる。この波長は媒体内で運動と位相の方向と 同じ方向の相互に隣接する質点間の最小距離により決定される。波の周波数は、 媒体内の伝播速度、振動間隔および単位時間当りの振動数の間の関係から得られ る。音響は伝播通路内に置かれる障害の影響を受ける。音響が影響される範囲は 音響の特定周波数により決定される。周波数が低く(長波)、障害が提供する表 面積が波長に対して小さい場合、音響が影響される範囲は実質的に無視できる。This medium can be gaseous, liquid or solid. Air at normal atmospheric pressure and a temperature of about 20°C In air, the speed of sound is approximately 344 m/s. However, this speed of sound propagates through solid objects. If internal damping is low, it will be faster, and if internal damping is high, it will be slower. Acoustic Energy - occurs as a disturbance within the medium, causing a mass point within the medium to move around the equilibrium position. make it vibrate. When the mass vibrates in the same direction as the sound wave propagates, the acoustic Energy appears as longitudinal waves. This can occur in the case of aerodynamic media. This is the only propagation method available. That is, acoustic energy flows through the medium in the same direction as the waves. solid In the case of physical media, complex waveforms are also generated. That is, the acoustic energy changes direction. Well, it flows perpendicular to the direction in which sound propagates. This wavelength corresponds to the direction of motion and phase within the medium. Determined by the minimum distance between mutually adjacent mass points in the same direction. The frequency of the wave is obtained from the relationship between the propagation velocity in the medium, the vibration interval and the frequency of vibrations per unit time. Ru. Sound is affected by obstacles placed in the propagation path. The area where the sound is affected is Determined by the specific frequency of the sound. Low frequency (long wave), table provided by disturbances If the area is small relative to the wavelength, the area over which the acoustics are affected is virtually negligible.

周波数が高く(短波)、障害面の大きさが波長に匹敵する場合・波の伝播は実際 的に止まり、音響は方向を変えなければならない。障害面がこの周波数を全反射 する場合、音響は音源に向は逆転される。音響が障害面を透過できる場合、障害 は、それで吸収されたり透゛過したりされる一定量の入来音響エネルギーを吸収 し、残部の音響エネルギーは音源に反射して戻す。音波の伝播路に同等障害がな い場合、所謂、自由音響伝播が行われる。When the frequency is high (short wave) and the size of the obstacle surface is comparable to the wavelength, wave propagation is actually The target stops and the sound has to change direction. Obstacle surface totally reflects this frequency In this case, the direction of the sound is reversed towards the source. If sound can pass through the faulty surface, then the fault absorbs a certain amount of incoming acoustic energy that is absorbed or transmitted through it. However, the remaining acoustic energy is reflected back to the sound source. There are no equivalent obstacles in the sound wave propagation path. If this is not the case, so-called free sound propagation takes place.

従って、与えられた音響装置が、与えられた部屋内の音源に対して配置される方 法と一緒に、該装置により質と音響減衰を決定するのは、一部は音源からの音波 に対する障害の割合の範囲、一部は周波数依存の伝播制限、吸収、透過、音源へ の反射間の量配分である。音響が音源から聴覚的に放射されないようにすること により、即ち、しや蔽することにより、ある程度の音響減衰が周囲に得られる。Therefore, how a given acoustic device is positioned relative to the sound source in a given room. Along with the method, the quality and sound attenuation determined by the device is partly due to the sound waves from the sound source. A range of proportions of disturbances to the sound source, some of which are frequency-dependent propagation limitations, absorption, transmission, and is the distribution of quantity between the reflections. Preventing sound from being audibly radiated from the source In other words, by shielding, a certain degree of acoustic attenuation is obtained in the surrounding area.

一方、音源で発生する音響は、わずかな範囲までしか低減されないか、または音 響スクリーン面への透過が僅小な周波数でスクリーンが音響を音源に反射する時 に該スクリーンの存在により聴覚的に増巾されることになる。On the other hand, the sound generated by the sound source is only reduced to a small extent or When the screen reflects sound back to the sound source at a frequency that is only slightly transmitted to the sound screen surface. The presence of the screen will audibly amplify the sound.

上記により、スクリーンにより吸収されない音源力1らの音響部分は、固体の室 区画壁に到達するまで空気を通って走行することになる。この壁が全反射をする 場合、音響は音源と最初に述べた壁に対向する室区画壁とに向い、また音波の入 射角に関係して他の室区画壁にも戻される。室区画壁の表面が音波の運動エネル ギーを受ける時に固定状態にある場合音波内で質点が動く速度は前記表面から与 えられた距離においては零に近づき、前記表面では零となる。音波内の質点運動 が正弦波的な場合、質点速度は波長の四分の−に等しい区画面からの距離で最大 となる。他方、該表面が固定されない場合、即ち入来℃音波のエネルギーの関数 として該表面が振動する場合前記区画壁の表面は交互に同方向および反対方向に 向けられる音源として作用することになり、従って、零点の位置は物理的に不定 となり周波数と関係する。According to the above, the acoustic part of the sound source force 1 that is not absorbed by the screen is It will travel through the air until it reaches the compartment wall. This wall has total reflection In this case, the sound is directed towards the sound source and the room partition wall opposite the first mentioned wall, and the sound wave is directed towards the Depending on the shooting angle, it is also returned to other room partition walls. The surface of the room partition wall absorbs the kinetic energy of the sound wave. If it is in a fixed state when receiving energy, the speed at which the mass moves within the sound wave is given by the surface. At the distance obtained, it approaches zero and becomes zero at the surface. Mass motion within a sound wave If is sinusoidal, the mass point velocity has a maximum at a distance from the partition plane equal to -4/4 of the wavelength. becomes. On the other hand, if the surface is not fixed, i.e. a function of the energy of the incoming sound wave When said surface vibrates as Therefore, the position of the zero point is physically indeterminate. This is related to frequency.

室区画壁が音響的に減衰される性質の場合、ある入射音響エネルギーは吸収、伝 達9反射される。壁の吸収特性は前記壁の面を適当な音響吸収番手装置で被覆す ることによって著しく増すことができる。これにより音響が音源やその他の室区 画表面に向けて戻らなυ0ようになる。If the room partition walls are acoustically attenuated, some incident acoustic energy will be absorbed and transmitted. Reach 9 reflected. The absorption characteristics of the wall can be determined by coating the wall surface with a suitable acoustic absorbing material. can be significantly increased by This allows the acoustics to reach the sound source and other room areas. It becomes υ0 without returning towards the screen surface.

与えられた周波数で与えられた表面から任意方向に再反射される音響が一切ない 場合、100%の吸収が達成される。即ち表面の物理的面積が1m2である場合 、吸収はまた1m2となる。従ちて与えられた表面積をもつ室の場合の平均吸収 の測定値は、合計室吸収量と前記表面積間の関係として定めることができる。与 えられた周波数で室内に得られる100%吸収を達成するために、定面全体は吸 収材料で被覆しなければならないが、これにより音響エネルギー全体は@4 i  o O%会雫表面で吸収される。与えられた周波数に対して100%吸収を達 成するよう音響上取扱われた室の場合、音響は音源からの距離をそれぞれ倍化す るとそれぞれ半減される。音源が急激にしゃ断されると、音響は直ちに止むこと になる。即ち、室の反響時間は零となるが、それは反射音圧がその中に造成され 得ないからである。同様に、全熱吸収しない室の場合、音響が止むのにかかる時 間は無限で、反響時間は無限となる。実際には反響時間は室が太きければ大きい 程長くなり、音響上許容できる環境を得るためには室の全吸収とその容積間に一 定の関係がある筈であるO室を音響上処理する前の室の反響時間と、室に吸収手 段を附加した後に得た反響時間との差を測定すれば、室内の平均吸収量を決定し 室の音響環境が室の容積と使用法について良好であるかどうかを判断することが できる。吸収による最適の音響減衰は室の反響時間が音響のすべての周波数に対 し同じの時に得られると考えることができるO 基本的な室音響状態は要因数により決定される。室の幾何学形状や、形状に関す る色々な室区画表面の性質と機械的安定性と固有吸収との間の関係は、発生音響 スペクトルの室内の動きの如何に極めて重要なこととなる。No sound is re-reflected in any direction from a given surface at a given frequency In this case, 100% absorption is achieved. That is, if the physical area of the surface is 1 m2 , the absorption is also 1 m2. Therefore the average absorption for a chamber with a given surface area The measurement of can be defined as the relationship between the total chamber absorption and the surface area. Give In order to achieve the 100% absorption obtained in the room at the given frequency, the entire constant surface is must be covered with an absorbing material, which reduces the total acoustic energy to @4 i o O% Absorbed on the surface of the droplet. Achieves 100% absorption for a given frequency In a room that is acoustically treated to each will be halved. If the sound source is abruptly cut off, the sound will stop immediately. become. In other words, the reverberation time of the room becomes zero, but this is because reflected sound pressure is created within it. That's because you don't get it. Similarly, for a room that does not absorb all heat, the time it takes for the sound to stop The interval is infinite, and the reverberation time is infinite. In reality, the thicker the chamber, the greater the reverberation time. In order to obtain an acoustically acceptable environment, the difference between the total absorption of the room and its volume must be There should be a certain relationship between the reverberation time of the O room before acoustic treatment and the absorption By measuring the difference between the reverberation time obtained after adding the step, you can determine the average amount of absorption in the room. It is possible to determine whether the acoustic environment of the room is good for the volume and usage of the room. can. Optimal sound attenuation by absorption is achieved by increasing the reverberation time of the room for all frequencies of the sound. O can be considered to be obtained at the same time. The basic room acoustic condition is determined by a number of factors. Regarding the geometry and shape of the room The relationship between the properties, mechanical stability, and specific absorption of the various chamber compartment surfaces is How the spectrum moves indoors is extremely important.

5 1俵昭59−50011(i (3)主として、音源から直接到着する音響 と室の表面から到着する音響間の関係は、音響が認められる位置が音源に対し室 内のどこにあるかということに依存する。この認識位置が直接世界中で音源の真 近かに置かれる場合、室の音響状態は同等影響されないか、無視できる程しか影 響されない。その結果、音源からの騒音の低下はほんの僅少かまたは全然無いこ とになる。音源からの距離が増大すると、反射音界は、直接世界全体に亘って優 勢となり、従って区画壁に隣接するかまたはその上に置かれる吸収材料から得ら れる音響低下は前記壁に隣接する所が最大となる。これから理解されるように、 室の壁や天井を音響上減衰性として、任意の感知可能範囲まで音源位置で騒音を 減衰することは不可能である。壁面において吸収する利点は、距離法則が早期に 有効となることにある。それと共に、音源からある距離を置いて音響を吸収する と、音響のレベルは漸進的により早く半減される(即ち音源からの距離が短い程 、壁での吸収は高くなる〕。5 1 Tawara Sho 59-50011 (i (3) Mainly sound that arrives directly from the sound source The relationship between the sound arriving from the surface of the room and the surface of the room is that the position where the sound is perceived is It depends on where it is inside. This recognition position directly identifies the source of the sound all over the world. If placed close together, the acoustics of the room will be unaffected or only negligibly affected. Not heard. As a result, the noise from the source may be reduced only slightly or not at all. It becomes. As the distance from the sound source increases, the reflected sound field becomes more dominant across the direct world. from absorbent materials placed adjacent to or on top of the compartment walls. The acoustic reduction is greatest adjacent to the wall. As will be understood, The walls and ceiling of the room are acoustically attenuated to reduce noise at the sound source location to any detectable range. It is impossible to attenuate. The advantage of absorption on walls is that the distance law It is to be effective. At the same time, it absorbs sound at a certain distance from the sound source. , the sound level is progressively halved faster (i.e., the shorter the distance from the sound source, the faster the sound level is halved). , the absorption at the wall will be higher].

室自体が音響振動回路を構成する。突然の圧力変化が室に発生すると、室内の圧 力レベルはそれに比例して変化するに違いない。音響振動回路が慣性をもつので 、一定量の時間が圧力レベルの変化が行われる前に経過し、該変化は音響造成の 形式で起り、室の周波数応答即ち、加えられる圧力変化がつり合った時と圧力変 化が反復される時、即ち、加えられた圧力上昇が与えられた長さの時間中、維持 されその後しゃ断される時に展開される階動機能に現われる室の自然共振周波数 に従って進行する・この状況は音響振動回路が、常に主となる一定大気圧からの 直線状の急速な圧力変化に適応し切れないことを意味する。室の音響吸収を増す ことにより音響室回路から発生する衝撃ゆがみをある範囲まで減衰することがで きる。The chamber itself constitutes an acoustic vibration circuit. If a sudden pressure change occurs in the room, the pressure in the room will The power level must change proportionately. Since the acoustic vibration circuit has inertia, , a certain amount of time elapses before a change in pressure level is made, and the change is due to the acoustic creation. The frequency response of the chamber, i.e., when the applied pressure changes are balanced and when the pressure changes When the change is repeated, i.e. the applied pressure increase is maintained for a given length of time. The natural resonant frequency of the room that appears in the step function that develops when it is cut off and then cut off. ・This situation is such that the acoustic vibration circuit is constantly exposed to the main constant atmospheric pressure. This means that it cannot fully adapt to rapid pressure changes in a straight line. increase the acoustic absorption of the room This makes it possible to attenuate the impact distortion generated from the acoustic room circuit to a certain extent. Wear.

吸収能力についていえば、音響状態を扱う既知の装置は著しく周波数に依存する 場合が極めて多い。その結果実際に十分に良好な音響状態と前記の瞬間的音響の 減衰を達成することは稀にしかできないかまたは決してできない。前記の周波数 依存性のため、音響を処理される室の反響時間に関する所望の直線性は達成され 得ない。約250Hz以下の低い周波数範囲は音響上特に不十分にしか減衰され ないままとなる。これは室が大きくなるにつれ、反響時間を調節する問題は加え られた騒音ス被りトルにおける低周波数ス波りトルが増大するほど次第に困姉と なることを意味する。これは吸収されない騒音スイクトルの一部が室の反射面に より音響的に増巾されることになるからである。既知の吸収装置を使用する場合 、吸収は通常250 T(z以下の周波数で極めて急速に低下するので、この欠 点は、上記室共振で室内の反射により音響の極めて高い共振増巾を示す周波数範 囲にのみ現われる。室の主共振周波数で騒音スペクトルの音響増巾が強力となり 、この周波数は室が大きくなるのにつれて低くなる。その場合、顕著な音響エネ ルギーが機械的振動の形式で室構造に起されそれが更に騒音レベルの増強に貢献 する。理解されるように、これらの共振現象はまた、最悪の場合、材料の破壊を もたらすことがあるように建築構造にも影響する。その結果、低周波数騒音をで きるだけ減らすことが、主としてかなりの表面積をもつ、プレス、穿孔機、5フ ライス盤、旋盤のような大型機械を組込む産業現場においては重要である。大型 加工品にプレスや穿孔作業を施すことは、圧力・ぐルスを高め、このパルスは極 めて高いエネルギーを有し、室共振を起す。大型加工品にフライスおよび丸削り 作業を施すことは複雑なス綬りトルを示す強力な音響を高める。幾分かのエネル ギーは吸収の結果としてこれらの音響ス硬りトルから消えるけれども、該スペク トルの吸収されない構成成分は、周波数が低められ室構造に不幸な機械的故障を 起すようにパルス−音響増巾と結合する場合、静止音圧として次第に増巾される 。Regarding absorption capacity, known devices for dealing with acoustic conditions are significantly frequency dependent. There are very many cases. The result is actually a sufficiently good acoustic condition and the instantaneous acoustic Attenuation can only rarely or never be achieved. Said frequency The desired linearity with respect to the reverberation time of the acoustically treated room cannot be achieved due to I don't get it. The low frequency range below approximately 250 Hz is acoustically particularly poorly attenuated. It will remain empty. This means that as the room gets larger, the problem of adjusting the reverberation time becomes more difficult. As the low-frequency waves in the noise waves caused by noise increase, the more troublesome the older sister becomes. It means to become. This means that some of the unabsorbed noise quictor is reflected on the reflecting surface of the room. This is because the acoustics will be further amplified. When using a known absorption device , the absorption decreases very rapidly at frequencies below 250 T (z), so this deficiency The points indicate the frequency range in which the above-mentioned room resonance exhibits an extremely high resonance amplification due to reflection inside the room. Appears only in the surrounding area. The acoustic amplification of the noise spectrum becomes strong at the main resonant frequency of the room. , this frequency decreases as the chamber becomes larger. In that case, significant acoustic energy energy is generated in the room structure in the form of mechanical vibrations, which further contributes to increasing the noise level. do. As is understood, these resonance phenomena can also lead to material destruction in the worst case. It also affects the architectural structure. As a result, low frequency noise can be reduced. Minimizing as much as possible is important primarily for presses, punching machines, and five-sided This is important in industrial sites that incorporate large machines such as rice machines and lathes. large Pressing or drilling a processed product increases pressure and gas, and this pulse is extremely It has extremely high energy and causes room resonance. Milling and rounding of large workpieces The work enhances the powerful acoustics that exhibit the complex strings. some energy Although energy disappears from these acoustic waves as a result of absorption, the spectrum The unabsorbed components of the torque are lowered in frequency and can cause unfortunate mechanical failure in the chamber structure. When combined with pulse-acoustic amplification to cause static sound pressure, it is gradually amplified as static sound pressure. .

騒音に対する人々の反応は極めて個別的である。個人は特に騒音周波数のある組 合せに敏感である。その場合幾つかの周波数は作業員に特に不快感を与えずに機 械から直接来ることがあるが、然し、その場所の床面に沿って変化する音響の組 合せと位相により同じ場所で他のさらされた個人には完全に耐えられなくなる。People's reactions to noise are highly individualized. Individuals are particularly sensitive to groups with noise frequencies. Sensitive to alignment. In that case, some frequencies can be operated without causing any particular discomfort to the worker. may come directly from the equipment, but may also come directly from the acoustics that vary along the floor of the area. The alignment and phasing make it completely intolerable to other exposed individuals in the same location.

更に高い騒音スペクトル内の周波数−約1000 T(z乃至5000 Hz  −はエネルギーの点では特に高くはないが、例えば聴覚を損傷するような永久騒 音損害を起すことができる・最近の研究で明白になったのは、低周波数の騒音騒 動は人間と前記のように建物構造には極めて危険となり得ることである。Frequencies in the higher noise spectrum - approximately 1000 T (z to 5000 Hz) − is not particularly high in terms of energy, but it produces permanent noise that can damage hearing, for example. Recent research has shown that low-frequency noise can cause sound damage. These movements can be extremely dangerous to humans and, as mentioned above, to building structures.

騒音周波数が約125 Hz以下の場合、今日実際にもっばら使用される繊維鉱 物−羊毛吸収材で何等かのかなりの吸収を行うことは不可能である事実を考慮す れば、またこの事実を、実際に高いエネルギーを有し人間にも建築構造にも有害 な騒音が、抵抗吸収装置の場合のこの限界周波数以下に入るという事実と比較す れば、低周波数の音響環境を確立するような周波数スペクトルに下がって作動す る採用可能な吸収構成部材の技術調査が極めて望ましいことが判明しよう。当然 、この目的を心がけた実験は既に行われているが、良く解決できなかったコスト と技術的問題は、音響技術者に低周波数範囲を無視させている。If the noise frequency is below about 125 Hz, fiber minerals, which are mostly used in practice today, Taking into account the fact that it is not possible to achieve any appreciable absorption with wool absorbent materials. If so, we also consider this fact that there are actually high-energy and harmful to humans and building structures. Compare this with the fact that the noise of If the A technical investigation of possible absorbent components would prove highly desirable. Of course , experiments with this purpose in mind have already been carried out, but the costs have not been resolved well. and technical issues have caused acoustic engineers to ignore the low frequency range.

極めて経費がかかり物理的にかさばることが多い複雑な構造の一例として、各種 の設計のへルムホルツ吸収材が考えられるが、これらは一定の周波数範囲内で特 殊の機能用に意図されているものである。更に)既知の振動部材でまた個々の周 波数範囲内で使用される意図のものの主要機能について、以下簡単に記述する。As an example of a complex structure that is often extremely expensive and physically bulky, Helmholtz absorbers with a design of It is intended for a special function. (further) with known vibrating members and also with individual circumferential The main functions of those intended for use within the wavenumber range are briefly described below.

その最初の設計の場合、ヘルムホルツ共振器は、周囲に通ずる開口を備えた室が 中に包んでいる空気容積からなる。該開口は該室の内部と同調し、与えられた周 波数で共振する。この種の吸収材は、例えば問題の室の主要共振周波数のような 個々の周波数を吸収するために使用され、ヘルムホルツ共振において原則的に1 00係の効率をもつ。例えば問題の周波数は25T(zで、それが室内の主要共 振周波数となり、人が吸収させたいと思う周波数となるので、吸収材は極めて大 きな容積を占めるかも知れない。当然、大量の空気は比較的大きな質量をもち、 従って顕著な衝撃慣性が共振器内で発生することとなる。In its original design, the Helmholtz resonator consisted of a chamber with an opening leading to the surroundings. It consists of an air volume enclosed within. The opening is aligned with the interior of the chamber and has a given circumference. Resonates at the wave number. This type of absorber is suitable for e.g. Used to absorb individual frequencies, in principle 1 at Helmholtz resonance 00 efficiency. For example, the frequency in question is 25T(z), and it is This is the frequency that humans want to absorb, so the absorbing material is extremely large. It may take up a large amount of space. Naturally, a large amount of air has a relatively large mass, Significant shock inertia will therefore occur within the resonator.

プレスのような室内で作動する強力な機械的機械が起す室内の過激な圧力変化は 、共振器を起動させ、吸収された運動エネルギーを解放すると、強力な音調を発 散させる。吸収室が機械的に安定していない場合、共振器は幾つかの共振周波数 に清い、その音響エネルギーを解放することになり、低周波数の周波数スペクト ルは単一パルスにより振動させられる共振器により発生される。従って増大され かつうるさい騒音が、勿論意図した結果にならないような吸収材から生ずること となり得る。共振器の内部を多孔性材料で適当に音響減衰性とし、かつ周囲に開 く開口に音響抵抗を設けてヘルムホルツ共振器の過渡的性能を改良することがで きるが、これは吸収材の音響効率を犠牲にして行われる。The drastic pressure change inside the room caused by a powerful mechanical machine operating inside the room, such as a press, is , when the resonator is activated and the absorbed kinetic energy is released, it emits a powerful tone. scatter. If the absorption chamber is not mechanically stable, the resonator will have some resonant frequency It will release its acoustic energy into the lower frequencies of the frequency spectrum. The pulse is generated by a resonator that is vibrated by a single pulse. therefore increased and that loud noises arise from the absorbing material, which of course does not have the intended result. It can be. The inside of the resonator is made of porous material with appropriate sound damping properties, and is open to the surroundings. It is possible to improve the transient performance of the Helmholtz resonator by providing acoustic resistance in the aperture. However, this is done at the expense of the acoustic efficiency of the absorber.

中間−低周波数、即ち125 Hzないし1000 Hzにおける吸収は、より 小さい物理的寸法のへルムホルッ共振器吸収材を使用して改良することができる 。この吸収材はスタッドに取付けられる多孔カバー板をもつ空洞構造の形式にな っている。この装置は区画壁に取付けられ、与えられた制限周波数範囲内の高音 響効率をもっている。Absorption at mid-low frequencies, i.e. 125 Hz to 1000 Hz, is more Helmholt resonator absorbers with smaller physical dimensions can be used to improve . This absorbent material takes the form of a hollow structure with a perforated cover plate attached to the studs. ing. This device is mounted on a compartment wall and is capable of transmitting high-frequency sounds within a given limited frequency range. It has acoustic efficiency.

これらの装置は音量が過剰とならない周波数向きに設計されることが多いので、 共振器構造の過渡的な励振を行う音響特性は、理論上良好と考えることができる 。然しカバー・ξネルは柔軟であり過ぎることが多いので、意図した周波数範囲 より低い周波数に同調して振動することになる。これは構造が実際に過渡的な音 響効果に中立した状態を保てず、撹乱騒音が、大きなヘルムホルツ共振器設計の 場合と同様に発生することを意味する。また、この空洞共振器は内部と孔を渡る 部分の両方で減音することができる。この周波数範囲に対する過渡的な性能と吸 収の直線性は、従って改良することができるけれども、このような役割の場合も また音響効率が犠牲になる。These devices are often designed for frequencies where the volume is not excessive, so The acoustic properties of transient excitation of the resonator structure can be considered good in theory. . However, the cover ξ channel is often too flexible and does not cover the intended frequency range. It will vibrate in tune with a lower frequency. This is a structure that actually sounds transient. Unable to remain neutral to acoustic effects, the disturbance noise is caused by large Helmholtz resonator designs. It means that it occurs in the same way as in the case. Also, this cavity resonator crosses the interior and the hole. The sound can be reduced in both parts. Transient performance and absorption for this frequency range The linearity of the yield can therefore be improved, but also for such roles. Also, acoustic efficiency is sacrificed.

もう一つの型のへルムホルノ共振器は、スタッドに取イ」けられた振動パネルか らなる。無孔合板製の薄い可撓性の・ぐネルは、後方に配置された空気室と組合 せられ、この音響系の共振周波数でパネルに最大振動を与える。Another type of Helmhorn resonator is a vibrating panel mounted on a stud. It will be. A thin flexible gunnel made of non-perforated plywood is combined with an air chamber located at the rear. The maximum vibration is applied to the panel at the resonant frequency of this acoustic system.

この共振周波数での良好な吸収と、他の周波数での無視できる程の小さな吸収と は、かかる振動パネルの特性である。空気ばね上で振動する均質な振動隔膜を組 込む構造原理の結果として、空洞共振器構造用に使用されるに違いないものより かなり小さい容積パラメータをもつ低共振周波数を得ることができる。然し、振 動運動の抵抗減衰は小さく、共振周波数でパネルが振動する時には零に接近する 。また、改良低周波数吸収用のこの構造は、提供された少ない減音は過渡的な励 振に対して顕著な不安定性をもたらすという欠点があり、顕著な固有騒音が予期 されなければならない。繊維材料でその構造体、を内部で減音性とすることはで きるが、その場合その構造体の効率は、減音が増すのにつれて、急速に減ること となる。後方に配列された繊維材料により純機械的に・ぐネルが減音性とされる 時にのみ、容認できる過渡的な安定性が得られ、該繊維材料は接触作用によりパ ネルが振動しないようにする。明らかに、その場合・ぐネルは意図されたような 機能を発揮することを止めている。Good absorption at this resonant frequency and negligibly small absorption at other frequencies. are the characteristics of such a vibrating panel. Assembles a homogeneous vibration diaphragm that vibrates on an air spring. As a result of the structural principle of Low resonant frequencies with fairly small volume parameters can be obtained. However, shaking The resistance damping of dynamic motion is small and approaches zero when the panel vibrates at the resonant frequency. . Additionally, this structure for improved low frequency absorption provides less sound attenuation for transient excitations. The disadvantage is that it causes significant instability with respect to vibrations, and significant inherent noise is expected. It must be. The structure is made of fiber material, and it is not possible to make it internally sound attenuating. However, in that case the efficiency of the structure decreases rapidly as the sound attenuation increases. becomes. The fiber material arranged at the rear makes the gunnel sound attenuating purely mechanically. Only occasionally can acceptable transient stability be obtained, and the fiber material becomes permeable due to contact action. prevent the flannel from vibrating. Obviously, in that case Gunel would It has stopped functioning.

繊維吸収材は50箇ないし100珊の厚さと、40に2/m3ないし70に97 m3間の密度をもつものが最も多い。従ってかかる吸収材は例えば1.200x 600m+nの大きさで造られる場合、自立できる。繊維鉱物−羊毛吸収材の代 表的な特徴は、該材料中の音響伝播速度が略々半減即ち約172r+1//sに されることである。吸収は最大で100係に達することができるが、材料は一定 の周波数で音響が表面ふら反射される程ち密ではない。吸収材は受けた音響エネ ルギーを短絡することで機能を果す。音波内で担持される質点が繊維材料を通っ て搬送される時と、繊維構造体内の搬送路の部分内では質点速度が高い時にのみ 吸収が行なわれる。The fiber absorbent material has a thickness of 50 to 100 cm and a thickness of 40 to 2/m3 to 70 to 97 cm. Most have a density between m3. Therefore, such an absorbent is e.g. 1.200x If built with a size of 600m+n, it can stand on its own. Fiber minerals - substitute for wool absorbent material A typical characteristic is that the acoustic propagation velocity in the material is approximately halved, or approximately 172r+1//s. It is to be done. Absorption can reach up to 100 coefficients, but the material remains constant It is not so dense that the sound is reflected off the surface at frequencies like . Absorbing material receives acoustic energy It functions by shorting the energy. A mass point carried within the sound wave passes through the fiber material. and only when the mass velocity is high within the conveying path section of the fiber structure. Absorption takes place.

100mmの厚みをもつ繊維吸収材で、前記吸収材が区画壁に密接して取付けら れる場合に得られる吸収特性の一例として、その下方吸収限界が約45 Q H zにあることが考えられる。吸収材が壁の表面力1ら離され、それから1mの距 離に置かれる場合、限界周波数は約45Hzとなる。この計算は吸収材が音波と 共に機械的に振動せず、一定で1.72 m/sに等しい伝播速度での材料中の 波長走行の四分の−が100係の吸収を起すという仮定で行われている。然し実 際には、吸収材内で配布されている物質は音波と同調して振動する。これは材料 自体が空気よりもち密な媒体を構成し、従って、特定の材料部分はそれ自体同方 向と反対の両方向に波状運動することになる。A fibrous absorbent material having a thickness of 100 mm, the absorbent material being attached closely to the compartment wall. As an example of the absorption characteristics obtained when the lower absorption limit is approximately 45QH It is possible that it is in z. The absorber is separated from the surface force of the wall by 1 m and then If placed far apart, the limit frequency will be approximately 45 Hz. This calculation is based on the fact that the absorber absorbs sound waves. in a material without mechanical vibration and with a constant propagation velocity equal to 1.72 m/s. This is done on the assumption that -4/4 of the wavelength travel causes absorption on the order of 100. However, the truth In some cases, the material distributed within the absorber vibrates in synchrony with the sound waves. This is the material itself constitutes a denser medium than air, and therefore certain material parts are themselves isotropic. This results in wave-like motion in both directions.

この物理的事実は、吸収材が周波数の低減と共に次第にその吸収能力を失うこと を意味するがそれは一定の音圧が保たれ、かつ周波数が落ちる時にそ、の振巾が 増大するからである。材料内の同調振動もまた吸収材の表面と本体が、休止を止 める吸収材と関連して、音響エネルギーを放射するようにする。放射音波はその 場合、無制御のように振動する機械的表面から出るので、音響は所謂無作意音響 の性質を得る。This physical fact is that an absorbing material gradually loses its absorption capacity as the frequency decreases. This means that when a constant sound pressure is maintained and the frequency decreases, the amplitude of the sound changes. This is because it increases. Entrained vibrations within the material also cause the surface and body of the absorber to stop resting. The acoustic energy is radiated in conjunction with the absorbing material contained in the material. The radiated sound waves are In this case, the sound comes from a mechanical surface that vibrates in an uncontrolled manner, so the sound is so-called unintentional sound. obtain the properties of

従って、これらの不良機能は、繊維吸収材を含む音響装置を考える場合、考慮し なければならない。これらの装置は、周波数が発生する小さな振動振巾で高い、 即ち約1000 Hzからの周波数範囲内で極めて良好に機能するが、周波数が 落ち、従って振巾が高くなると吸収能力を失う。無作意音響の隠れた放射は既に 中位−低周波数では十分に重大である。それはこの音響撹乱は125 Hzない し650 Hzの会話周波数での明瞭度に典型的に影響するからであわ、個人間 の正常の会話はかかる環境内では阻害されるからである。Therefore, these defective features should not be taken into account when considering acoustic devices containing fiber absorbing materials. There must be. These devices generate high frequencies with small vibration amplitudes, i.e. it works very well within the frequency range from about 1000 Hz, but falls, and therefore loses absorption capacity when the amplitude becomes higher. The hidden radiation of random sounds is already It is significant enough at mid-low frequencies. That's because this acoustic disturbance is not 125 Hz. between individuals because it typically affects intelligibility at the 650 Hz speech frequency. This is because normal conversation is inhibited in such an environment.

概述した繊維吸収材が強力で急速な圧力変化を受ける時に起す過渡的反応が同様 に考えられる場合、音響誤差は更に大きくなる。この場合、個々の各吸収材は、 その自然共振周波数近くで振動させられるが、該周波数は極めて低く、例えば、 5Hzないし40 Hz程の低さであるので、発生した無作意騒音と共に顕著で 撹乱性の高い低周波数情況もまた音響的に軽い環境内で発生することがある。The transient reaction that occurs when the fiber absorbent material outlined above is subjected to strong and rapid changes in pressure is similar. If this is considered, the acoustic error will be even larger. In this case, each individual absorbent material is It is made to vibrate near its natural resonant frequency, but the frequency is very low, e.g. Since it is as low as 5Hz to 40Hz, it is noticeable along with the random noise generated. Disturbing low frequency situations may also occur within acoustically light environments.

この発明の目的は、減音のための新、規な改良された音響装置で、従来の吸音材 では前記のように起る欠点を少くとも実質的に排除する装置を提供することにあ る。The purpose of this invention is to provide a new, novel and improved acoustic device for sound attenuation, which can be achieved by using conventional sound absorbing materials. The object of the present invention is to provide a device which at least substantially eliminates the above-mentioned drawbacks. Ru.

この目的のために、この発明により、緒言で述べた種類の音響装置が提案される が該装置はまた、該部材が実質的に揺動自在であることと、該室が少くとも実質 的に音響上で閉じられていることと、該装置が前記部材の変位速度変化に比例し て前記幾何学的延長部を横断する前記部材の変位を減衰する手段を備えているこ ととの組合せを特徴とする。この発明により提案された特性、特徴の組合せの結 果として、この音響装置は、高効率を実現し、低周波数に向かい特に拡張された 広い周波数範囲内術で、受ける音響エネルギーに対するインピーダンスにより良 くつり合うようになる。この装置はまたその過渡的な励振で動的機能を改良して いるが、それはこの装置の表面の自然振動に由来する音響放射が著しく減少し、 従ってその過渡的反応を最適にするからである。For this purpose, the invention proposes an acoustic device of the kind mentioned in the introduction. but the device also includes the member being substantially swingable and the chamber being at least substantially acoustically closed, and the device is proportional to the change in displacement velocity of said member. means for damping displacement of said member across said geometrical extension. It is characterized by the combination of and. The characteristics proposed by this invention, the result of the combination of characteristics As a result, this acoustic device achieves high efficiency and is particularly extended toward low frequencies. Within a wide frequency range, the impedance to the received acoustic energy improves They will fit together. The device also improves dynamic capabilities with its transient excitation. However, this means that the acoustic emissions originating from the natural vibrations of the surface of this device are significantly reduced. This is because the transient reaction is therefore optimized.

薄板材の部材は空気透過板または気密板でよく1平面でも曲面でも剛性のもので も良く、その場合、前記板はその縁部で弾性的に取付けられ、前記手段の後方に 置かれる室に充たされた空気の容積と共動して前記方法で振動できるようにされ ている。この発明の特に好適な実施例によれば、該部材は、然し、比較的薄く、 実質的に平面で多孔性の繊維または孔をもった板からなり該板はその縁部を区画 する範囲に清い振動しないように実質的に固定され、後方に置かれた空気充填空 間が形成する空気はねと振動の際共動し、前記空気ばねを形成する空気充填空間 の容積は前記部材の密度、その質量とその流動抵抗に関連して選択されるので、 前記部材の振動はこの装置の共振周波数で最大となり、前記の最大周波数は前記 部材の中心範囲に現われ、流動抵抗により減衰される。The thin plate material may be an air permeable plate or an airtight plate, and may be rigid on either a flat or curved surface. In that case, said plate is elastically attached at its edges and is attached to the rear of said means. is made to vibrate in the aforementioned manner in conjunction with the volume of air filling the chamber in which it is placed. ing. According to a particularly preferred embodiment of the invention, the member is however relatively thin; consisting of a substantially planar porous fiber or perforated plate, the plate defining its edges; An air-filled cavity placed at the rear that is virtually fixed to avoid vibrations an air-filled space that co-moves during vibration with the air spring formed between the space and forms the air spring; Since the volume of is selected in relation to the density of said member, its mass and its flow resistance, The vibration of said member is maximum at the resonant frequency of this device, said maximum frequency being said It appears in the central region of the part and is damped by the flow resistance.

この方法により部材自体内でかなりの吸音が行われ、更に障害音吸収(即ち、表 面インピーダンスを通して得られた吸音)が、この装置の振動回路に前記部材を 組込むことで得られる。This method results in significant sound absorption within the component itself, and additional interference sound absorption (i.e. The sound absorption obtained through the surface impedance) connects the member to the vibration circuit of this device. It can be obtained by incorporating.

所望の一定効果を得るため例えば部材の減音がその中心に関し実質的に対称的に 確実に行われるようにするために、前記部材は、その幾何学的中心に関して実質 的に対称的に、前記部材の残部より多く空気を透過する区域を一区域以上配置す ることができる。この点で、前記区域は、例えば該部材の振動方向に配列される 管状部品により包囲されるので、前記区域は鮮鋭に区画され、かつ前記管の長さ を変えることで容易かつ精密に量が決定される容積・ぐラメータをもち、それに より前記区域の抵抗構成部分に関する自由度を与えることができる。この後者の 装置は精密な再生性を可能にし、固有または供給抵抗をもつ管はこの装置の単一 振動制御手段を構成することができ、この手段は部材の中心点に挿入される場合 、振動回路の最も感応する点で特別に有効な室を周囲に通気させる動的弁を構成 する。部材の振動減衰を制御するために、この装置は、その代わりかまたは更に 少くとも一つの開口をもち、該開口は室により囲まれる容積と前記装置を囲む容 積間を連結し、この装置の共振周波数で前記部材の振動運動の振巾、をかなり減 衰するような量の流動抵抗を内部にもっている。To obtain a desired constant effect, for example, the sound reduction of a member must be substantially symmetrical about its center. In order to ensure that the said member is substantially symmetrically arranged with one or more areas that allow more air to pass through than the rest of the member. can be done. In this respect, said areas are arranged, for example, in the direction of vibration of said member. Since it is surrounded by a tubular part, the area is sharply delimited and the length of the tube It has a volume/grammeter that allows the amount to be determined easily and precisely by changing the More flexibility regarding the resistive components of the area can be provided. This latter The device allows precise reproducibility and tubes with inherent or feed resistance are Vibration control means may be constructed, and when this means is inserted at the center point of the member , constitutes a dynamic valve that vents a specially effective chamber to the surroundings at the most sensitive point of the oscillating circuit. do. In order to control the vibration damping of the member, this device can alternatively or additionally at least one opening, said opening connecting a volume surrounded by the chamber and a volume surrounding said device; The amplitude of the vibratory motion of said member at the resonant frequency of this device is significantly reduced. It has a certain amount of internal flow resistance that weakens it.

この発明のもう一つの特徴によれば、この装置は少くとも一つの音響開口を含む ことができ、該開口は室により囲まれる容積とこの装置を囲む容積間の連結を行 い、実質的に音響上、該開口と包囲容積とが形成する回路の共振周波数の近くで 、この装置の音響効率を実質的に誘導的に増大するように、前記部材に負荷する 。適当に、この開口はまた前記開口と前記部材間の音響結合に抵抗してそれを減 衰する抵抗を示すことができる。According to another feature of the invention, the device includes at least one acoustic aperture. and the opening provides a connection between the volume enclosed by the chamber and the volume surrounding the device. substantially acoustically near the resonant frequency of the circuit formed by the aperture and the surrounding volume. , loading said member in a manner that substantially inductively increases the acoustic efficiency of the device. . Suitably, the aperture also resists and reduces acoustic coupling between the aperture and the member. It can show decreasing resistance.

室内の減衰度を変え、その中の流動抵抗スクリーンを形成するために、この装置 は、前記部材と対向する室区画壁間に、これもまた顕著な流動抵抗を示すことが できる少くとも一つの音響抵抗部拐ヲ有利に配置することができる。This device in order to change the degree of damping in the room and form a flow-resistant screen in it may also exhibit significant flow resistance between the member and the opposing chamber compartment wall. At least one acoustic resistance element can be advantageously arranged.

この発明による装置において、前記部材に対向して配置される室区画壁は剛性板 またはこの装置を取付ける壁を含むことができる。然し、前記部材に対向して置 かれる室区画壁が最初に記述した部材と実質的に同じ部材からなる場合に特別な 利点が得られるが、それにより取付単位面積当りのこの装置の効率は相互に対向 する部材の共同作用の結果として倍以上に増すことができ、また該部材は前記部 材と前記空気容積とにより形成される振動回路内で部材間に囲まれた空気容積に より相互に連結されている。この共動効果は、使用部材の固有音響吸収が高い周 波数範囲において特に強調される。この発明による装置は、音響入射角と音源ま での距離に対する一定の特徴的感受性をもつ。この感受性は、前記部材に対向す る室区画側が内部に前記部材の面積に関してかなりの大きさの開口を配置してい る場合、振動部材が配置される側で増巾することができ、該開口はまた周囲から 到達する音圧に対抗して向けられた音圧を前記開口出口で発生するため音響抵抗 を含んでいる。In the device according to the present invention, the chamber partition wall disposed opposite to the member is a rigid plate. Or it can include the wall on which this device is mounted. However, if it is placed opposite the member, A special case is made when the compartment wall to be constructed consists of substantially the same material as the first described material. However, the efficiency of this device per unit area of installation is opposite to each other. can be more than doubled as a result of the joint action of the members that in the air volume enclosed between the members in the vibration circuit formed by the member and the air volume. more interconnected. This synergistic effect occurs at frequencies where the specific acoustic absorption of the materials used is high. Especially emphasized in the wavenumber range. The device according to the invention is characterized by the fact that the acoustic incidence angle and the sound source are has a certain characteristic sensitivity to distance. This sensitivity is The room compartment side has an opening of considerable size in relation to the area of the member. In case of Acoustic resistance in order to generate a sound pressure directed against the arriving sound pressure at the aperture exit. Contains.

この発明を今、添付図面に示す多数の実施例に、ついて詳述するが、この発明の 特徴と利点はそれによって明白となるであろう。The invention will now be described in detail with reference to a number of embodiments illustrated in the accompanying drawings. The features and advantages will then become clear.

第1図はこの発明による装置の第1実施例の横断面図である。FIG. 1 is a cross-sectional view of a first embodiment of the device according to the invention.

第2図はこの発明による装置の隅部の図を示す。FIG. 2 shows a corner view of the device according to the invention.

第3図は第2図に示す隅部の断面図で、この発明による装置の上半分を示す。FIG. 3 is a corner sectional view of FIG. 2, showing the upper half of the device according to the invention.

第4図および第5図はそれぞれ第1図に示す装置の第1変形の断面図と平面図で ある。Figures 4 and 5 are a sectional view and a plan view, respectively, of a first variant of the device shown in Figure 1; be.

第6図および第7図はそれぞれ第1図に示す装置の第2変形の断面図と平面図で あるO 第8図はこの発明による装置の別の実施例の横断面図である。6 and 7 are respectively a sectional view and a plan view of a second variant of the device shown in FIG. There is an O FIG. 8 is a cross-sectional view of another embodiment of the device according to the invention.

第9図および第10図はそれぞれ第8図に示す装置の上方開口の拡大横断面図と 側面図である。9 and 10 are respectively an enlarged cross-sectional view of the upper opening of the device shown in FIG. FIG.

第11図および第12図はそれぞれ第8図に示す装置の下方開口の拡大横断面図 と側面図である。11 and 12 are enlarged cross-sectional views of the lower opening of the device shown in FIG. 8, respectively. and a side view.

第13図および第14図はこの発明による装置のなおもう一つの実施例で、それ ぞれ平面図と、線XIV −XIVに沿って切断した横断面図を示す。13 and 14 show yet another embodiment of the device according to the invention, which A plan view and a cross-sectional view taken along line XIV-XIV are shown, respectively.

第15図は360 Hzの幾何学的平均周波数をもつ音響周波数スペクトルにお ける音響の振巾レベルと加速レベル間の、一定音圧レベルにおいて理論的に優勢 な関係を示す図である。Figure 15 shows an acoustic frequency spectrum with a geometric mean frequency of 360 Hz. theoretically prevails at a constant sound pressure level between the acoustic amplitude level and the acceleration level FIG.

第16図1d50Hzの装置共振周波数をもつ、この発明による装置の理論的関 数・ぐラメータを示す図である。FIG. 16 1d Theoretical relationship of the device according to the invention with a device resonance frequency of 50 Hz It is a diagram showing a number/grammeter.

図に示す同一または実質的に同一の構成部分はすべて同じ参照数字で示されてい る。All identical or substantially identical components shown in the figures are designated by the same reference numerals. Ru.

第1図はこの発明による装置10の主要設計を示す。FIG. 1 shows the main design of a device 10 according to the invention.

この装置は壁11,12,13からなるジャッジを含み、該ジャッジは三部分に 分けられ、機械的密封手段により結合され気密にされている。該ジャッジtri  1 ttanないし3咽の厚さをもつプラスチックまたはアルミニウム部分か らなる適当な構造をもち、機械的に剛性の構造となるように製作されている。ジ ャッジの側部は幾分かの音響エネルギーを吸収できるけれども、この装置10の 実際吸収面積を構成するのは部材14と15である。これらの部制はこの装置の 使用目的とこの発明の原理に従い種々の形式を与えられる。従って部材14は振 動機素の形式をとることができ、それにより、前記部材の幾何学的延長方向を横 断する方向に音響により振動させられ、一方、部材15は力1なり大きい剛性と 密度を与えられ、その場合、部材14は優勢な吸収面となり、音源に対向してお り、部材15は振動部材14の後壁を形成し、実質的にあまり振動しない。この 設計の構造は単一吸収材と呼ぶことができ、角度吸収を可能にする吸収特性を得 るが、該角度吸収は実質的に半球となり、実質的には部材14に入射する音響に 関して能動的となるにすぎない。この発明のこの型は、この装置が直接区画壁に 取付けられている場合か、または吸収効果を一定の音源に向けたい用途の場合に 有利に使用することができるが、一方、周囲に向う音源の音響を同時に遮蔽する ことを目的とする。This device includes a judge consisting of walls 11, 12, 13, which is divided into three parts. separated and joined and hermetically sealed by mechanical sealing means. The judge tri Is it a plastic or aluminum part with a thickness of 1 to 3 mm? It has a suitable structure consisting of: a mechanically rigid structure; Ji Although the sides of the judge can absorb some acoustic energy, the It is members 14 and 15 that actually constitute the absorption area. These divisions are for this device. Various forms are provided depending on the intended use and principles of the invention. Therefore, the member 14 can take the form of a motive element, thereby transversely transversely extending the geometric extension of said member. The member 15 is vibrated acoustically in the cutting direction, while the member 15 has a rigidity that is greater than the force 1. density, in which case member 14 becomes the predominant absorbing surface, facing the sound source. The member 15 forms the rear wall of the vibrating member 14 and does not vibrate substantially. this The structure of the design can be called a single absorber and obtains absorption properties that allow angular absorption. However, the angular absorption is substantially hemispherical, and substantially affects the sound incident on the member 14. It's just a matter of being proactive. This type of invention allows the device to be attached directly to the partition wall. installed or in applications where the absorption effect should be directed to a fixed sound source. It can be used to advantage, but at the same time shields the sound of the sound source towards the surroundings. The purpose is to

かかる用途の代表的例は、離散音源例えば騒々しい機械の組入れと音響的分離と である。その場合、この装置は振動部材14と(受動)部材(あまり能動的でな い部材〕15とにより製作することができ、振動部材14は、例えば20簡ない し40口の厚さと約20に9/m3の密度とをもつ硝子繊維の心に貼付した機械 的に安定したステーノル繊維層で周囲に面する表面に少くとも設けられ、部材1 5は振動部材14より実質的に重くかつ剛性に造られ、例えば20咽の厚さと約 IQOKg/m3の密度をもつ。Typical examples of such applications are the incorporation of discrete sound sources e.g. noisy machinery and acoustic isolation. It is. In that case, the device consists of a vibrating member 14 and a (passive) member (less active). vibrating member] 15, and the vibrating member 14 can be made of, for example, 20 A machine attached to a core of glass fiber with a thickness of 40mm and a density of about 209/m3 at least one of the peripherally facing surfaces of the member 1 is provided with a layer of physically stable steno fibers 5 is made substantially heavier and more rigid than the vibrating member 14, e.g. It has a density of IQOKg/m3.

この装置10の共振周波数は、内部減衰により、また部材15の内側とジャッジ の側部11 、12 、1.3に溢うのとの双方もしくは一方に繊維吸収材を挿 入することで変えることができる。この装置が機能を果している時に、振動部材 14I″i音圧変化により変位・するが、これにより/ヤッシと部材14 、1 .5が囲む室16内の圧力変化が起る。この圧力変化により、振動部材14の運 動方向により内部空気が加圧されたり減圧されたりする。従って、機械的回路が つり合う状態は撹乱され、従って、内圧変化の差動部分は部材14,15を一定 量通過することができる。このことが起ると、振動運動は追加流動抵抗摩擦構成 部分を通して減衰され、該運動は圧力変化の動的衝撃により常に決定される。与 えられた圧力変化が一定の期間にわたって起る場合、その結果の容積変位の一部 は、静的流動抵抗とその動的結果とにより決定される速度で部材14と15を通 過しなければならない。装置10が形成する音響回路の休止中のつり合いが遅い 速度で変化する場合、全体として該回路の静的流動抵抗に接近することとなる。The resonant frequency of this device 10 is determined by internal damping and by the inside of member 15 and the judge. Insert fiber absorbent material into both or one of the sides 11, 12, and 1.3. You can change it by entering. When this device is performing its function, the vibrating member 14I''i Displacement occurs due to sound pressure change, but as a result / palm and member 14, 1 .. A pressure change occurs within the chamber 16 surrounded by 5. This pressure change causes the vibration member 14 to operate. The internal air is pressurized or depressurized depending on the direction of movement. Therefore, the mechanical circuit The balance condition is disturbed and therefore the differential part of the internal pressure change causes members 14, 15 to remain constant. amount can pass through. When this happens, the oscillatory motion constitutes additional flow resistance and friction. damped throughout the section, the movement is always determined by the dynamic impact of pressure changes. Give If the resulting pressure change occurs over a period of time, then the fraction of the resulting volume displacement passes through members 14 and 15 at a speed determined by the static flow resistance and its dynamic consequences. have to pass. The acoustic circuit formed by the device 10 is slow to balance during rest. If the velocity changes, the static flow resistance of the circuit as a whole will be approached.

単位面積当りの静的流動抵抗が振動部材14では(受動)部材15よりははるか に低いので、振動部材14が極めて緩徐に変位する場合、即ち約20:100の 関係比で変位する場合、部材15の流動抵抗は、空気が振動部材14を通過でき る限り短絡され、実質的に空気を透過しないと考えることができる。両部材の表 面が空気を透過しない、即ち流動抵抗が例えば前記表面」二のプラスチックの被 膜を通して短絡される場合、部材14と15間の変位速度に顕著な差が無くなり 、従って、−切の顕著な圧力差は振動部材J4上の外側ピック7770表面と室 の内部容積間には起らないことになる。更に、極めて緩徐な圧力変化(低周波数 うでは、もはや音響を吸収することはできず、音圧変化を取上げたりそれを装置 内の機械的浪費仕事に転換したりすることはできない。The static flow resistance per unit area is much higher in the vibrating member 14 than in the (passive) member 15. If the vibrating member 14 is displaced very slowly, i.e. approximately 20:100, When displaced at a relative ratio, the flow resistance of member 15 is such that air cannot pass through vibrating member 14. It can be considered that it is short-circuited and does not substantially allow air to pass through. Table of both parts The surface is air impermeable, i.e. the flow resistance is reduced by e.g. a plastic coating on said surface. When short-circuited through the membrane, there is no significant difference in the displacement rate between members 14 and 15. Therefore, there is a significant pressure difference between the outer pick 7770 surface on the vibrating member J4 and the chamber. will not occur between the internal volumes of . Furthermore, very slow pressure changes (low frequency However, it is no longer possible to absorb sound, and it is possible to pick up changes in sound pressure and It cannot be converted into mechanical wasteful work.

振動部材工4の受面での圧力変化は零に接近し、到達音波は普通の固定区画面の 場合と同様に反射される。流動抵抗により圧力の制限付き平等化が与えられた期 間にわたり起るためと、流動に対し、より高い抵抗をもつ固定部材15が室16 内の残留圧力変化を受動的(あまり能動的でない意味)に吸収するため、この残 留圧力変化は振動部材】4の変位を通して加えられるが、与えられた抵抗減衰位 置の変化を振動部材14の表面に起すことができ、そこで到着圧力波の振巾は振 動部材14により取上げられ、室内の空気に伝達され、エネルギーを高密度と大 重量の実質的に固定された(受動9部材15にエネルギーを前記空気が伝達し、 後者の部材15が残留エネルギーを熱に転換する。従って、顕著な吸収量が、振 動部材14の非常に緩徐な加速で得られるが、それは音響エネルギーが正に零H 2まで吸収されることを意味する。The pressure change on the receiving surface of the vibrating member 4 approaches zero, and the arriving sound wave is equal to that of an ordinary fixed section surface. reflected in the same way. Period when flow resistance provides limited equalization of pressure The fastening member 15, which has a higher resistance to flow due to This residual pressure absorbs passively (in a less active sense) The change in retention pressure is applied through the displacement of the vibrating member]4, but the given resistance damping position A change in position can be caused on the surface of the vibrating member 14, where the amplitude of the arriving pressure wave is It is picked up by the moving member 14 and transmitted to the indoor air, distributing energy at a high density and large amount. The air transfers energy to a passive member 15 whose weight is substantially fixed; The latter element 15 converts the residual energy into heat. Therefore, the significant amount of absorption This is obtained by very slow acceleration of the moving member 14, which means that the acoustic energy is exactly zero H. This means that up to 2 are absorbed.

振動部材14の加速度が増し、静的流動抵抗が運動速度と容積変位の関数として 指数関数状に増大する動的成分を得る値に達し、該成分が前記部材の厚さにより 構成される通路に線状に浴うようにされる流れの範囲を越える場合、流通は漸進 的に減り、動的成分が無限大に接近する場合実質的に止まる。部材15における 前記制限値は同時に、はるか早期に越えられ、その結果、この機能状態で、装置 10が形成する音響振動回路は表面を通る流れに対して全閉されると考えること ができる。加えられた音響エネルギーのピノクアノゾと転換は、各周波数と衝撃 時間の場合の振動回路に優勢な音響インピーダンスの関数として行われ、従って 形成される音響系は振動範囲全体内で自動的につり合い、かつ、変化自在の有効 抵抗減衰を含む。この方法では低周波数に向い、主に拡大される機能範囲内で高 衝撃減衰と高音響効率を示す迅速反応吸収系が得られる。従ってこの系は到達音 響に対しつり合った音響吸収インピーダンスを構成し、少量の撹乱音響エネルギ ーを発生するだけであるが、これはその振動機能を良く減衰されるからである。The acceleration of the vibrating member 14 increases and the static flow resistance increases as a function of the velocity of motion and the volumetric displacement. A value is reached that yields an exponentially increasing dynamic component, which component increases with the thickness of said member. If the flow exceeds the range of linear flow in the configured passage, the flow is gradual. , and virtually stops when the dynamic component approaches infinity. In member 15 Said limit value is at the same time exceeded much earlier, so that in this functional state the device Consider that the acoustic vibration circuit formed by 10 is completely closed to the flow through the surface. Can be done. Pinoquanoso and conversion of the applied acoustic energy is determined by each frequency and impulse. The case of time is carried out as a function of the acoustic impedance prevailing in the oscillating circuit, and therefore The resulting acoustic system is automatically balanced over the entire vibration range and has variable effectiveness. Includes resistive damping. This method is suitable for low frequencies and mainly for high frequencies within the expanded functional range. A fast-responsive absorption system is obtained that exhibits shock attenuation and high acoustic efficiency. Therefore, this system is the arrival sound Creates an acoustic absorption impedance that is balanced against acoustic waves and absorbs small amounts of disturbing acoustic energy. This is because its vibration function is well damped.

広い振動区域はとの発明による構造内の包囲容積に関係して選択できるので、低 共振周波数は物理的に比較的に小さい吸収装置で既に得られている。0.5m2 の振動面積と1oodm3の包囲容積をもつ構造は約30Hzないし50Hzの 共振周波数を力えられ、この周波数では、100%に近い、有効吸収をもつこと ができる。上述の設計の装置は、例えば、約1150X550X200簡の外部 寸法をもつので、顕著な挿入効果が規定取付面に得られ、これは既知の技術では 得られないものである。装置10で得られる、この結果の音響吸収は振動部材自 体で得られるものより大きく、共振周波数の直上の吸収範囲内で部材14の表面 性質により決定される上方限界周波数まで略々2倍の高さすなわち通常的400 0 Hzまで高くなることができる。A wide vibration area can be selected in relation to the enclosed volume within the structure according to the invention, so that Resonant frequencies are already obtained with physically relatively small absorption devices. 0.5m2 A structure with a vibration area of Must have effective absorption close to 100% at the resonant frequency. Can be done. A device of the above design may, for example, have an external space of approximately 1150 x 550 x 200 Due to the dimensions, a pronounced insertion effect is obtained on the defined mounting surface, which is not possible with the known technology. It is something that cannot be obtained. The resulting acoustic absorption obtained in the device 10 is due to the vibrating member itself. the surface of member 14 within an absorption range that is greater than that available in the body and just above the resonant frequency. approximately twice as high as the upper limit frequency determined by the property, i.e. 400 It can go as high as 0 Hz.

これは、装置10がその周波数全体における実質的につり合った音響インピーダ ンスとし′て行動する事実により、従ってまた、ノンリアル(リアクティブ)エ ネルギーを含む音波におけるエネルギー成分は、現実の音響エネルギーだけを吸 収できる伝統的な繊維吸収材の場合のように、振動部材14の表面から反射され る代りに、装置10により吸収される。This means that the device 10 has a substantially balanced acoustic impedance across its frequencies. Due to the fact that it acts as a non-realistic (reactive) The energy component in a sound wave that contains energy absorbs only actual acoustic energy. reflected from the surface of the vibrating member 14, as is the case with traditional fiber absorbent materials that can Instead, it is absorbed by the device 10.

」二連の装置の代替として、第1図に示す装置の部材15は、装置を取付けるべ き場所の現存の区画面または壁のような非吸収区画壁であることができる。この 場合、部材15け振動部材14から自由になっている適当な繊維吸収材を備え、 壁面力・らの離散反射を避け、室16内の十分な内部減衰を確保し、前記のよう な方法で区画壁でも低周波音が吸収されるようにする必要がある。この装置が直 接壁に取付けられる場合、多数の振動部材14は幾つかのかかる部材に共通の吸 収室を横切るような方向に相互に直接隣接して置くことができる。” As an alternative to a dual device, the device member 15 shown in FIG. It can be a non-absorbing partition wall, such as an existing partition wall or wall of the space. this In this case, the members 15 are provided with suitable fiber absorbing material free from the vibrating member 14, Avoiding discrete reflections of wall forces and ensuring sufficient internal attenuation within the chamber 16, as described above. It is necessary to ensure that low-frequency sound is absorbed by partition walls as well. This device is When mounted on an abutting wall, a number of vibrating members 14 may have a common suction for several such members. They can be placed directly adjacent to each other in a direction across the containment room.

この装置はまた所謂差動様式で設計することができる。This device can also be designed in a so-called differential manner.

即ち、実質的に同一の構造の二つの共動振動部材で設計することができる。使用 される振動部材は実質的に等しい機械的共振周波数と等しい流動抵抗をもつこと になるので、それらはそれらの間に差動効果を起すことになる。That is, it can be designed with two co-operative vibrating members of substantially the same structure. use vibrating members shall have substantially equal mechanical resonant frequencies and equal flow resistances. Therefore, they will cause a differential effect between them.

その際、それらはその相互が定める振動速度、振巾および運動方向に関係する加 減算により相互の振動を減衰することになる。そこには、両部材に実質的に同等 な、特に有効で動的な減衰が吸収特性の外に得られる。従って部材14.15を 個々に使用する場合、得られる全吸収が更に増大し、この増大は個々の部材]、  4. 、15で得られるものの2倍乃至4倍の大きさとなることができる。In doing so, they are subjected to an applied force that is related to their mutually defined vibration velocity, amplitude and direction of motion. The subtraction will dampen mutual vibrations. There, both members are substantially equivalent. A particularly effective dynamic damping is obtained in addition to the absorption properties. Therefore, parts 14.15 When used individually, the total absorption obtained is further increased; this increase is due to the individual components], 4. , 15 can be twice to four times as large.

室16が囲む容積に対する振動部材14の面積の比が一定の場合、差動系の音響 共振周波数は略々この発明による同等の単−系に比して半減される。この差動系 の効率が大きく向上した結果として規定取付面上の、以前には未知の挿入効果が 極めて広い周波数範囲にわたって得られる。過渡的な音響効果を出すための室減 衰の値は、既知の技術を使用する場合と比較すると特に高いC1B/秒値が得ら れる。When the ratio of the area of the vibrating member 14 to the volume surrounded by the chamber 16 is constant, the acoustics of the differential system The resonant frequency is approximately halved compared to an equivalent single system according to the invention. This differential system As a result of significantly improved efficiency, previously unknown insertion effects on specified mounting surfaces have been Obtained over an extremely wide frequency range. Room reduction for transient acoustic effects The attenuation values are particularly high when compared to using known techniques. It will be done.

第1図による装置はまた弾性附属手段を介してゾヤノシ内の区画縁部で吊される 二つの振動部材14.15またはその一つを備えるこ七ができる。例えば、約2 0mmの厚さをもつ実質的に平面の選択的に剛性の繊維部材が約10朔ないし5 0圃の巾をもつ細胞状コ8ム枠内に固定され、前記枠は気密にジャッジに取付け られる・薄くて実質的に不撓性のプラスチックまたは薄板状部材を取付ける時に 有利に使用される代替附属手段の変形は、薄いネオグレンゴム枠からなることが でき、該枠は該部材の平面内で適宜引延ばされ、前記枠がジャッジまでの部材の 延長部に取付けられる場合振動部材と7ヤツシ間で一定量の引張りを与えられる 。前記平面内での前記縁部懸吊手段と前記手段の延長部との締付けは、その場合 、装置10内の剛性部材の機械的共振周波数を決定するように合わすことができ る。ゴム枠は約10閣ないし50唄の巾と約0.5 mmないし2諭の厚さのも のが選択できる。The device according to FIG. 1 is also suspended at the edge of the compartment in the zoyana via elastic attachment means. It is possible to have two vibrating members 14, 15 or one of them. For example, about 2 approximately 10 to 5 mm of substantially planar selectively rigid fibrous material having a thickness of 0 mm. The cell-like comb is fixed in a frame with a width of 0 fields, and the frame is airtightly attached to the judge. When installing thin, virtually inflexible plastic or sheet metal members An advantageously used alternative attachment variant may consist of a thin neograin rubber frame. , the frame is stretched appropriately in the plane of the member, and the frame extends across the member up to the judge. When attached to an extension, a certain amount of tension is applied between the vibrating member and the 7-pole. . The tightening of said edge suspension means and an extension of said means in said plane then , can be tuned to determine the mechanical resonant frequency of the rigid members within the device 10. Ru. The rubber frame is about 10 to 50 songs wide and about 0.5 mm to 2 mm thick. You can choose.

振動部材14または15の機械的質量と、それらが前記枠に締付けられる場合の 横の引張りとは、部材が装置10のジャッジ内でピストン状に振動する共振周波 数を決定する。空気の容積が該部材に結合される場合、その関数として前記部材 の表面の振動変位が最大になる音響共振周波数が得られる。the mechanical mass of the vibrating members 14 or 15 and when they are clamped to said frame; Lateral tension is the resonant frequency at which the member vibrates piston-like within the judge of the device 10. Determine the number. If a volume of air is coupled to said member, as a function of said member The acoustic resonant frequency at which the vibrational displacement of the surface of is maximized is obtained.

振動部材がどれも周囲に内部容積を連結する流動抵抗を含まない場合、装置10 は部材の振動に減衰効果を与える他の規定手段の一つを備えている。包囲された 音響室16における減衰を調節して、与えられた減衰効果を与えたい場合、また はこの装置の共振周波数、与えられた範囲などにおける減音量を変化するような 、同等装置の連続生産の場合の合成吸収特性または吸収装置の音響的変化を行な うか制御したい場合、吸収板部材を主振動部材14と部材15の対向面間に挿入 することができる。If none of the vibrating members include a flow resistance connecting the interior volume to the periphery, the device 10 is provided with one of the other defining means which provides a damping effect on the vibrations of the member. surrounded If you want to adjust the attenuation in the acoustic chamber 16 to give a given attenuation effect, or is the resonant frequency of this device, which changes the volume reduction in a given range, etc. , synthetic absorption characteristics or acoustic changes of the absorber in the case of serial production of equivalent devices. If you want to control vibration, insert an absorption plate member between the opposing surfaces of the main vibration member 14 and the can do.

低吸収の固有減衰をもつ振動部材を使用する場合、広い吸収範囲を得るために、 この方法を適用するのが必要になることがある。かかる設計の振動部材14の吸 収能力は高周波数に向って減小することになり、従って室16に吸収仕切り壁を 含ませることは、吸収された音響エネルギーが仕切り壁の表面に伝達され、それ に吸収されるようにする。この仕切り壁は透過開口またはみぞ穴を含むことがで き、該開口は装置10の内部の空気流量を調第2図はアルミニウムまたはプラス チック部分を含むジャッジの適当な設計を示し、第1図について説明した原理に より機能する装置の隅部を示す。When using vibrating members with low absorption and inherent damping, in order to obtain a wide absorption range, It may be necessary to apply this method. The suction of the vibrating member 14 with such a design is The absorbing capacity will decrease towards higher frequencies, therefore an absorbing partition wall in the chamber 16 is required. Inclusion means that the absorbed acoustic energy is transferred to the surface of the partition wall and that to be absorbed into. This partition wall can contain transparent openings or slots. The opening is made of aluminum or plastic, and the opening controls the air flow inside the device 10. A suitable design of the judge, including the tick part, is shown and follows the principles described with respect to Figure 1. Shows a corner of the device that is more functional.

第3図は第2図の隅部の断面図で挿入繊維部材14は例えばステープル繊維また はプラスチック膜の外層18をそれに接着している。第3図は二つの対向振動部 材をもつ差動構造か、または一つの振動吸収部材と一つの実質的に受動的な吸収 部材とをもつ構造の半分を示す。第3図の底部における縁部19のまわりに置か れる部分は、容易に壁土にこの装置を取付けるようにされるが、その場合連出な 受動吸収材(あまり能動的に作用しない吸収材〕が使用される時には、壁がそれ 自体該吸収材を担持することができる。よく判るように第3図の頂部に示す繊維 吸収部材(振動部材)14はアルミニウムまたはシラスチック部分に配置される フォーク状吸収部材保持器20に固定され、動かないように適宜固定され、この 部分のフォーク状表面に隣接する吸収部材14の縁部に適用される連続ゴムにか わ紐21により密封される。この取付方法は吸収部材14の縁部振動を避け、気 密に密封するためには重要な方法で、更に吸収部材14が音響エネルギーにより 励振され、線状に振動運動に応答し、吸収面内の縁部引張を不必要に変えず、部 分−吸収部材−継手ふらの機械的二次音響を発生しないようにするためにも重要 である。上述の十分な気密方法で、シャ、ンの縁部にあてて繊維吸収部材14を 固定することにより、継手における振動振巾が零になることが可能な範囲で確保 され、従って振動エネルギーは実際の吸収材に集中的に作用せしめられ、ジャッ ジ構造には作用せしめられない。また、繊維吸収部材14はジャッジに、弛緩し た平面状態でジャッジに接着される前に取付けられる。第3図の左方に見られる ように、ジャッジの壁11に置)\れる部品22は前記壁に接着される繊維吸収 部材を含み、該吸収部材は室16における内部反射を減少し前記室内の吸収減衰 に寄与し、ジャッジ内の不都合な振動を減らす。吸収部材14が音源に面する装 置の吸収面として使用され、前記部材が良好な固有吸収性をもつ場合、振動部材 14がその時、室16内の共振現象と永続波の形成を減衰する優秀な手段を構成 するので、ジャッジは減衰されないことがある。第2図に示す隅部の結合は気密 継手を確保し、かつ他の方法では安定するンヤ、シの機械的変位の回避を確保す るように行なわれる必要がある。FIG. 3 is a cross-sectional view of the corner of FIG. has an outer layer 18 of plastic membrane adhered thereto. Figure 3 shows two opposing vibration parts. differential structure with one vibration absorbing member and one substantially passive absorber It shows half of the structure with the members. Placed around edge 19 at the bottom of FIG. The part that is attached to the wall is designed to be easily attached to the wall soil, but in that case it must not be removed. When passive absorbers (less active absorbers) are used, the wall It can itself carry the absorbent material. The fibers shown at the top of Figure 3 are clearly visible. The absorbing member (vibration member) 14 is arranged on the aluminum or silastic part It is fixed to the fork-shaped absorbent member holder 20 and is appropriately fixed so that it does not move. Continuous rubber applied to the edges of the absorbent member 14 adjacent to the forked surface of the section It is sealed by a rope 21. This mounting method avoids edge vibration of the absorbing member 14 and This is an important method for achieving a tight seal, and furthermore, the absorbing member 14 is exposed to acoustic energy. Excited, responds to oscillatory motion in a linear manner, without unnecessarily altering the edge tension in the absorbing surface, It is also important to prevent the generation of mechanical secondary sound due to the absorption member and joint fluctuation. It is. Apply the fiber absorbent member 14 to the edge of the shampoo in the air-tight manner described above. By fixing, the vibration amplitude at the joint can be reduced to zero to the extent possible. Therefore, the vibration energy is concentrated on the actual absorbing material, and the jack It cannot be applied to the di-structure. The fiber absorbing member 14 also allows the judge to relax. It is installed in a flat state before being glued to the judge. Seen on the left side of Figure 3 As such, the part 22 placed on the wall 11 of the judge is made of fiber absorbent glued to said wall. a member, the absorbing member reducing internal reflections in chamber 16 and absorbing attenuation within said chamber. contributes to this and reduces undesirable vibrations within the judge. A device in which the absorbing member 14 faces the sound source. Vibrating members are used as absorbing surfaces in 14 then constitutes an excellent means of damping resonance phenomena and the formation of persistent waves within the chamber 16. Therefore, the judge may not be attenuated. The corner joints shown in Figure 2 are airtight. To secure the joint and avoid mechanical displacement of the otherwise stable shaft. It needs to be done in such a way that it

第3図のジャッジ部24の中心ビーム23は振動に対して該部分を機械的に安定 させようとするものである。この装置は全体として、ジャッジが不当に振動させ られる場合、音響を伝導することを考慮し乍ら造るこ2が大切であり、その場合 極めて強力な関連騒音が個々の周波数で吸収部材から発生することがある。同じ 理由でこの装置は、例えばアルミニウム部分で造られる懸吊構造に当てて取付け られ、この装置のジャッジを幾分振動効果から隔離し、それを前記部分に当てて 、この装置の支持部分または取付縁部にプラスチックまたはゴムの材料の薄層を 設けて行う必要がある。音響の見地から、この装置は音響吸収面が音源に垂直に 面するように取付ける必要がある。差動型の装置は対応してであるが装置10間 の空気間隙を設けて取付は音響を両部材14.15に作用させるようにする必要 がある。その場合、空気間隙は例えば50陥の巾にすることができる。スペクト ルにおいて最も均等に配分された音響吸収は一般に差動型の装置で得られるが、 その場合、それぞれの代替表面装置は自由のままに放置されるので、取付面の5 0φだけが使用されるら参照数字25と26は、部分内の溝に接着される結束兼 硬化連結機素をそれぞれ示す。The center beam 23 of the judge section 24 in FIG. 3 mechanically stabilizes the section against vibrations. It is an attempt to do so. This device as a whole does not allow the judges to unreasonably vibrate. If the Very strong associated noise can be generated from the absorbing member at individual frequencies. same For this reason, this device cannot be installed against suspended structures made of aluminum parts, for example. and isolate the judge of this device somewhat from vibration effects and apply it to said part. , with a thin layer of plastic or rubber material on the supporting parts or mounting edges of this device. It is necessary to set it up and do it. From an acoustic standpoint, this device is designed so that the sound-absorbing surface is perpendicular to the sound source. It must be installed so that it faces the other side. The differential type device is correspondingly, but between the device 10 It is necessary to install with an air gap so that the sound acts on both parts 14 and 15. There is. In that case, the air gap can be, for example, 50 cavities wide. Spect The most evenly distributed sound absorption in the system is generally obtained with differential equipment; In that case, each alternative surface device is left free so that 5 of the mounting surfaces If only 0φ is used, reference numerals 25 and 26 are for binding and bonding glued into grooves within the part. Each hardened linkage element is shown.

第4図および第5図には動的に活動する弁手段27が示されているが、これはこ の発明による振動部材14か、または選択的に実質的に受動的な部材に組込まれ るようにする意図のものである。弁手段27が音響抵抗および、または流動抵抗 を備える場合、28で指示される抵抗構成部分は管状部分29の口部に置かれ、 その場合その抵抗が音源に向う方向に振動部材14の表面内で作用するようにす る必要がある。更に、弁手段27は、振動部材J4の幾何学的中心点に取付ける 必要があるが、それは弁手段を介して達成される該部材の減衰が最高効果を挙げ 、かつ対称的に作用するからである。弁手段270寸法は音響回路の周囲に対す る任意の他の接続が行われているかどうかと、振動部材または各振動部材が完全 に不透過性のものか、または前記部材の密度、厚さおよび面積により決定される 流動抵抗を組込んでいるかどうかとにより決定される。管状部品29は振動部材 14の振動方向に延びているので振動はこの装置の粘性流動摩擦内で得ることが でき、この摩擦は管状部品29の長さと共に増大する。従って、弁手段27は例 えば約5m2ないし20crn2の全開口面積を備えるこ七ができ、また例えば 、約10の一乗だけ大きい量的・ぐラメータ(50m3ないし200crn3) をもつことができ、従って振動部材14の実質的に粘性の減衰を果す。この粘性 減衰には例えば100メツシユないし400メツシーの大きさをもつ金属網ふま たは例えば50 g/m2の密度即ち0.3 vanの厚さをもつステーブル繊 維の層の薄い微細網目網30を周囲に面する前記開口面積の上に引延ばして純粋 に抵抗をもち減衰を増大する摩擦・ぐラメータ構成要素を付加することができる 。この網30は振動せしめられないことが重要である。例えば硝子繊維は実際の 管29内に取付け、それにより追加摩擦減衰が行われるようにすることができる 。Dynamically active valve means 27 are shown in FIGS. 4 and 5; vibratory member 14 according to the invention, or optionally incorporated into a substantially passive member. It is intended that the The valve means 27 has acoustic resistance and/or flow resistance. , a resistive component designated 28 is placed at the mouth of the tubular portion 29; In that case, the resistance is made to act within the surface of the vibrating member 14 in the direction toward the sound source. It is necessary to Furthermore, the valve means 27 is mounted at the geometric center point of the vibrating member J4. It is necessary, however, that damping of said member achieved through valve means is most effective. , and they act symmetrically. The dimensions of the valve means 270 are relative to the circumference of the acoustic circuit. whether any other connections have been made and whether the vibrating member or each vibrating member is fully or is determined by the density, thickness and area of said member. Determined by whether or not flow resistance is incorporated. The tubular part 29 is a vibrating member 14 vibration directions, so vibrations can be obtained within the viscous flow friction of this device. This friction increases with the length of the tubular part 29. Therefore, the valve means 27 is For example, it is possible to have a small space with a total opening area of about 5 m2 to 20 crn2, and for example , a quantitative parameter larger by about a power of 10 (50 m3 to 200 crn3) , thus effecting a substantially viscous damping of the vibrating member 14. This viscosity For damping, for example, a metal mesh with a size of 100 meshes to 400 meshes is used. or, for example, a stable fiber with a density of 50 g/m2 or a thickness of 0.3 van. A thin fine mesh network 30 of a layer of fibers is stretched over the open area facing the surroundings to create a pure Friction/grammeter components can be added that resist and increase damping. . It is important that this mesh 30 is not allowed to vibrate. For example, glass fiber is actually can be mounted within tube 29 so as to provide additional frictional damping. .

よく判るように流動抵抗は弁手段27を無効ならしめる程大きなものであっては ならない。As can be seen, the flow resistance should not be so great as to render the valve means 27 ineffective. No.

第6図および第7図は、多孔性または繊維性の受動部材または振動部材14が使 用される場合の使用に適した動的に能動的な弁手段を示す。例えばこの部材は2 0に97m3程の低い密度をもつことができ、20胡の厚さをもつことができ、 従って振動表面をわたって計算される合計流動抵抗を変えることが望ましくなる ことがある。これは前記部材の一表面、好ましくは室16の境界となる表面を、 空気を透過しない薄い弾性材料、例えばプラスチック膜32で被覆して行なうか 、または、その代りに前記部材の両面を前記材料で被覆することができる。振動 部材14の中央区域31を開いてそれに流動させることにより第4図および第5 図に示す装置と同様な機能が得られ、それにより、使用繊維振動部材14の流動 抵抗特性の集中が行われ、前記部材の中心に減衰作用を行わせる。6 and 7 show that porous or fibrous passive or vibrating members 14 are used. 2 shows a dynamically active valve means suitable for use in applications where For example, this member is 2 It can have a density as low as 0 to 97m3 and a thickness of 20cm, It therefore becomes desirable to vary the total flow resistance calculated across the vibrating surface. Sometimes. This means that one surface of said member, preferably the surface that bounds the chamber 16, Can it be covered with a thin elastic material that does not allow air to pass through, such as a plastic film 32? Alternatively, both sides of the member can be coated with the material. vibration 4 and 5 by opening the central region 31 of member 14 and allowing flow thereto. A similar function to the device shown in the figure is obtained, whereby the flow of the fiber vibrating member 14 used is A concentration of resistive properties is provided, causing a damping effect in the center of the member.

例えばプラスチック膜の形式をもつ層または被膜32に配置される開口31は第 4図および第5図に示す装置に使用される面積よりも幾分大きく例えば50 c m2ないし100 cm2に造ることができる。The openings 31 arranged in a layer or coating 32, for example in the form of a plastic membrane, are Somewhat larger than the area used in the apparatus shown in Figures 4 and 5, e.g. It can be made from m2 to 100 cm2.

繊維材料でつくられる振動部材14の第7図の横断面図は図示の如く二つの薄い 面被膜18.32を含b0これらの被膜は例えばステーブル繊維構造の均質膜ま たは比較的ち密な繊維構造の形式をもつことができ、繊維の心33が低い密度と 該平面内で貧弱な固有の安定性をもつ場合、繊維の心33を硬化するのに有効で ある。表面層1.8 、32は心33の振動を減衰するのに有効で、それにより 振動部材14の表面が無作為の振動に分解することが確実に減らされる。例えば 心33に接着されるステーブル繊維の表面層18を選ぶことにより、高周波吸収 もまた向上する。これは入射音響の波長が層18の厚さに接近するとステーブル 繊維層18が機械的に心33から外されるからである。心33が20簡の厚さを もち、ステーグル繊維層18が0.3 ranの厚さをもつ場合、この周波数の 波長の―数として、次の最大可能振動吸収が得られる。理論的には心33には9  kHz 、層18には575kHzの値が層18と心33上の零質量にはそれ ぞれ有効であり、材料内の伝播速度は空気内の音速の半分になると計算される。The transverse cross-sectional view in FIG. These coatings may be, for example, homogeneous membranes of stable fiber structure or or a relatively dense fiber structure, with the fiber core 33 having a low density and If it has poor inherent stability in the plane, it is not effective to stiffen the fiber core 33. be. The surface layer 1.8, 32 is effective in damping the vibrations of the core 33, thereby This ensures that the surface of the vibrating member 14 breaks down into random vibrations. for example By selecting the surface layer 18 of the stable fibers that is bonded to the core 33, high frequency absorption can be achieved. will also improve. This becomes stable when the wavelength of the incident sound approaches the thickness of layer 18. This is because the fiber layer 18 is mechanically removed from the core 33. Core 33 has a thickness of 20 strips If the staple fiber layer 18 has a thickness of 0.3 ran, then this frequency As a number of wavelengths, the maximum possible vibrational absorption is obtained: Theoretically, there are 9 in the mind 33. kHz, layer 18 has a value of 575 kHz, and the zero mass on layer 18 and core 33 has that value. Both are valid, and the propagation speed in the material is calculated to be half the speed of sound in air.

この理論回路の反応時間はそれぞれ0.12m5と175μSである。質量が既 知の場合、実際に得られる反応時間を決定することができ、この反応時間は質素 の増大につれて長くなる。吸収は音波の攻撃を受ける表面内の質量の慣性の関数 として発生すると考えられる。The reaction times of this theoretical circuit are 0.12 m5 and 175 μS, respectively. The mass is already In the case of knowledge, it is possible to determine the reaction time actually obtained, and this reaction time is becomes longer as the value increases. Absorption is a function of the inertia of the mass within the surface attacked by the sound wave It is thought that this occurs as follows.

Sを音圧が作用する表面となし、式a =Pa−3/Mにより表面の質量Mの場 合、音圧Pa(N/m2)が起す加速二に質量を組込む表面が線形に従うのを防 ぐのに足る程、この慣性の量が大きくない場合、吸収が行なわれる。質量が大き くなると吸収は減る。この発明による振動部材14の吸収表面が室16の容積に より形成される空気はねの関数として音響的に最適に負荷されるとする場合、機 械的回路の質量慣性は空気ばねかない場合よりは音響的に励振された振動の場合 には小となることになる。音響回路はまた動的流動抵抗と静的流動抵抗を含むの で、振動部材14の質量は更に動的に有効に変化し、従って、振動運動の顕著な 線形化が部材の動的減衰の関数として得られる。振動部材14が流通流動抵抗を もつ場合振動部材14に直接、機械的に加えられるか、または音響回路が周囲に 連通ずる事実により振動部材に間接に作用し、この連通は周囲と空気室16間の 圧力差の粘性抵抗変化が起きるように形成される。音響・ぐルス、即ち短期間の 急速圧力変化は振動部材14を変位するようにし、それにより装置の内部の圧力 レベルを変えるようにする。この変位運動はこの発明による装置で減衰され、変 位された振動質量の始動と停止両時間が変わるようにし、その質量は、後で、変 化力が振動部材への作用を止める時よりも急速に始動および制動される。この発 明による装置の吸収能力はその場合もまた静止と過渡的な音響エネルギーの両方 について好影響を受ける。この装置が与える動的減衰は変位変化速度と変位振巾 の両方に関係するので、減衰値は音響回路内で自動的に調節され、常に最適値即 ち臨界減衰に接近する値に接近する。減衰効果はこの装置の音響共振周波数で最 大となるが、この共振周波数は機械的回路の共振周波数と面積と使用容積パラメ ータとまた適用される抵抗減衰度の関数として得られる。振動回路の機械的部分 14.15が振動部材14の振動を短絡する接触材料により完全に減衰される場 合、音響回路は共振回路として機能を果すことを止め、従って音響吸収はより低 い周波数に向う値で減って行く。従って1機械的振動回路が実質的に揺動自在の 回路の形式をもち、この装置の振動部材に直接接触減衰材料を適用し、動的安定 性を得ることが必要な場合、極めて軽く、素直な繊維材料だけを使用することが 重要である。流通流に開口する繊維振動部材が選択される場合、流動抵抗を十分 に高く確保することが重要である。この方法では、この装置は顕著な音響共振周 波数を与えられ、その場合、振動振巾は一定の適用励振力で最大となる。即ちこ の装置の音響インピーダンスは最小となる。流動抵抗が不十分な場合、回路は正 しく作動することを止め、音響効率は低い方の周波数に向い減ることになる。Let S be the surface on which sound pressure acts, and use the formula a = Pa-3/M to calculate the field of mass M on the surface. In this case, the acceleration caused by the sound pressure Pa (N/m2) prevents the surface incorporating the mass from following a linear If this amount of inertia is not large enough to cause absorption, absorption will occur. large mass Absorption decreases as the amount increases. The absorbing surface of the vibrating member 14 according to the invention covers the volume of the chamber 16. The machine is optimally loaded acoustically as a function of the air splash formed by the The mass inertia of a mechanical circuit is lower with acoustically excited vibrations than without an air spring. It will be small. The acoustic circuit also includes dynamic flow resistance and static flow resistance. In this case, the mass of the vibrating member 14 is effectively changed dynamically, so that the vibrational motion is significantly reduced. A linearization is obtained as a function of the dynamic damping of the member. The vibration member 14 reduces the flow resistance If so, it is applied mechanically directly to the vibrating member 14, or an acoustic circuit is placed around the This communication acts indirectly on the vibrating member due to the fact that this communication occurs between the surroundings and the air chamber 16. It is formed in such a way that a pressure difference causes a change in viscous resistance. Acoustic Gurus, i.e. short-term The rapid pressure change causes the vibrating member 14 to displace, thereby increasing the pressure inside the device. Make the level change. This displacement movement is damped with the device according to the invention and The start and stop times of a positioned vibrating mass are varied, and the mass is later The energizing force is started and braked more rapidly than when it ceases to act on the vibrating member. This issue The absorption capacity of the device due to brightness is then again dependent on both static and transient acoustic energy. have a positive impact on The dynamic damping provided by this device depends on the displacement change rate and displacement amplitude. therefore, the attenuation value is automatically adjusted within the acoustic circuit and always reaches the optimum value immediately. i.e. approaches a value approaching critical damping. The damping effect is maximum at the acoustic resonance frequency of this device. However, this resonant frequency is determined by the resonant frequency of the mechanical circuit, the area, and the volume used. as a function of the resistive damping factor and also the applied resistance damping. Mechanical part of the vibration circuit 14.15 is completely damped by the contact material that short-circuits the vibration of the vibrating member 14. , the acoustic circuit ceases to act as a resonant circuit and the acoustic absorption is therefore lower. The value decreases towards higher frequencies. Therefore, one mechanical vibration circuit is substantially free to oscillate. It has the form of a circuit and applies direct contact damping material to the vibrating parts of this device to achieve dynamic stability. If it is necessary to obtain a high quality is important. If a fiber vibrating member is selected that opens to the flow, the flow resistance must be sufficiently It is important to ensure that the temperature is high. In this way, the device has a pronounced acoustic resonance frequency. For a given wave number, the vibration amplitude is maximum at a constant applied excitation force. That is, this The acoustic impedance of the device is the minimum. If the flow resistance is insufficient, the circuit will be positive. The acoustic efficiency will decrease towards lower frequencies.

第8図は第1図に示す原理図の変形10aを示すが、この場合、第9.第10お よびまたは第11.第12図に示すみぞ穴または間隙は、特に第4図、第5図ま たは第6図、第7図に示す装置が使用されない場合か、または振動部材14また は振動部材14と15が周囲と同等流動連通しない手段からなる場合にこの装置 の減衰状態と全流動抵抗を変えるのに使用することかできる。FIG. 8 shows a modification 10a of the principle diagram shown in FIG. 10th o and or 11th. The slots or gaps shown in Figure 12 are particularly suitable for Figures 4 and 5. or when the device shown in FIGS. 6 and 7 is not used, or when the vibrating member 14 or This device is used when the vibrating members 14 and 15 consist of means that are not in equal flow communication with the surroundings. Can be used to change the damping state and total flow resistance.

第9および第10図は室16の内部を周囲に連結する場合に作動する孔口または みぞ穴34を示す。この場合、図示の流動抵抗35は小さくして、みぞ穴の面積 が振動部材14. 、15の表面に実質的に誘導的に負荷をかけるようにするこ とができるが、これはみぞ大面積が音響的に内室16を小さな制御された範囲ま で開放するからで、それにより、実質的に粘性の振動減衰が行なわれ、装置10 aが作動しようとする周波数範囲内で、実質的に音響1閉しることを止めるよう な量の範囲まで、みぞ穴34の面積により室り圧力機能が短絡されないようにす る。顕著な粘性振動減衰は、流動方向に開口34の面積を拡張し、それにより空 気トンネルを形成し、かつみぞ穴34に長方形で長辺に対する短辺の比が8以上 の形状を与えることにより得ることができる。実質的に開いたみぞ穴34は、開 口またはトンネルに機械的流動抵抗を付加せずにジャッジに代表的なヘルムホル ツ共振器開口を形成し、膣口の作動周波数は自由な空気中で振動部材14の共振 周波数に適応する必要があり、膣口は次式により計算される。Figures 9 and 10 show the openings or Slots 34 are shown. In this case, the flow resistance 35 shown should be small and the area of the slot is the vibrating member 14. , 15 is substantially inductively loaded. However, this means that the large area of the groove acoustically transforms the interior chamber 16 into a small controlled area. , thereby providing substantially viscous vibration damping, and the device 10 so as to substantially stop acoustic 1 closing within the frequency range in which a is intended to operate. To a certain extent, the area of the slot 34 prevents the chamber pressure function from being shorted out. Ru. Significant viscous vibration damping expands the area of the opening 34 in the flow direction, thereby reducing the Forms an air tunnel and has a rectangular shape in the slot 34 with a ratio of the short side to the long side of 8 or more. It can be obtained by giving the shape of The substantially open slot 34 is Typical Helm Hole for Judges without adding mechanical flow resistance to the mouth or tunnel. A resonator opening is formed, and the operating frequency of the vaginal opening is the resonance of the vibrating member 14 in free air. It is necessary to adapt to the frequency, and the vaginal opening is calculated by the following formula.

鼓に、fPは容積vb内の孔口の共振周波数であり、容積Vbは室16の容積、 旦は空気中の音速で344.8 rrv/s。In the drum, fP is the resonant frequency of the orifice in volume vb, volume Vb is the volume of chamber 16, The speed of sound in air is 344.8 rrv/s.

Vpは該開口(トンネル)の容積、tPは該開口のトンネルの長さである。この 量全部がamで表わされ該開口の面積が0.2X1.6−”0.32dm2でジ ャッジの厚さはO,OidmCある場合、■b−100dm3の場合の共振周波 数fpは約42Hzとなり、この値は零Hzの代りにこの装置10aの−”−吸 収限界周波数を略々構成し、該周波数は構造物が音響的に全閉された場合、即ち 同等開口も、みぞ穴34もなかった場合、理論的に吸収のための限界周波数を構 成する。ldmの長さをもつトンネルが該開口に連結される場合、約25Hzの 共振周波数が得られる。前記の種類の開口を組込むことにより、音響系の動的特 性に影響を与え、該系の減衰を変えることができる。力1ふる開口が組込まれる 場合、振動部材の階動機能は一般に更に迅速となるが、加えられる音響エネルギ ーが止まる時に無制御振動が振動運動の被害減衰の結果として起り、特に該開口 が大きく、それと共に開口の共振周波数が高い場合に起ることがある。従って、 トンネルを該開口に連結し、該開口の共振周波数fpk低く保持して、振動部材 14の自然共振周波数以下か、または少くともそれを遥かに越さないようにする ことは適当な方法となる。該開口34の共振周波数での効率増大を強調したい場 合で、それがジャッジに共振器開口を組込むことで前記のように、与えられた周 波数範囲に対し行なわれる場合、該開口34の面積は更に大きくすることができ 、該開口の共振周波数で得られる装置10aの場合の音響Q値の抵抗摩擦減衰は 第11および第12図による別のみぞ穴状または孔口状開口36(この開口は第 8図の下方部分に概略示されている)を組込むことで得られる。よく判るように 開口36は音響流動抵抗37を備え、該抵抗は開口を完全に被覆し、それと共に 開口36の面積をわたる流動抵抗37が定める範囲まで室容積Vbで共振効果を 短絡する。Vp is the volume of the opening (tunnel), and tP is the length of the tunnel of the opening. this The total amount is expressed in am, and the area of the opening is 0.2 x 1.6-”0.32 dm2. When the thickness of the judge is O, OidmC, the resonance frequency when the thickness is b-100dm3 fp will be about 42 Hz, and this value will be equal to the −”-absorption of this device 10a instead of 0 Hz. It approximately constitutes the limit frequency, which is the frequency when the structure is acoustically completely closed, i.e. If there is no equivalent aperture or slot 34, the theoretical limit frequency for absorption can be constructed. to be accomplished. If a tunnel with a length of ldm is connected to the opening, a frequency of about 25 Hz A resonant frequency is obtained. By incorporating apertures of the type described above, the dynamic characteristics of the acoustic system can be improved. properties and can change the damping of the system. A force 1 opening is incorporated. The stepwise function of the vibrating member is generally more rapid when the applied acoustic energy When the opening stops, uncontrolled vibrations occur as a result of the damaging damping of the vibratory motion, especially when the opening This may occur when the resonant frequency of the aperture is large and the resonant frequency of the aperture is also high. Therefore, A tunnel is connected to the opening, the resonant frequency fpk of the opening is kept low, and the vibration member is 14 natural resonant frequencies, or at least not far above them. That would be a suitable method. When it is desired to emphasize the increase in efficiency at the resonant frequency of the aperture 34, In this case, by incorporating a resonator aperture into the judge, it is possible to When applied to a range of wavenumbers, the area of the aperture 34 can be made even larger. , the resistance friction damping of the acoustic Q value in the case of the device 10a obtained at the resonant frequency of the aperture is Another slot-like or hole-like opening 36 according to FIGS. (schematically shown in the lower part of Figure 8). as you can clearly see The aperture 36 is provided with an acoustic flow resistance 37, which completely covers the aperture and with which The resonance effect is produced in the chamber volume Vb up to the range determined by the flow resistance 37 across the area of the opening 36. Short circuit.

従って、この装置は開いた音響開口34と共動し、第9図および第10図による 開口34の同調の険しさが第11および第12図による抵抗開口36の存在によ り減らされるようにする。This device therefore cooperates with an open acoustic aperture 34, according to FIGS. 9 and 10. The sharpness of the tuning of the aperture 34 is due to the presence of the resistive aperture 36 according to FIGS. 11 and 12. to reduce the amount of

第11図および第12図に示す開口はこの発明による装置内の音響室16用圧力 等化弁として有効に使用することができるが、該音響室には、流動抵抗は振動部 材14.15のために設けられておらず、該音響室は一切通気されない。The openings shown in FIGS. 11 and 12 are for the pressure chamber 16 in the device according to the invention. Although it can be effectively used as an equalization valve, the flow resistance is 14 and 15, and the acoustic chamber is not ventilated at all.

第13図および第14図はそれぞれこの発明による装置10bの水平投影図およ び垂直断面図であり、該装置は音響開口38を備え、該開口は音源に向けられる 室16と振動部材14に対し抵抗上つり合い、該振動部材14は実質的に第4図 および第5図に示すものにより動的減衰装置27で示されるように設けることが できる。Figures 13 and 14 are a horizontal projection and a view, respectively, of the device 10b according to the invention. 2 and 3, the device is provided with an acoustic aperture 38, the aperture being directed towards the source of the sound. Resistively balanced against the chamber 16 and the vibrating member 14, the vibrating member 14 being substantially as shown in FIG. and a dynamic damping device 27 can be provided as shown in FIG. can.

開口38は振動部材14に対向する区画壁15により担持されている。膣壁15 は実質的に振動に対し受動的で比較的高い密度をもつ必要があり、音響を吸収す ることができる。開口38の目的は、装置10bの吸音特性に影響を与え、前記 特性が主として振動部材14にのみ作用する音の場合に起り、吸収が実質的に心 臓形に接近する角度特性で行なわれるようにすることである。これ−により、こ の装置の結果として、振動部材14の振動方向に対し大きな入射角の場合の吸収 は大きく改良され、振動部A」14は良好な抵抗減衰特性を得るが、それは、角 度制御開口38がその音響配置を通し周囲に面する該開口に」♂ける音響抵抗3 9の存在の結果として振動部材14からの音響に対向するからである。この点に おいて開口38は、同装置が開口38をもたない場合の音響共振周波数を実質的 に室16内の容積をもつ開口の共振周波数が越すような大きさの面積を与えられ る必要がある。The opening 38 is carried by the partition wall 15 facing the vibrating member 14 . vaginal wall 15 must be essentially passive to vibration, have a relatively high density, and must be able to absorb sound. can be done. The purpose of the openings 38 is to influence the sound absorption properties of the device 10b and to This occurs in the case of a sound whose characteristics mainly act only on the vibrating member 14, and the absorption is substantially The aim is to perform the process at an angle that approaches the organ shape. This causes this As a result of the device, the absorption in the case of a large angle of incidence with respect to the vibration direction of the vibrating member 14 is reduced. has been greatly improved, and the vibration part A'14 has good resistance damping characteristics, but it Acoustic resistance 3 through which the acoustic control aperture 38 passes through its acoustic arrangement and into said aperture facing the surroundings. This is because, as a result of the presence of 9, the sound from the vibrating member 14 is opposed. to this point The aperture 38 substantially reduces the acoustic resonance frequency when the device does not have the aperture 38. is given an area large enough to exceed the resonant frequency of the opening with the volume inside the chamber 16. It is necessary to

第9図および第10図について引甲した式を適用し、約1、00 dm3の室容 積vbを使用すると、約2.5dm2の開口面積と、約70 Hzの開口共振周 波数とがめられ、開口38の面積は部材15の全厚面積の約半分となる。孔口3 8内の音響抵抗は前記孔口で作用し、抵抗39を示す孔口38をもつ装置10b の共振周波数が装置38 、39を欠く同等な装置の共振周波数に略々回復され るように調節される必要がある。この変形の場合第13図および第14図に示す ように振動部材14に動的流動弁27をつけて、該振動部材14の有効で動的に 能動的な振動減衰を確保し、かつ選択的に、吸収性で音響的に抵抗し、適宜みぞ 穴41または孔を備え、空気を連続的に流通させる壁40を配置することが特に 重要であり、前記壁は装置10bの中心部分内に対称的に配置される。Applying the formula for Figures 9 and 10, the room volume is approximately 1,00 dm3. Using the product vb, the aperture area is about 2.5 dm2 and the aperture resonance frequency is about 70 Hz. The area of the opening 38 is approximately half of the total thickness area of the member 15. Hole mouth 3 an acoustic resistance in 8 acts at said aperture, and a device 10b with an aperture 38 exhibiting a resistance 39; The resonant frequency of is approximately restored to the resonant frequency of an equivalent device lacking devices 38 and 39. It needs to be adjusted so that This modification is shown in Figures 13 and 14. A dynamic flow valve 27 is attached to the vibrating member 14 in order to effectively and dynamically control the vibrating member 14. Ensure active vibration damping and selectively absorb and acoustically resist grooves as appropriate. It is particularly advantageous to arrange a wall 40 which is provided with holes 41 or holes and allows continuous air flow. Importantly, said walls are arranged symmetrically within the central part of the device 10b.

第15図は50 dBの動的範囲と20 H2に設定された下方限界周波数をも つ周波数ス被りトル図である。図において音圧レベルは周波数が変化しても一定 であるとされる。このようにすれば、音波の振巾A(実線)と、その加速レベル △(破線)間に図示の関係が得られ、その場合、各関数の傾斜は6dB/オクタ ーブを構成する。ス被りトルの幾何学的平均周波数は関数が交差する360Hz の点で得られる。よく判るように、加速レベルは振巾レベルが無限大に向う時に は零に向って動き、振巾は周波数が360 Hzから減少する周波数範囲内で音 波の加速よりは大きく、加速は周波数が360 Hzから増大する周波数範囲内 で振巾よりは大きい。20 Hzより高い限界周波数をもつ周波数スペクトルが 考慮される場合、平均周波数点は均等に高い方の周波数にあることになる。Figure 15 also shows a dynamic range of 50 dB and a lower limit frequency set at 20 H2. FIG. In the figure, the sound pressure level remains constant even if the frequency changes. It is said that In this way, the amplitude A (solid line) of the sound wave and its acceleration level The illustrated relationship between Δ (dashed lines) is obtained, in which case the slope of each function is 6 dB/octave. configure the server. The geometric mean frequency of the shear torque is 360Hz where the functions intersect. obtained in terms of. As you can clearly see, the acceleration level increases when the amplitude level approaches infinity. moves toward zero, and the amplitude increases as the frequency decreases from 360 Hz. The acceleration is greater than the wave acceleration, and the acceleration is within the frequency range where the frequency increases from 360 Hz. It's bigger than the swing width. A frequency spectrum with a limit frequency higher than 20 Hz is If taken into account, the average frequency points will be at evenly higher frequencies.

振巾が優勢な周波数範囲内では、吸収面の振動振巾ばまた周波数が減少する時、 増大、即ち周波数の半減で倍化され、表面における吸収を一定にしなければなら ない。Within the frequency range where the amplitude is dominant, when the vibration amplitude of the absorbing surface also decreases in frequency, increase, i.e. double the frequency by half, and the absorption at the surface must remain constant. do not have.

これにより吸収面における線形振動振巾は、この装置の設計対象たる下方限界周 波数(共振周波数〕よりも漸進的に大きくすることができなければならない。例 えば、下方限界周波数が40 Hzに設定される場合、自由空気内の振動部材の 機゛械的共振周波数はその場合、幾分下方の周波数例えば20 Hzにあって、 振動部材と空気のばね剛度の機械的順応に関して、装置の容積パラメータの表わ すばね力が機械的共振周波数を増大できるようにし、また合成音響共振周波数が 40’Hzにあるようにしなければならない。数学的に、これは略々fa=fm ech。メツ百として表わすことができるが、その場合、faは音響共振周波数 、fmech−は機械的共振周波数、王は容積パラメータ■bに関係する順応比 である。この順応比Sは方程式s = (八/fmech、 )2−1 から計 算することができ、共振周波数における合成減衰は、η−Q とQ =fres /Cfu −fl)の関係から得られ、ソ(7) 場合fuは共振周波数fre sより高い周波数で3 dB低い振巾をもち、flは共振周波数より低く、3d B低い振巾をもつ周波数である。Qが1.0に達すると、音響的に閉じられた回 路(圧力関数により実質的に決定される共振周波数)は最適に減衰され、この値 は実際では達成が困難である。As a result, the linear vibration amplitude at the absorbing surface is It must be possible to gradually increase the wave number (resonant frequency).Example: For example, if the lower limit frequency is set to 40 Hz, the vibration of the vibrating member in free air The mechanical resonance frequency is then at a somewhat lower frequency, for example 20 Hz, Expression of the volumetric parameters of the device with respect to the mechanical accommodation of the vibrating member and the spring stiffness of the air. The spring force allows the mechanical resonant frequency to increase and also increases the resultant acoustic resonant frequency. 40'Hz. Mathematically, this is approximately fa=fm ech. can be expressed as 100, in which case fa is the acoustic resonance frequency , fmech- is the mechanical resonance frequency, and Ō is the accommodation ratio related to the volume parameter ■b. It is. This adaptation ratio S can be calculated from the equation s = (8/fmech,)2-1 The resultant damping at the resonant frequency is η-Q and Q = fres /Cfu - fl), and in the case of (7), fu is the resonant frequency fre It has an amplitude 3 dB lower at frequencies higher than s, fl is lower than the resonant frequency, and 3 d B is a frequency with a low amplitude. When Q reaches 1.0, the acoustically closed circuit (resonant frequency essentially determined by the pressure function) is optimally damped and this value is difficult to achieve in practice.

第16図はこの発明による音響吸収方式の理論的に異なる関数を示す。図の頂部 には全部得られる音響吸収(実線)が示され、左方には破線で振動関数αVib r、が、右方には鎖線で装置]0に使用され、例えば、ステープル繊維表面層と 約20筋の厚さと約20 Kp/m3の密度をもつ心を有する鉱物の繊維吸収部 材14の抵抗吸収関数αfric、が示されている。FIG. 16 shows theoretically different functions of the acoustic absorption scheme according to the invention. top of figure shows the total acoustic absorption (solid line), and the dashed line on the left shows the vibration function αVib r, is indicated by the dashed line on the right, and is used for the device ] 0, for example, with the staple fiber surface layer. Mineral fiber absorption part with a core having a thickness of about 20 threads and a density of about 20 Kp/m3 The resistance absorption function αfric of the material 14 is shown.

吸収材14の面積を約0.5 m2に選び、室16の容積を約50dm3に選ぶ と、吸収材と前記容積の共振周波数faは図に示すように約50Hzにすること ができる。部材14の吸収機能は100係吸収の範囲で表わされると考えられる がそれは約1000H2Xffrから約4000Hz。The area of the absorbent material 14 is selected to be approximately 0.5 m2, and the volume of the chamber 16 is selected to be approximately 50 dm3. And, the resonance frequency fa of the absorber and the volume should be approximately 50 Hz as shown in the figure. Can be done. The absorption function of the member 14 is considered to be expressed in the range of 100 coefficient absorption. But it is about 1000H2Xffr to about 4000Hz.

flot:で延び、その際吸収材は反響室内で、従来のように空気間隙なしで測 定される。よく判るように、この装置では個々に振動回路と抵抗回路が得られ、 それらの効果は50Hzから1 kHzまで延びる周波数範囲内で結合され、そ こで両関数は減小する。第16図に示す理論モデルによれば次のものが適用され る。共振周波数50Hzの下方にある周波数範囲では、吸収は約12dB/オク ターブだけ低下することになる。共振周波数より上の最初のオクターブでは吸収 は約3dBたけ増大し、4kHzまでの完全系では一定となり、そこで再び低下 する。この系の誘導吸収は最大で100係に達することができ、共振周波数50  Hzにあることができる。抵抗吸収1d100Hzと4000Hz間の場合の 如く決して100%以上にはなり得ない。この発明による吸収装置は、然し、実 質的につり合った音響インピーダンスを構成し、従って音響エネルギーの合成吸 収は、使用振動部材14だけの場合に抵抗が優勢な吸収を常に超過しなければな らず、概述した場合、50H2(この系の共振周波数)と抵抗切除周波数4 k Hzとの間にある周波数の場合100係より大きく、該吸収は第16図の頂部に おいて3dBだけ増加したレベルの部分としてしるしされ、実際には振動部材1 4自体に適用される吸収の約2倍に達することができる。flot: in which the absorber is measured in a reverberation chamber without conventional air gaps. determined. As you can clearly see, with this device, a vibration circuit and a resistance circuit can be obtained individually. Their effects are combined within a frequency range extending from 50Hz to 1kHz; Here both functions decrease. According to the theoretical model shown in Figure 16, the following applies. Ru. In the frequency range below the resonant frequency of 50 Hz, the absorption is approximately 12 dB/octave. Only the turb will decrease. Absorption in the first octave above the resonant frequency increases by about 3 dB, becomes constant in a complete system up to 4 kHz, and then decreases again. do. The induced absorption of this system can reach up to 100 coefficients, and the resonance frequency is 50 Hz. Resistance absorption 1d between 100Hz and 4000Hz It can never be more than 100%. The absorption device according to this invention, however, It constitutes a qualitatively balanced acoustic impedance and therefore a composite absorption of acoustic energy. The absorption must always exceed the absorption that is dominant in the resistance when only the vibrating member 14 is used. However, in the general case, 50H2 (resonant frequency of this system) and resistance cutting frequency 4k Hz, the absorption is larger than a factor of 100, and the absorption is shown at the top of Figure 16. is marked as the part of the level increased by 3 dB in the vibrating member 1. Approximately twice the absorption applied to 4 itself can be reached.

この発明による音響装置の差動設計が選ばれる場合、振動表面は倍化され合成吸 収は使用振動表面の約2〜4倍だけ、相互に対向する部材14.15間の音響的 結合の結果として増大することができる。更に、音響共振周波数は質量の一方( 部材14)が前記質量の他方(部材15)に室16に置かれる空気を通して行わ れる結合を介して負荷することにより単−設計の場合と同じ容積・ぐラメータで 略々半減される。If a differential design of the acoustic device according to the invention is chosen, the vibrating surface is doubled and the synthetic absorption The acoustic absorption between mutually opposing members 14.15 is approximately 2 to 4 times the vibration surface used. can be increased as a result of binding. Furthermore, the acoustic resonance frequency is one of the masses ( Part 14) is passed through the other mass (part 15) of air placed in chamber 16. with the same volume and parameters as in the case of a single design. It will be roughly halved.

前記発明による装置をつくる場合に、この発明を最上に利用するために、共振周 波数faにおいてと、それ以上の場合の感応面積で良好な線形が確実に得られる ようにする必要があるが、その場合、共動関数αVibr、とαfric。In order to make the best use of this invention when making a device according to the invention, the resonant frequency Good linearity is reliably obtained in the sensitive area at wavenumber fa and above. In that case, the comoving functions αVibr and αfric.

とは両方共減小モードにある。Both are in decreasing mode.

この発明により、極めて広い吸収範囲をもつ極めて有効な吸音装置が得られる。The invention provides a highly effective sound absorbing device with a very wide absorption range.

記述した構造原理は周波数範囲、吸収一方向、角度入射音響エネルギーと極めて 良好な振巾の線形性の補正を広範囲に変えることができ、最後に記述した線形性 は例えばゆがみ構成成分、無作為音響、面倒な音響反射の発生のような不都合な 二次効果を避けるために極めて大きな意義をもっている。この発明による装置は 極めて速い・ぐルス応答をもち、その振動部材に隣接する音波の伝播には僅少な 障害にしかならず、それにより、直接反響は効率的に抑制され、音響減衰効果は 特に過渡的音響については極めて高くなる。上述の所謂差動方式は室音響状態の 一般規制や低周波数範囲における強力な過渡的騒音さえ多量に含んでいる極めて 広い周波数範囲内の騒音減衰に適しているが、それは、差動方式が両側から吸収 し、特に高い音響減衰効果を示すからである。更にこの発明の特に有利な特性は 、その良好な再現性と、モジーラ一様式の使用可能性と、挿入効果とにあり、該 挿入効果は実質的には付加的なものであり、従来の吸収構造で得られるものより は遥ふに高い合計減衰を、与えられた室内と遥かに広い周波数範囲内で可能にす る。The described construction principle is extremely sensitive to the frequency range, absorption unidirectional, angularly incident acoustic energy and The correction of good amplitude linearity can be varied over a wide range, and the linearity described last may cause undesirable effects such as distortion components, random acoustics, and the occurrence of troublesome acoustic reflections. This is of great significance in order to avoid secondary effects. The device according to this invention It has an extremely fast gust response, and the propagation of sound waves adjacent to the vibrating member is very slow. Therefore, the direct reverberation is effectively suppressed, and the sound damping effect is In particular, it becomes extremely high for transient sounds. The so-called differential method mentioned above is based on the room acoustic condition. Extremely high noise levels containing large amounts of general regulation and even strong transient noise in the low frequency range Suitable for noise attenuation within a wide frequency range, it is because the differential method absorbs from both sides. This is because it exhibits a particularly high sound attenuation effect. Furthermore, a particularly advantageous feature of the invention is , due to its good reproducibility, possibility of use in one modality, and insertion effect. The insertion effect is essentially additive and greater than that obtained with conventional absorbent structures. allows much higher total attenuation within a given room and a much wider frequency range. Ru.

Claims (1)

【特許請求の範囲】 1 音響により幾何学的平面延長部を横断する振動運動に設定でき、少くとも室 (16)の区画壁の一部分を形成する薄板材料部材(14)t−含む音響減衰装 置において、前記部材(14〕が実質的に自由に揺動することと、室(16)が 少くとも実質的に音響的に閉塞されていることと、前記装置が変位速度変化に比 例し前記幾何学的延長部を横断する前記部材〔14〕の変位を減衰する手段を含 むこととの組合せを特徴とする前記音響減衰装置。 2 前記部材(14)が比較的薄く、実質的に平面で多孔繊維または多孔板から なり、該板がその縁部区画範囲に清い振動運動をしないように実質的に固定され 、振動時、後方に置力・れた空気充填空間(165により、形成された空気ばね と共動し、前記空気ばねを形成する空気・充填空間の容積は、前記部材(14) の密度、質量、流動抵抗に関連して、前記部材(14〕の振動運動がこの装置の 共振周波数で最大となるように選ばれ、前記の最大運動が前記部材(14)の中 心範囲内に行なわれ、流動抵抗により減衰されることを特徴とする請求の範囲第 1項記載の音響減衰装置。 3 前記部材(14)がその幾何学的中心に関して実質的に対称に部材の残部よ り高い空気透過性の区域(27゜31)を配置されていることを特徴とする請求 の範囲第1項または第2項記載の音響減衰装置・4 前記区域(27)が前記部 材(14〕の振動方向に配置される管状部品(29)により包囲されることを特 徴とする請求の範囲第3項記載の音響減衰装置。 5、 前記装置が少くとも一つの開口(36〕を備え、該開口が室〔16〕によ り包まれる容積と前記装置を囲む容積間を接続し、その中に、この装置の共振周 波数で前記部材(14)の振動運動の振巾を実質的に減衰するような量の流動抵 抗(37〕を配置していることを特徴とする請求の範囲第1項ないし第4項の何 れか1項記載の音響減衰装置。 6 前記装置が少くとも一つの音響開口(34)を含み、該開口が室(16)に より包まれる容積とこの装置を囲む容積間を接続し、前記部材(14〕に実質的 に音響の負荷を与え、該開口(34)と包囲容積とにより形成される回路の共振 周波数に関してこの装置の音響効率を実質的に誘導増大する請求の範囲第1戸な いし第5項の何れか1項記載の音響減衰装置。 7、開口(34)がまた前記開口と前記部材間の音響結合を弱化する抵抗(35 )を示すことを特徴とする請求の範囲第6項記載の音響減衰装置。 8、前記装置が少くとも一つの音響抵抗部材(40)を備え、該部材(40)が 前記部材(14)と、前記部材(14)に対向して置かれる室区画側部(15〕 との間に配置され、前記音響抵抗部材(40〕がまた顕著な流動抵抗からなるこ とを特徴とする請求の範囲第1項ないし第7項の何れか1項記載の音響減衰装置 。 9 前記部材(14)に対向して置かれた室区画側部(15)が前記部材(14 )と実質的に同一の部材からなることを特徴とする請求の範囲第1項ないし第8 項の何れか1項記載の音響減衰装置。 10、前記部材(14)に対向して置かれた室区画側部(1’5)において、前 記装置がまた前記部材の面積に比してかなりの大きさの開口(38)を有し、前 記開口(38)がその中に音響抵抗(39〕を配置し、周囲y・ら到達する音圧 に対抗する音圧を前記開口の開口部に起すことを特徴とする請求の範囲第1項な いし第8項の何れか1項記載の音響減衰装置。[Claims] 1. Can be acoustically set to vibratory motion across a geometric plane extension, at least (16) A sound damping device comprising a thin plate material member (14) forming part of the partition wall of In the position, said member (14) is substantially free to swing and said chamber (16) is at least substantially acoustically occluded; and the device is at least substantially acoustically occluded; e.g., means for damping the displacement of said member [14] across said geometrical extension; The acoustic attenuation device is characterized in that it is combined with: 2 the member (14) is relatively thin, substantially planar and made of porous fibers or a perforated plate; and the plate is substantially fixed against vibrational movement in its edge section area. , when vibrating, the air-filled space (formed by 165) The volume of the air/filling space that cooperates with the member (14) to form the air spring is The oscillatory motion of said member (14) in relation to the density, mass and flow resistance of the device selected such that said maximum movement is maximum at the resonant frequency in said member (14). Claim No. The sound attenuation device according to item 1. 3 said member (14) is substantially symmetrical with respect to the rest of the member with respect to its geometric center; A claim characterized in that an area (27°31) of high air permeability is arranged. Range of the sound attenuating device according to item 1 or 2.4 The area (27) is characterized in that it is surrounded by a tubular part (29) arranged in the direction of vibration of the material (14). 4. The sound attenuating device according to claim 3, wherein the characteristics are: 5. The device comprises at least one opening (36), which opening is connected to the chamber [16]. A connection is made between the volume enclosed by the device and the volume surrounding said device, into which the resonant frequency of the device is placed. a flow resistance in an amount so as to substantially damp the amplitude of the vibratory motion of said member (14) in wave numbers; Any of claims 1 to 4 characterized in that a resistor (37) is arranged. 2. The sound attenuation device according to item 1. 6 the device comprises at least one acoustic aperture (34), said aperture opening into the chamber (16); connection between the volume enclosed by the device and the volume surrounding the device, and substantially connected to said member (14). by applying an acoustic load to the opening (34) and the resonance of the circuit formed by the aperture (34) and the surrounding volume. Claims 1 or 2 which substantially inductively increase the acoustic efficiency of this device with respect to frequency. The sound attenuation device according to any one of Items 5 to 6. 7. The aperture (34) also has a resistor (35) that weakens the acoustic coupling between the aperture and the member. ) The sound attenuating device according to claim 6, characterized in that the sound attenuating device exhibits: 8. The device comprises at least one acoustically resistive member (40), the member (40) comprising: the member (14) and a chamber compartment side part (15) placed opposite the member (14); and the acoustic resistance member (40) also has significant flow resistance. The sound damping device according to any one of claims 1 to 7, characterized in that: . 9 The chamber compartment side part (15) placed opposite the member (14) ) Claims 1 to 8 are characterized in that they are made of substantially the same member as The sound attenuating device according to any one of the above items. 10. At the chamber compartment side (1'5) placed opposite the member (14), the front The device also has an opening (38) of considerable size compared to the area of the member, and The opening (38) has an acoustic resistance (39) arranged therein, and the sound pressure reaching the surrounding area is Claim 1, characterized in that a sound pressure is generated at the opening of the opening in opposition to the 8. The sound attenuation device according to any one of Items 8 to 8.
JP58500695A 1982-02-03 1983-01-28 sound equipment Pending JPS59500116A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE82006248EGB 1982-02-03
SE8200624A SE8200624L (en) 1982-02-03 1982-02-03 ACOUSTIC DEVICE

Publications (1)

Publication Number Publication Date
JPS59500116A true JPS59500116A (en) 1984-01-19

Family

ID=20345913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58500695A Pending JPS59500116A (en) 1982-02-03 1983-01-28 sound equipment

Country Status (10)

Country Link
EP (1) EP0086184A3 (en)
JP (1) JPS59500116A (en)
AU (1) AU1223383A (en)
CA (1) CA1198375A (en)
DK (1) DK435883D0 (en)
FI (1) FI840850A0 (en)
NO (1) NO833509L (en)
SE (1) SE8200624L (en)
WO (1) WO1983002793A1 (en)
ZA (1) ZA83591B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9022290D0 (en) * 1990-10-15 1990-11-28 Wilhams Insulations Ltd Absorbers
US5241512A (en) * 1991-04-25 1993-08-31 Hutchinson 2 Acoustic protection material and apparatus including such material
ES2038957T1 (en) * 1991-04-25 1993-08-16 Hutchinson ACOUSTIC PROTECTION MATERIAL AND DEVICE THAT INCORPORATES SUCH MATERIAL.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE732630C (en) * 1937-04-04 1943-03-08 Lufttechnische Ges M B H Device for noise reduction in pipes
FR1198880A (en) * 1958-02-14 1959-12-10 Chausson Usines Sa Method and device for the absorption of sound waves from vibrating devices
GB932521A (en) * 1961-06-01 1963-07-31 Ferranti Ltd Improvements relating to noise reducing enclosures
US3831710A (en) * 1973-01-24 1974-08-27 Lockheed Aircraft Corp Sound absorbing panel
DE2360519C3 (en) * 1973-12-05 1978-04-06 Hermann Hemscheidt Maschinenfabrik Gmbh & Co, 5600 Wuppertal Soundproof wall element
DE2451520C2 (en) * 1974-10-30 1982-10-21 Gerd Dieter 7326 Heiningen Maibach Noise protection element
FR2300384A1 (en) * 1975-02-07 1976-09-03 Lockheed Aircraft Corp Sound absorbing panel effective in two frequency domains - combines action of Helm holtz resonator with that of laminar honeycomb absorber
GB1499882A (en) * 1975-02-14 1978-02-01 Rolls Royce Sound attenuating structure
DE2645484C2 (en) * 1976-10-08 1978-07-27 Volmer Betonwerk Gmbh & Co Kg, 4100 Duisburg Concrete block for the construction of soundproof walls
DE3032269A1 (en) * 1980-08-27 1982-04-08 Hoechst Ag, 6000 Frankfurt RESONATOR SOUND ABSORPTION ELEMENT

Also Published As

Publication number Publication date
NO833509L (en) 1983-09-28
EP0086184A3 (en) 1984-05-02
ZA83591B (en) 1983-11-30
FI840850A (en) 1984-03-02
CA1198375A (en) 1985-12-24
DK435883A (en) 1983-09-23
DK435883D0 (en) 1983-09-23
FI840850A0 (en) 1984-03-02
AU1223383A (en) 1983-08-25
SE8200624L (en) 1983-08-04
EP0086184A2 (en) 1983-08-17
WO1983002793A1 (en) 1983-08-18

Similar Documents

Publication Publication Date Title
Furstoss et al. Surface impedance control for sound absorption: direct and hybrid passive/active strategies
US10510331B2 (en) Sound absorbing structure for anechoic chamber and anechoic chamber including the same
Bolton et al. Sound transmission through multi-panel structures lined with elastic porous materials
JPH11509934A (en) Plate resonator
US10508828B2 (en) Splitter and sound attenuator including the same
JP3027824B2 (en) Active foam plastic for noise and vibration control
US2796636A (en) Acoustic tile
JP4120649B2 (en) Soundproofing device
US20020046901A1 (en) Noise cancellation using a mechanical oscillator
JP2009093064A (en) Sound absorbing structure and acoustic room
JP5140795B2 (en) Active sound insulation device, active sound insulation panel, and active sound insulation method
JPS59500116A (en) sound equipment
JP2003122371A (en) Sound absorbing and vibration damping material
JP2012053434A (en) Low-frequency noise absorbing material
BOLTON et al. Random incidence transmission loss of lined, finite double panel systems
JP5425579B2 (en) Vibration control device
JPS60500220A (en) Mechanism in sound equipment
JP2004232354A (en) Solid sound reduction type interior trimming structure and interior trimming panel device
JP2015026932A (en) Silent diaphragm unit for loudspeaker
EP0162049A1 (en) An arrangement in acoustic systems
JP2003150170A (en) Sound absorbing and vibration damping material
JPH1061060A (en) Sound-insulation panel
JPH04305696A (en) Acoustical absorbent
CN114783400A (en) Parallel spring oscillator sound absorption structure
JP3124823B2 (en) Sound absorbing material