JPS5949681B2 - Pole piece for magnet device - Google Patents

Pole piece for magnet device

Info

Publication number
JPS5949681B2
JPS5949681B2 JP53158859A JP15885978A JPS5949681B2 JP S5949681 B2 JPS5949681 B2 JP S5949681B2 JP 53158859 A JP53158859 A JP 53158859A JP 15885978 A JP15885978 A JP 15885978A JP S5949681 B2 JPS5949681 B2 JP S5949681B2
Authority
JP
Japan
Prior art keywords
magnetic field
pole piece
coefficient
order
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158859A
Other languages
Japanese (ja)
Other versions
JPS5583210A (en
Inventor
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP53158859A priority Critical patent/JPS5949681B2/en
Publication of JPS5583210A publication Critical patent/JPS5583210A/en
Publication of JPS5949681B2 publication Critical patent/JPS5949681B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は高い磁場均一度が必要とされる核磁気共鳴装置
用磁石装置に関し、特に電流シム等の磁場分布補正装置
を備え、磁石単体での磁場均一度よりも高い均一度を得
ようとする磁石装置におけるポールピースの形状に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet device for a nuclear magnetic resonance apparatus that requires high magnetic field uniformity, and in particular is equipped with a magnetic field distribution correction device such as a current shim, and has a magnetic field uniformity higher than that of a single magnet. This relates to the shape of a pole piece in a magnet device in which uniformity is to be achieved.

核磁気共鳴装置においては、試料が配置される静磁場に
ついて高い均一度が要求されている。第1図は磁気共鳴
装置で用いられている磁石装置の概要を示す。第1図に
おいて、1はヨーク、2、2’は励磁コイル、3、3、
は円錐台形のコア−、4、4’は同じく円錐台形の純鉄
製スペーサ、5、5’は磁極の先端部に取付けられるポ
ールピース、6、6’は電流シムと呼ばれる磁場分布補
正装置で、円形あるいは矩形等の形状に巻いた多数のコ
イルを組合わせることによつて補正磁場を発生し、磁場
分布を補正して均一度を向上させる目的で使用されるも
のである。上記ポールピースの形状は磁場分布に大きな
影響を与えるため、その形状に関して従来から数多くの
研究がなされ、種々の形状が提案されて来た。
In a nuclear magnetic resonance apparatus, a high degree of uniformity is required for the static magnetic field in which a sample is placed. FIG. 1 shows an outline of a magnet device used in a magnetic resonance apparatus. In Fig. 1, 1 is a yoke, 2, 2' is an excitation coil, 3, 3,
is a truncated conical core, 4 and 4' are spacers made of pure iron that are also truncated conical, 5 and 5' are pole pieces attached to the tips of the magnetic poles, and 6 and 6' are magnetic field distribution correction devices called current shims. A correction magnetic field is generated by combining a large number of coils wound in a circular or rectangular shape, and is used for the purpose of correcting the magnetic field distribution and improving uniformity. Since the shape of the pole piece has a great effect on the magnetic field distribution, many studies have been conducted regarding the shape, and various shapes have been proposed.

現在、核磁気共鳴装置用磁石として広く実用に供せられ
ている形状は、ヒユーバーとプリマスが提案した次式に
よつて与えられる対数曲面である。−(+)g2Zl−
9R1−Rr−、Itn()−に(Z1−Z2)π−t
anに2Z2−9この対数曲面とは、ポールピースの先
端部平面aにつながる外周面bの断面形状が上式の対数
関数で表わされるような曲面であることを意味している
At present, the shape that is widely used in practical use as a magnet for nuclear magnetic resonance apparatus is a logarithmic curved surface given by the following equation proposed by Huber and Primus. -(+)g2Zl-
9R1-Rr-, Itn()- to (Z1-Z2)π-t
an to 2Z2-9 This logarithmically curved surface means that the cross-sectional shape of the outer circumferential surface b connected to the tip plane a of the pole piece is a curved surface expressed by the logarithmic function of the above equation.

上式において、(Z、、R1)と(Z2、R、)は曲面
上の座標、gは空隙長、にはtan−”1がoとπの間
にあるような負の値であり、実験によつて最適値を決定
するものとされている。
In the above equation, (Z,, R1) and (Z2, R,) are coordinates on the curved surface, g is the gap length, and is a negative value such that tan-"1 is between o and π, The optimum value is determined through experiments.

ところで、従来から磁場均一度の良否は、第1図に示す
ように空隙中心面(2つのポールピースから等距離の面
)Z=0上における直交する2方向(x(5y)につい
て測定した磁場分布について、磁場中心での磁場強度と
中心からある距離隔てた点における磁場強度との差又は
中心から外側へ向かつての磁場の変化を2次曲線で表わ
した時、その2次の係数によつて求められて来た。しか
しながら、実際には、磁場の均一度を要求されるのは空
間的な広がりを持つた領域であるから、中心面上の分布
のみならず、中心面からボールピース面にいくぶん近づ
いた面内での磁場分布をも問題にしなければならない。
又、電流シムによつて磁場分布を補正し、磁石単体で得
られる磁場均一度よりも更に高い均一度を得ようとする
磁石においては、上述した2次の係数のみでなく、4次
の係数がどの程度大きくなつているかが、補正のやり易
さに大きく関係している。
By the way, as shown in Figure 1, the quality of the magnetic field uniformity has traditionally been measured by measuring the magnetic field in two orthogonal directions (x(5y)) on the air gap center plane (plane equidistant from the two pole pieces) Z=0. Regarding distribution, when the difference between the magnetic field strength at the center of the magnetic field and the magnetic field strength at a point a certain distance from the center, or the change in the magnetic field outward from the center, is expressed by a quadratic curve, it is expressed by the coefficient of the quadratic curve. However, in reality, the uniformity of the magnetic field is required in a spatially spread region, so it is not only the distribution on the center plane, but also the distribution from the center plane to the ball piece surface. We must also consider the magnetic field distribution in a plane that is somewhat close to .
In addition, in a magnet that corrects the magnetic field distribution using a current shim and aims to obtain a higher degree of magnetic field uniformity than that obtained with a single magnet, it is necessary to use not only the second-order coefficient described above but also the fourth-order coefficient. The degree to which this has increased has a great deal to do with the ease of correction.

この4次の係数とは、中心から外側へ向かつての磁場の
変化を4次曲線で表わした時、その4次の係数のことを
意味している。表1には、前述の式に基づいて作成した
.3種のポールピースについて測定した2次と4次の磁
場不均一成分(係数)を、Z=0,Z=51jE1!及
びZ=101nについて示してある。
This fourth-order coefficient refers to the fourth-order coefficient when the change in the magnetic field from the center to the outside is represented by a fourth-order curve. Table 1 was created based on the above formula. The second-order and fourth-order magnetic field inhomogeneity components (coefficients) measured for three types of pole pieces are Z=0, Z=51jE1! and Z=101n.

ここで、ポールピースとしては、パーメンジュール(C
O−49%,Fe−49%,V−2%)を使用し、磁場
強度BOは2.0Tの場合である。
Here, as the pole piece, permendur (C
O-49%, Fe-49%, V-2%) is used, and the magnetic field strength BO is 2.0T.

又、形状を決定するために与えられる条件は、空隙長g
が32U,先端直径Dfが例Aで1401n1B及びC
で110?、形状係数kはAとCの場合一0.11,B
では−0.05、更に対数曲面bとポールピース先端平
面aとをつなぐ角度θfはAの場合4ー,Bは1面,C
は2なとした場合であり、各係数は×10−6が省略さ
れている。上記表より、中心面上における2次の係数は
AとBの場合負、Cの場合は正であるが、いずれも10
−6オーダーの小さい値を示している。
Also, the conditions given to determine the shape are the gap length g
is 32U, and the tip diameter Df is 1401n1B and C in example A.
So 110? , the shape factor k is -0.11 for A and C, B
Then, -0.05, and the angle θf connecting the logarithmic surface b and the pole piece tip plane a is 4 for A, 1 for B, and 1 for C.
is assumed to be 2, and x10-6 is omitted for each coefficient. From the table above, the quadratic coefficient on the central plane is negative for A and B, and positive for C, but both are 10
It shows a small value on the order of -6.

しかしながら、2次の係数の大きさはポールピース面に
近づくにつれてAの場合符号はそのままで、値が減少し
ている。これに対し、Bでは符号を反転レ正の大きな値
になつており、Cの場合は最初から正の値で、その値を
増加している。そこで、ある空間の広がりの中で全体と
して高い均一度を得ようとした場合、中心面上で負の値
を持ち、ポールピース面に近づくにつれ減少するような
Aの場合が6Cのようにポールピースに近づくにつれて
増加する場合よりも有利であることが分る。又、Bの場
合は、途中で符号を反転しており、全体として2次の係
数が小さくなつているので、磁石単独で即ち電流シムを
用いないで使用する場合には、最高の均一度を与えてい
ると言える。
However, the magnitude of the second-order coefficient decreases as it approaches the pole piece surface, while the sign remains the same in the case of A. On the other hand, in case of B, the sign is inverted and becomes a large value, and in case of C, it is a positive value from the beginning and the value is increased. Therefore, when trying to obtain a high degree of uniformity as a whole within a certain expanse of space, if A has a negative value on the center plane and decreases as it approaches the pole piece surface, then the pole piece like 6C It turns out that this is more advantageous than increasing as you get closer to the piece. In the case of B, the sign is reversed in the middle, and the quadratic coefficient is small as a whole, so when using the magnet alone, that is, without using a current shim, the highest uniformity can be achieved. I can say that I am giving.

この条件は、従来から電流シムを用いる場合においても
推奨されて来たものとも一致すると考えて良い。ところ
が、このBの場合、2次の係数は、中心(Z=0)とZ
=10?とで13×10−6CIL−2も変化しており
、これは、(X2+Y2)Z2によつて表現されるよう
な4次の磁場不均一を強く含んでいることを意味してい
る。
It can be considered that this condition coincides with what has been conventionally recommended even when using current shims. However, in the case of B, the quadratic coefficient is located between the center (Z=0) and Z
=10? 13×10 −6 CIL−2 also changes, which means that the fourth-order magnetic field inhomogeneity expressed by (X2+Y2)Z2 is strongly included.

AとCの場合、この値は小さい。又、4次の係数((X
2+Y2)2の係数)についてみれば、Bでは−0.8
から−7.9×10−6と大きな変化を示しており、C
の場合も小さくない。
For A and C, this value is small. Also, the fourth-order coefficient ((X
2+Y2)2 coefficient) is -0.8 for B.
It shows a large change from -7.9×10-6, and C
The case is also not small.

これに対し、Aでは4次の係数自体が小さい上に、zが
Oを10nまで変えた時の係数の変化も非常に小さい。
前述した電流シムを用いた磁場分布補正を前提とした磁
石装置の場合、磁場分布はできるだけ低次項のみによつ
て表現されることが望ましく、高次項を強く含むほど補
正が困難となる。しかも、同じ4次項であつても、単な
るX4,y4といつた形で表現される項はそれを補正す
るシムが既に存在するが、上述した(X2+Y2)Z2
という項を補正するシムはこれまで作られていないので
全く補正できない。従つて、電流シムによる補正を前提
とした磁石で望ましい特性は、2次及び4次の係数自体
が小さいのにこしたことはないが、係数自体は多少大き
くても、Zによるその係数の変化が小さいこと、即ちZ
依存性が小さいことの方が極めて重要である。
On the other hand, in A, not only the fourth-order coefficient itself is small, but also the change in the coefficient when z is changed from O to 10n is also very small.
In the case of a magnet device that is based on magnetic field distribution correction using the aforementioned current shim, it is desirable that the magnetic field distribution be expressed only by low-order terms as much as possible, and the more high-order terms are included, the more difficult the correction becomes. Moreover, even if it is the same fourth-order term, there is already a shim that corrects the term expressed as simple X4, y4, but the above-mentioned (X2+Y2)Z2
Since no shim has ever been created to correct this term, it cannot be corrected at all. Therefore, the desirable characteristics of a magnet that is premised on correction by current shims are that the quadratic and quartic coefficients themselves are small, but even if the coefficients themselves are somewhat large, the change in the coefficient due to Z is small, that is, Z
It is extremely important that dependence is small.

この見方からすれば、Z=0とZ=10nとで2次及び
4次の係数が著しく変化するBのポールピースは、電流
シムによる補正を前提とした磁石では望ましくなく、変
化の極めて小さいAのポールピースが望ましいと言うこ
とができる。本発明者は、次に、どのような条件でポー
ルピースを作れば常にAの場合のような好ましい磁場分
布が得られるかについて検討を進めた。表は、θfを1
か一定、Df=1101一定としてkを−0.33,−
0.05,−0.11の3種に変えた場合の、2次及び
4次の係数の変化を示したものである。
From this point of view, the pole piece B whose quadratic and quartic coefficients change significantly between Z=0 and Z=10n is not desirable in a magnet that assumes correction by current shims, and the pole piece A whose changes are extremely small. It can be said that a pole piece of is desirable. The inventors next investigated under what conditions the pole piece should be made to always obtain a preferable magnetic field distribution as in case A. The table shows θf as 1
is constant, Df = 1101 constant, k is -0.33, -
It shows the changes in the second-order and fourth-order coefficients when the coefficients are changed to three types: 0.05 and -0.11.

磁場強度B。は2.0Tであり、各係数はXlO−6が
省略されている。上記表において、Z=0における2次
の係数をみると、k=0.03の場合のみ正で、k=一
0.05及び−0.11では負である。
Magnetic field strength B. is 2.0T, and XlO-6 is omitted from each coefficient. In the table above, looking at the quadratic coefficient at Z=0, it is positive only when k=0.03, and negative when k=-0.05 and -0.11.

θf= 2゜の場合、k=−0.11でも2次の係数は
正になつている(表I)ことをも併せ考えると、少なく
ともθfが2゜より小さい場合には、Z=0での2次の
係数はkにあまり依存せず、+3から−3×10Hdの
範囲の値をとると思われる。これらの場合、ポールピー
スに近づいた所では、2次の係数は正の方向に向かうが
、先に示した望ましい傾向を示すものは見られない。即
ち、ポールピースの飽和以前の磁場(例えばFeCOポ
ールピースを使用した場合2.2キロガウス以下)では
、磁場分布はkにあまり依存せず、kの選択によつて適
切な磁場分布を見出すことは出来ない。表は、kを−0
.11−定とし、切り込み角θfを1゜〜4゜の間で変
えた場合の2次及び4次の係数とそのZ依存性を示して
いる。
Considering also that when θf = 2°, the quadratic coefficient is positive even at k = -0.11 (Table I), at least when θf is smaller than 2°, Z = 0. It seems that the second-order coefficient does not depend much on k and takes a value in the range of +3 to -3×10 Hd. In these cases, the quadratic coefficient goes in a positive direction near the pole piece, but nothing showing the desirable tendency shown above is observed. That is, in the magnetic field before the saturation of the pole piece (for example, 2.2 kilogauss or less when using a FeCO pole piece), the magnetic field distribution does not depend much on k, and it is difficult to find an appropriate magnetic field distribution by selecting k. Can not. The table shows k as -0
.. 11 and shows the second-order and fourth-order coefficients and their Z dependence when the cutting angle θf is changed between 1° and 4°.

磁場強度BOは2.0Tであり、各係数はXIOIが省
略されている。この表から明らかに、θfが3゜より大
きい場合には、Z = 5n,10nにおける2次及び
4次の係数の変化は先に述べた望ましい形をなしている
The magnetic field strength BO is 2.0T, and XIOI is omitted from each coefficient. It is clear from this table that when θf is greater than 3°, the changes in the second-order and fourth-order coefficients at Z = 5n and 10n take the desired form described above.

又、.θfが3゜又は4゜の場合には、z=oにおける
2次の係数は、強い歪がポールピース内に残留している
ような特殊な条件を除いては、常に負の値を示し、極め
て安定であつた。
or,. When θf is 3° or 4°, the second-order coefficient at z=o always shows a negative value, except under special conditions where strong strain remains in the pole piece. It was extremely stable.

以上の点からポールピース先端部における切り込み角θ
fを大きくとることによつて、2次及び4次の係数の値
並びに夫々の係数のZ依存性を小さくできることが分る
From the above points, the cutting angle θ at the tip of the pole piece
It can be seen that by increasing f, the values of the second-order and fourth-order coefficients and the Z dependence of each coefficient can be reduced.

本発明者は更に実験考察を重ねたところ、θfの下限に
ついては、2゜前後では係数が正であり好ましくないが
、2.5゜前後になると大体負の値となり、十分使用で
きることが分つた。
The inventor conducted further experimental studies, and found that the lower limit of θf is positive at around 2°, which is undesirable, but around 2.5°, it becomes a negative value and can be used satisfactorily. .

θfの上限については、比較的磁場強度B。The upper limit of θf is relatively magnetic field strength B.

が小さい時は4゜を越えても各係数が比較的小さい領域
も存在するが、BOが大きい場合(例えば2.35T程
度)には、2次及び4次の係数共相当大きくなり、実用
的でないと同時に角度が大きくなりすぎ、最早、曲面ポ
ールピースの域を越えるという理由から4゜付近が妥当
である。尚、θfの角度のとり方は2通りあり、その1
つは、第2図aに示す如く、ポールピース5又は5’の
先端平面aと成す角度が所定のθfになつた所で曲面部
bを打ち切つて、ここから平面aと、してしまう方法で
ある。
When BO is small, there is a region where each coefficient is relatively small even if it exceeds 4°, but when BO is large (for example, about 2.35T), both the second and fourth order coefficients become considerably large, making it impractical. At the same time, the angle becomes too large and exceeds the level of a curved pole piece, so it is appropriate to set it around 4 degrees. There are two ways to take the angle of θf, one of which is
The first method is to cut off the curved surface part b at the point where the angle formed with the tip plane a of the pole piece 5 or 5' reaches a predetermined value θf, as shown in FIG. 2a, and form the plane a from there. It is.

もう1つは、第2図bに示す如く、先端平面aと成す角
度が所定の角度θfに達した所で曲面部bを打ち切り、
ここから平面aとθfの角度を成す直線(実際には円錐
面)cで平面aにつなぐ方法である。以上詳述した如く
、外周面を対数曲面(類似する曲面でも可)としたポー
ルピースにおいて、対数曲面の終端と先端平面との成す
角度θfを略2.5度〜4度の範囲に設定することによ
り、磁場分布の2次及び4次の係数を小さくできると共
IC.各係数のZ依存性を極めて小さくできるので、電
流シム等の磁場分布補正装置により極めて補正のし易い
磁場が得られ、結果として磁場均一度の著しく高い核磁
気共鳴装置用磁石装置を得ることができる。
The other method is to cut off the curved surface part b at the point where the angle formed with the tip plane a reaches a predetermined angle θf, as shown in FIG. 2b,
This is a method of connecting this to plane a with a straight line (actually a conical surface) c that forms an angle of θf with plane a. As detailed above, in a pole piece whose outer peripheral surface is a logarithmically curved surface (a similar curved surface is also acceptable), the angle θf formed by the end of the logarithmically curved surface and the tip plane is set in the range of approximately 2.5 degrees to 4 degrees. By this, the second-order and fourth-order coefficients of the magnetic field distribution can be reduced, and IC. Since the Z dependence of each coefficient can be made extremely small, it is possible to obtain a magnetic field that is extremely easy to correct using a magnetic field distribution correction device such as a current shim, and as a result, it is possible to obtain a magnet device for a nuclear magnetic resonance apparatus with extremely high magnetic field uniformity. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核磁気共鳴装置用電磁石の概要を示す図、第2
図はθfのとり方を説明するための図である。 1・・・・・・ヨ一久 2,2′・・・・・・励磁コイ
ル、3,3′・・・・・・コア− 4,4′・・・・・
・純鉄製スペーサ、5,・・・・・・ポールピース、6
,6′・・・・・・電流シム。
Figure 1 is a diagram showing the outline of an electromagnet for nuclear magnetic resonance equipment, Figure 2
The figure is a diagram for explaining how to take θf. 1...Yo Kazuhisa 2, 2'...Excitation coil, 3,3'...Core 4,4'...
・Pure iron spacer, 5,...Pole piece, 6
, 6'... Current shim.

Claims (1)

【特許請求の範囲】[Claims] 1 対向配置される磁極と、該磁極に取付けられるポー
ルピースと、該ポールピース間に配置される磁場分布補
正装置とを備えた核磁気共鳴装置用磁石装置において、
前記ポールピースの先端部平面に近接する外周面を対数
曲面又はそれに類する形状に加工し、該対数曲面の終端
と前記平面との成す角度θ_fを略2.5度〜4度の範
囲に設定することを特徴とする核磁気共鳴装置用磁石装
置。
1. A magnet device for a nuclear magnetic resonance apparatus comprising magnetic poles arranged to face each other, a pole piece attached to the magnetic poles, and a magnetic field distribution correction device arranged between the pole pieces,
The outer circumferential surface of the pole piece near the plane of the tip is processed into a logarithmically curved surface or a similar shape, and the angle θ_f formed by the end of the logarithmically curved surface and the plane is set in the range of approximately 2.5 degrees to 4 degrees. A magnet device for a nuclear magnetic resonance apparatus characterized by:
JP53158859A 1978-12-19 1978-12-19 Pole piece for magnet device Expired JPS5949681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53158859A JPS5949681B2 (en) 1978-12-19 1978-12-19 Pole piece for magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53158859A JPS5949681B2 (en) 1978-12-19 1978-12-19 Pole piece for magnet device

Publications (2)

Publication Number Publication Date
JPS5583210A JPS5583210A (en) 1980-06-23
JPS5949681B2 true JPS5949681B2 (en) 1984-12-04

Family

ID=15680953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53158859A Expired JPS5949681B2 (en) 1978-12-19 1978-12-19 Pole piece for magnet device

Country Status (1)

Country Link
JP (1) JPS5949681B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444521B1 (en) * 1990-02-27 1996-07-24 TDK Corporation Coil device
US6211765B1 (en) 1990-02-27 2001-04-03 Tdk Corporation Coil device
KR100423775B1 (en) * 2002-02-27 2004-03-30 (주)에스시엠아이 Magnetic pole of electro magnet for forming equalized magnetic field

Also Published As

Publication number Publication date
JPS5583210A (en) 1980-06-23

Similar Documents

Publication Publication Date Title
US2102409A (en) Electrical-measuring instrument
US5055812A (en) Compensation for magnetic nonuniformities of permanent magnet structures
JP6484199B2 (en) Dipole ring magnetic field generator
US10867733B2 (en) Lightweight asymmetric magnet arrays with mixed-phase magnet rings
JPH02502967A (en) magnetic field generator
US1985082A (en) Electrical measuring instrument
JPS6123502B2 (en)
CN110857970B (en) Magnet assembly and method for manufacturing a magnet assembly
US11875937B2 (en) Lightweight asymmetric array of magnet elements
US5168231A (en) Nmr imaging device, method for correcting inhomogeneity and method for making magnets used in this device
JPH0418854B2 (en)
JPH05211104A (en) Static magnetic field generating equipment for magnetic resonance imaging equipment
JPS5949681B2 (en) Pole piece for magnet device
GB1110172A (en) Improvements in or relating to magnet structures
JPH02246102A (en) Magnetic circuit
Mironov et al. Nonorthogonally magnetised permanent-magnet Faraday isolators
JPH0387365A (en) Sputtering device equipped with electromagnet for impressing parallel magnetic field
Case et al. Calibration of vibrating-sample magnetometers
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
JPH02277203A (en) Choke coil for common mode use
US20240096304A1 (en) Magnetic pickup systems for stringed instruments
US3134933A (en) Adjustable gap magnet
JPH10239177A (en) Element for detecting dynamic amount and its manufacture, and torque sensor
US2953727A (en) Generating of homogeneous static magnetic fields
JPH0140170Y2 (en)