JPS5949507B2 - solar heat absorption method - Google Patents

solar heat absorption method

Info

Publication number
JPS5949507B2
JPS5949507B2 JP52083548A JP8354877A JPS5949507B2 JP S5949507 B2 JPS5949507 B2 JP S5949507B2 JP 52083548 A JP52083548 A JP 52083548A JP 8354877 A JP8354877 A JP 8354877A JP S5949507 B2 JPS5949507 B2 JP S5949507B2
Authority
JP
Japan
Prior art keywords
hollow fiber
solar heat
hollow
absorption method
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52083548A
Other languages
Japanese (ja)
Other versions
JPS5419230A (en
Inventor
忍平 久野
清昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP52083548A priority Critical patent/JPS5949507B2/en
Publication of JPS5419230A publication Critical patent/JPS5419230A/en
Publication of JPS5949507B2 publication Critical patent/JPS5949507B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】 この発明は、太陽光を効率よ(熱にかえる太陽熱吸収方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar heat absorption method that efficiently converts sunlight into heat.

最近、エネルギー不足の状況から、太陽エネルギーの有
効利用が、各所で研究され、太陽光集光システム、効率
のよい集熱装置の開発、蓄熱槽の開発等が進められてい
る。
Recently, due to the energy shortage situation, research into the effective use of solar energy has been carried out in various places, and development of solar light concentrating systems, efficient heat collecting devices, heat storage tanks, etc. is progressing.

従来の集熱装置は、黒系統の色調を有する平板又は、円
筒状の形態を有し、その光熱転換効率は約50%程度で
あった。
Conventional heat collecting devices have a flat plate or cylindrical shape with a black color tone, and have a light heat conversion efficiency of about 50%.

本発明は、従来の効率を、飛躍的に向上させるものであ
る。
The present invention dramatically improves conventional efficiency.

すなわち、本発明は、集束し、端部なそろえた中空糸群
の一方の開口端部に太陽光を受光させ、該中空糸群の他
方の閉鎖端部に至る中空糸間の間隙及び又は、中空糸周
辺に介在させた熱媒体に太陽熱を吸収させることを特徴
とする太陽熱吸収方法である。
That is, the present invention allows sunlight to be received at one open end of a group of hollow fibers that are focused and whose ends are aligned, and the gaps between the hollow fibers and/or the hollow fibers that reach the other closed end of the group of hollow fibers are focused. This solar heat absorption method is characterized in that solar heat is absorbed by a heat medium placed in the surrounding area.

中空糸群の実質上、平面にそろえた開口端部より受光さ
れた光は、中空糸の中空部に、導入され、つづいて中空
糸壁に当る。
Light received from the substantially planar open end of the hollow fiber group is introduced into the hollow portion of the hollow fiber and subsequently impinges on the hollow fiber wall.

そこで一部は壁に熱として吸収され、一部は反射される
Some of it is absorbed by the walls as heat, and some of it is reflected.

反射された光は、中空糸が、極端に細長いがゆえに、中
空糸外部に、とび出すことなく、再び、中空糸壁に当り
、一部は吸収され、一部は反射される。
Because the hollow fiber is extremely long and thin, the reflected light does not project outside the hollow fiber, but hits the hollow fiber wall again, where part of it is absorbed and part of it is reflected.

反射された) 光は、さらに、壁に当り、中空糸外部に
とび出すことなく、同様の現象をくり返し、ついには、
受光された元は、完全に、熱に変換されてしまうことに
なる。
The reflected light then hits the wall and repeats the same phenomenon without jumping out of the hollow fiber, and finally,
The source of the received light is completely converted into heat.

中空糸間の間隙には、熱媒体を介在させてあり、・ 光
から転換された熱は、中空糸壁な通り、効率よ(、熱媒
体に伝達され、熱として蓄えられる。
A heating medium is interposed in the gap between the hollow fibers, and heat converted from light is efficiently transferred to the heating medium through the hollow fiber walls and stored as heat.

この効率のよさは、本発明の中空糸群が熱交換器の機構
と、類似であることから、予想されるが、事実、受光面
が、従来の平面状又は円筒状の集熱装置にくらべ、転換
された熱が、伝導、対流、放射によって、外部へにげ出
す割合が、非常に少ない。
This high efficiency is expected because the hollow fiber group of the present invention has a similar mechanism to a heat exchanger. The rate at which the converted heat escapes to the outside through conduction, convection, and radiation is extremely small.

さらに平板であっても、その表面に、針状又は繊維状の
突起物が、無数に突出している構造の吸収面にくらべて
も、同様に、熱の外部への発散は非常に少ない。
Furthermore, even if it is a flat plate, heat is similarly dissipated to the outside much less than an absorbing surface having a structure in which countless acicular or fibrous protrusions protrude from its surface.

本発明に於て、太陽光線を受光させる中空糸には、可紡
性の有機高分子材料又は、ガラス、金属等の無機材料か
らなるものが適用される。
In the present invention, the hollow fiber that receives sunlight is made of a spinnable organic polymer material or an inorganic material such as glass or metal.

本発明の方法を実施するに用いるその装置として代表的
なものを、図面によって説明する。
A typical apparatus used to carry out the method of the present invention will be explained with reference to the drawings.

第1図の本発明の装置の側断面図、第2図の平面図にお
いて、 中空糸1は束ねて一方の開口端部なそろえ、中空糸同志
はホルダー5を介してシールされ、他端は閉鎖して枠4
の底部に詰められである。
In the side sectional view of the device of the present invention shown in FIG. 1 and the plan view shown in FIG. Close frame 4
It is stuffed at the bottom.

3は中空糸と中空糸の間に形成させた間隙で、この間隙
及びその周辺に蓄熱媒体が充填してあって、蓄熱媒体は
枠4の一方(矢印の方向)から枠内に導かれ、中空糸束
の隙間を通り枠外に送り出される。
3 is a gap formed between the hollow fibers, this gap and its surroundings are filled with a heat storage medium, and the heat storage medium is guided into the frame from one side of the frame 4 (in the direction of the arrow); It passes through the gap between the hollow fiber bundles and is sent out of the frame.

中空糸1の周囲に導かれる蓄熱媒体は水であり、不揮発
性の有機流動体又は、気体も使用される。
The heat storage medium guided around the hollow fibers 1 is water, non-volatile organic fluids or gases may also be used.

中空糸束の開口端部に太陽光線を照射すると、元は中空
部分2を通って中空糸壁1で吸収され、蓄熱媒体3に伝
達される。
When sunlight is irradiated onto the open end of the hollow fiber bundle, it is originally absorbed by the hollow fiber wall 1 through the hollow portion 2 and transmitted to the heat storage medium 3.

中空糸束の開口端を接着固定したホルダー5は中空糸束
な枠内に保持し、且つ蓄熱媒体の漏洩を防止する。
A holder 5 in which the open end of the hollow fiber bundle is fixed with adhesive holds the hollow fiber bundle within the frame and prevents leakage of the heat storage medium.

ホルダー5は板状体に中空糸を嵌め込む穴を穿設したも
のであってもよ(、中空糸の端部を樹脂で集束接着固定
してホルダーとしたものでもよい。
The holder 5 may be a plate-like body with a hole in which the hollow fiber is inserted (or the holder may be formed by fixing the ends of the hollow fibers with resin in a condensed adhesive manner).

次に、本発明の実施に用いる装置の他の応用例について
説明する。
Next, other application examples of the apparatus used to implement the present invention will be described.

第3図において、中空糸1は第5図に示すような断面円
形の筒状体であって、(但し、必ずしも円形に限定され
ない)一端の開口端なそろえて束ね、中空糸同志端部6
は展開して互いに隙間なく密に接着されて枠4の周側に
接着剤等により固定されである、他端は閉鎖して枠4の
底部にくるように詰められである。
In FIG. 3, the hollow fibers 1 are cylindrical bodies with a circular cross section as shown in FIG.
are unfolded and tightly adhered to each other without any gaps and fixed to the circumferential side of the frame 4 with an adhesive or the like.The other end is closed and packed so as to be at the bottom of the frame 4.

第3図の上部の中空糸開口端面が太陽光線を受ける対光
面で下部の閉鎖端が背光面である。
The open end surface of the hollow fiber in the upper part of FIG. 3 is the light-facing surface that receives sunlight, and the lower closed end is the back-light surface.

第4図は中空糸の開口端を展開して互いに密に接着し蜂
の巣状を呈した対光面を示すものである。
FIG. 4 shows a light-facing surface in which the open ends of the hollow fibers are unfolded and closely adhered to each other to form a honeycomb shape.

蓄熱媒体3は枠4の一方から導かれ、中空糸束の隙間を
通り枠外に送り出される。
The heat storage medium 3 is guided from one side of the frame 4, passes through the gap between the hollow fiber bundles, and is sent out of the frame.

前記装置と同様に対光面に太陽光線を照射すると光は中
空部分2を通って中空糸壁1で吸収され、蓄熱媒体3に
伝達される。
Similar to the above device, when the light facing surface is irradiated with sunlight, the light passes through the hollow portion 2, is absorbed by the hollow fiber wall 1, and is transmitted to the heat storage medium 3.

対光面から入射し中空部分2に浸入した光はたとえ中空
糸壁1で反射又は散乱しても、他の中空糸壁で吸収され
るので中空糸中空部分から外に飛び出すことがほとんど
なく、すべて中空糸壁に吸収され、熱に転換されること
になる。
Even if the light that enters from the light facing surface and enters the hollow portion 2 is reflected or scattered by the hollow fiber wall 1, it is absorbed by the other hollow fiber walls, so it almost never escapes from the hollow fiber hollow portion. All will be absorbed by the hollow fiber walls and converted into heat.

従来の平板型や円筒型の場合は、吸収体表面で一度、反
射又は散乱した光は吸収されることなく、再び、大気空
間へ放出され熱に転換しない。
In the case of a conventional flat plate type or cylindrical type, the light that is once reflected or scattered on the absorber surface is not absorbed, but is emitted to the atmosphere again and is not converted into heat.

本発明の代表例において中空糸開口端面に穴をあげた板
状体をホルダーとし対光面に用いた場合、ホルダ一部分
からの反射を考えると中空糸同志端部6を展開して互い
に接着させて構成した開口端の方が吸収効率がさらによ
い。
In a representative example of the present invention, when a plate-shaped body with a hole in the open end surface of the hollow fiber is used as a holder for the light facing surface, considering the reflection from a part of the holder, the ends 6 of the hollow fibers are expanded and bonded to each other. The absorption efficiency is even better with the open end configured as follows.

本発明に適用する中空糸は第5図に示すような断面形状
を有し、外径は5u以下が好適である。
The hollow fiber applied to the present invention has a cross-sectional shape as shown in FIG. 5, and preferably has an outer diameter of 5u or less.

5u以上の場合は中空部分の空気の対流が起こり、転換
された熱が大気中に放散される。
When the temperature is 5u or more, air convection occurs in the hollow portion, and the converted heat is dissipated into the atmosphere.

又、中空糸の長さは中空糸内径の少なくともNo倍であ
ることが好ましく、10倍以下であると中空糸内部に浸
入した光が反射によって系外へ飛び出し吸収効率が低下
する。
Further, it is preferable that the length of the hollow fiber is at least No times the inner diameter of the hollow fiber, and if it is less than 10 times, the light that has entered the inside of the hollow fiber will be reflected and go out of the system, reducing the absorption efficiency.

中空糸1の開口端を中空糸同志端縁部、すなわち対光面
で密に接合されるには、中空糸が融点を有する材料から
なる場合、中空糸を束ね、一方の端を接着剤で封鎖し、
中空糸の長さ方向のあるゾーンのみ融点以上の温度に昇
温し、他方の開、目端から空気又はその他の気体で圧を
かげると中空糸部分のみふくらみ隣接する中空糸の壁が
互いに密に融着する。
If the hollow fibers are made of a material with a melting point, in order to tightly bond the open ends of the hollow fibers 1 at the edges of the hollow fibers, that is, at the light-facing surfaces, the hollow fibers are bundled and one end is bonded with adhesive. blockade,
If only one zone in the longitudinal direction of the hollow fiber is heated to a temperature above the melting point, and the pressure is increased with air or other gas from the other end, only the hollow fiber portion will swell and the walls of adjacent hollow fibers will become tightly packed together. be fused to.

次いで融着部分を糸軸と直角方向に切断すれば、第4図
の対光面を示す開口端の中空糸束な得ることができる。
Then, by cutting the fused portion in a direction perpendicular to the fiber axis, a hollow fiber bundle with an open end showing the light-facing surface as shown in FIG. 4 can be obtained.

また、中空糸が融点を有しない物質からできている場合
は、昇温ゾーンのかわりに中空糸を膨潤させることので
きる溶媒に中空糸束の閉鎖した末端を浸し、ついで圧を
かげるなど前記同様の方法によって開口端とした中空糸
束な得ることができる。
In addition, if the hollow fibers are made of a substance that does not have a melting point, the closed end of the hollow fiber bundle is immersed in a solvent that can swell the hollow fibers instead of the heating zone, and then the pressure is reduced, etc. A hollow fiber bundle with open ends can be obtained by this method.

本発明を使用すれば、非常に高い効率で太陽光を熱に転
換することができ、その応用例としては次のようなもの
であるが本発明はこれに限定されるものではない。
Using the present invention, sunlight can be converted into heat with very high efficiency, and examples of its application include the following, but the present invention is not limited thereto.

一般家庭用には、湯沸し器、風呂沸し器に使用すれば、
冬期でも高温の水が、太陽熱より得られ、非常に安価で
、将来の普及が予想される。
For general household use, if used for water heaters and bath heaters,
Even in the winter, high-temperature water can be obtained from solar heat, and it is very inexpensive, so it is expected to become popular in the future.

また、本発明はビルの空調すなわち、暖房や冷房、温度
調整にも利用される。
The present invention can also be used for air conditioning in buildings, that is, for heating, cooling, and temperature control.

太陽熱集熱装置の開発は、現在、温水を冷水にかえる冷
凍装置の開発を共に、空調への太陽熱利用として、クロ
ーズアップされてきつつある。
The development of solar heat collectors is currently gaining attention, as is the development of refrigeration equipment that converts hot water into cold water, as well as the use of solar heat for air conditioning.

本発明は、集熱装置分野を画期的に変えうるものである
The present invention can dramatically change the field of heat collecting devices.

次に、農業分野で動物植物特に、夏期又は熱帯に生息す
る動物植物を、冬期に、生長させる場合、温水が、必要
になるが、この温水の供給に、本発明の方法が、非常に
、有効に利用される。
Next, when growing animals and plants in the agricultural field, especially animals and plants living in the summer or the tropics, in the winter, warm water is required. be used effectively.

たとえば、ウナギ、スツポンの養殖である。For example, eel and stinging turtle farming.

次に、太陽熱発電には、高次のエネルギーが、必要であ
るが、太陽光を集光器にて、1箇所にあつめ、そのエネ
ルギーを、熱交換し、この熱を利用し高圧の発電をする
方法に於いて、本発明の方法は高密度の光を有効に熱に
変換し、太陽熱発電を効率よ〈実施するのに、大きな役
目を果たす。
Next, solar thermal power generation requires high-order energy, but sunlight is collected in one place using a concentrator, the energy is exchanged, and this heat is used to generate high-pressure power. In this method, the method of the present invention effectively converts high-density light into heat, and plays a major role in efficiently implementing solar thermal power generation.

本発明の中空糸の材質としては可紡性有機高分子材料、
無機材料、金属等が挙げられる。
Materials for the hollow fibers of the present invention include spinnable organic polymer materials;
Examples include inorganic materials and metals.

高分子材料としては、ポリエステル、ポリアミド、再生
セルロースが、代表例である。
Typical examples of polymeric materials include polyester, polyamide, and regenerated cellulose.

無機物質としては、各種ガラスが代表例である。Typical examples of inorganic substances include various glasses.

金属としては、鉄、銅、アルミ等が代表例である。Typical examples of metals include iron, copper, and aluminum.

中空糸は、好ましくは黒色系統がよいが、黒色化の方法
としては、有機高分子材料の中空糸の場合は、黒色染料
で染色するか、もしくは、黒色顔料を、ポリマー製造工
程から中空糸製造工程までの間で添加し、その後に中空
状に成型することによって黒系統の中空糸を得ることが
できる。
The hollow fibers are preferably black in color; however, in the case of hollow fibers made of organic polymer materials, the hollow fibers are preferably dyed with a black dye, or a black pigment is added to the hollow fibers during the polymer manufacturing process. A black-colored hollow fiber can be obtained by adding it up to the process and then molding it into a hollow shape.

また、金属又は無機物の中空糸の場合は、中空糸もしく
は、その束の一端より黒色系統の塗料を流し込み、他端
より塗料なぬき出し、中空糸壁に、黒色塗料を塗布させ
る方法が、その一例である。
In addition, in the case of hollow fibers made of metal or inorganic materials, the method is to pour black paint from one end of the hollow fiber or a bundle of hollow fibers, pull out the paint from the other end, and apply black paint to the hollow fiber wall. This is an example.

本発明を利用すれば、太陽エネルギーを無駄なく、熱エ
ネルギーに変換でき、その意義は、太きい。
By using the present invention, solar energy can be converted into thermal energy without waste, and its significance is significant.

以下:実施例をあげて、説明する。Below: Examples will be given and explained.

実施例 1 溶融紡糸した外径300ミクロン、内径250ミクロン
の黒色顔料(カーボンブラック)含有のホ+)エステル
中空糸と、長さ50crILに切断し、一辺1mの正方
形状に束ねた。
Example 1 Melt-spun ho+)ester hollow fibers containing a black pigment (carbon black) having an outer diameter of 300 microns and an inner diameter of 250 microns were cut into a length of 50 crIL and bundled into a square shape with a side of 1 m.

一端を、シリコン系接着剤中に浸し封鎖した。One end was immersed in silicone adhesive and sealed.

また他端を同様の接着剤中に浸し、乾燥封鎖した後、封
鎖部のみ糸軸と直角方向に切断し、中空糸端部同志が、
開口したまま、接着剤でホールドされた構造とした。
After soaking the other end in the same adhesive and drying and sealing, cut only the sealed part in a direction perpendicular to the fiber axis, so that the ends of the hollow fiber are
The structure is held open with adhesive.

封鎖末端から約10CIrLを、90℃のベンジルアル
コールバス中に浸し、開口端より1Kti/crAの窒
素圧をかけ、封鎖末端から約10crrLを、中空糸同
志互に密着させた。
Approximately 10 CIrL from the blocked end was immersed in a benzyl alcohol bath at 90°C, and a nitrogen pressure of 1 Kti/crA was applied from the open end to bring about 10 crrL from the blocked end into close contact with the hollow fibers.

その後、接着部分を糸軸と直角方向に切断し、第4図の
如き、中空糸同志が密着した構造にした。
Thereafter, the bonded portion was cut in a direction perpendicular to the fiber axis, resulting in a structure in which the hollow fibers were in close contact with each other, as shown in FIG.

つづいて、開口端と接着剤で、再び、封鎖した。Next, the open end was sealed again with adhesive.

この段階での形状は、束断面績lmX1m、、高さ’I
QcIfLで、一端が第4図の如き蜂の巣状、他端が封
鎖された構造物であった。
The shape at this stage is bundle cross section lm x 1m, height 'I
QcIfL had a structure with one end shaped like a honeycomb and the other end sealed off, as shown in Figure 4.

この構造物を、断熱材でまわりをかこまれ、上面が、オ
ープンであり、内容積、1 mX 177LX10(l
177Lの容器の中に充填し、上面に、ガラスをかぶせ
た。
This structure is surrounded by heat insulating material, has an open top surface, and has an internal volume of 1 m x 177 L x 10 (l
It was filled into a 177L container, and the top was covered with glass.

この容器には、入口と出口がもうけられており、いずれ
も、外径2cIILの円筒状をしている。
This container has an inlet and an outlet, both of which have a cylindrical shape with an outer diameter of 2 cIIL.

入口より水を入れ、中空糸間の間隙に、水を満たした後
、入口と出口をとじた。
Water was introduced from the inlet to fill the gaps between the hollow fibers, and then the inlet and outlet were closed.

また、この容器には、lcdの圧抜穴が上部にもうけら
れている。
This container also has a pressure relief hole for the LCD at the top.

□ 封入された水は容積50Ai’であった。□ The enclosed water had a volume of 50 Ai'.

この水が封入された装置を、3月、晴れた日に、屋上で
、朝から夕方まで約8時間、太陽光と受光させたところ
、95°Cの熱水が得られた。
When this water-filled device was exposed to sunlight for about 8 hours from morning to evening on a sunny day in March on a rooftop, hot water of 95°C was obtained.

効率を計算したところ、5800 Kcall/crA
の太陽熱照射量として、85%であった。
When the efficiency was calculated, it was 5800 Kcall/crA
The amount of solar heat irradiation was 85%.

実施例 2 実施例1の水を封入する前の装置に、50〜/Hrの流
量で、エアーを入口より入れ、出口より出した。
Example 2 Air was introduced from the inlet into the apparatus of Example 1 before water was sealed at a flow rate of 50~/Hr, and was taken out from the outlet.

□ 装置は、3月、昼、晴の日、屋上におかれ入口の
エアーの温度は、20℃、出口のエアーの温度は、40
℃に昇温されていた。
□ The device was placed on the roof during the day in March, on a sunny day, and the temperature of the inlet air was 20℃, and the temperature of the outlet air was 40℃.
The temperature was raised to ℃.

太陽の照射熱を620 Kcal/ Hrとして、効率
約80%であった。
The efficiency was approximately 80% when the solar irradiation heat was 620 Kcal/Hr.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる装置の側断面図、第
2図は第1図の装置の部分切截平面図、第3図は装置の
応用例を示す側断面図、第4図は第3図の装置の部分切
截平面図、第5図は中空糸の断面図である。 1・・・・・・中空糸、2・・・・・・中空糸の中空部
分、3・・・・・・隣接中空糸の間隙に充填した蓄熱媒
体、4・・・・・・吸収装置の枠、5・・・・・・ホル
ダー、6・・・・・・中空糸同志開口端の接着部分。
Fig. 1 is a side sectional view of an apparatus used to carry out the method of the present invention, Fig. 2 is a partially cutaway plan view of the apparatus of Fig. 1, Fig. 3 is a side sectional view showing an example of application of the apparatus, and Fig. 4. 3 is a partially cutaway plan view of the device shown in FIG. 3, and FIG. 5 is a sectional view of the hollow fiber. 1...Hollow fiber, 2...Hollow portion of hollow fiber, 3...Heat storage medium filled in the gap between adjacent hollow fibers, 4...Absorption device frame, 5... holder, 6... adhesive part of the open ends of the hollow fibers.

Claims (1)

【特許請求の範囲】 1 集束し、中空糸群の一方の開口端部に太陽光を受光
させ、該中空糸群の他方の閉鎖端部に至る中空糸間の間
隙及び又は中空糸周辺に介在させた熱媒体に太陽熱を吸
収させることを特徴とする太陽熱吸収方法。 2 中空糸群が、その開口端部において、実質的に、端
部なそろえた平面で単糸同志互いに密着させたものであ
る特許請求の範囲第1項記載の太陽熱吸収方法。 3 中空糸群がその他方の閉鎖端部に於て、単糸毎に袋
状に閉鎖されたものである特許請求の範囲第1項記載の
太陽熱吸収方法。 4 中空糸群の一方の開口端部と他方の閉鎖端部との間
に、各中空糸壁な境界として集熱室と熱媒体室を設は太
陽熱を吸収させるものである特許請求の範囲第1項記載
の太陽熱吸収方法。 5 中空糸が、可紡性高分子材料、無機材料、又は、金
属材料からなるものである特許請求の範囲第1項記載の
太陽熱吸収方法。 6 中空糸の各単糸が、黒系統に着色されたものである
特許請求の範囲第1項記載の太陽熱吸収方法。 7 熱媒体が、水、有機溶媒、動植物性油、又は、気体
である特許請求の範囲第1項記載の太陽熱吸収方法。
[Scope of Claims] 1. The sunlight is focused and received at one open end of the hollow fiber group, and is interposed in the gap between the hollow fibers and/or around the hollow fibers leading to the other closed end of the hollow fiber group. A solar heat absorption method characterized by causing a heat medium to absorb solar heat. 2. The method for absorbing solar heat according to claim 1, wherein the hollow fibers are brought into close contact with each other at the open ends of the single fibers with substantially aligned planes. 3. The method for absorbing solar heat according to claim 1, wherein the hollow fiber group is closed in the form of a bag for each single fiber at the other closed end. 4. Claim 1: A heat collection chamber and a heat medium chamber are provided between one open end and the other closed end of the hollow fiber group as boundaries between each hollow fiber wall to absorb solar heat. Solar heat absorption method described in section. 5. The solar heat absorption method according to claim 1, wherein the hollow fiber is made of a spinnable polymer material, an inorganic material, or a metal material. 6. The solar heat absorption method according to claim 1, wherein each single fiber of the hollow fiber is colored blackish. 7. The solar heat absorption method according to claim 1, wherein the heat medium is water, an organic solvent, an animal or vegetable oil, or a gas.
JP52083548A 1977-07-14 1977-07-14 solar heat absorption method Expired JPS5949507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52083548A JPS5949507B2 (en) 1977-07-14 1977-07-14 solar heat absorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52083548A JPS5949507B2 (en) 1977-07-14 1977-07-14 solar heat absorption method

Publications (2)

Publication Number Publication Date
JPS5419230A JPS5419230A (en) 1979-02-13
JPS5949507B2 true JPS5949507B2 (en) 1984-12-03

Family

ID=13805554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52083548A Expired JPS5949507B2 (en) 1977-07-14 1977-07-14 solar heat absorption method

Country Status (1)

Country Link
JP (1) JPS5949507B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295905A (en) * 1988-09-30 1990-04-06 Sumitomo Rubber Ind Ltd Tyre chain
JPH0344004U (en) * 1989-09-07 1991-04-24
WO2015093416A1 (en) * 2013-12-20 2015-06-25 イビデン株式会社 Heat-collecting receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295905A (en) * 1988-09-30 1990-04-06 Sumitomo Rubber Ind Ltd Tyre chain
JPH0344004U (en) * 1989-09-07 1991-04-24
WO2015093416A1 (en) * 2013-12-20 2015-06-25 イビデン株式会社 Heat-collecting receiver

Also Published As

Publication number Publication date
JPS5419230A (en) 1979-02-13

Similar Documents

Publication Publication Date Title
US4026267A (en) Solar energy apparatus
US4030477A (en) Solar collector with conical elements
US4015582A (en) Solar heat collector
US4082082A (en) Solar energy collector
US4099514A (en) Method and apparatus for heating a fluid medium by means of solar energy
US4176655A (en) Solar energy collection system and apparatus for same utilizing latent energy storage fluid
PT71746B (en) ABSORBENT OF ELECTROMAGNETIC ENERGY
JPS5949507B2 (en) solar heat absorption method
CN201779886U (en) Solar heat-collecting unit structure
CN213687334U (en) Solar photo-thermal conversion device
CN1052937A (en) General focusing solar energy collecting and use device
JPS60501671A (en) solar air heating device
CN101963407A (en) Solar energy collection modular construction
JPH07253249A (en) Hybrid panel and apparatus for using solar energy
US4161170A (en) Solar energy collection system
Khargotra et al. Experimental study of eco-friendly insulating materials for solar thermal collectors: A sustainable built environment
CN206269395U (en) A kind of anti-heat supply heat collector of heat accumulation for tower type solar light thermo-power station
CN207333115U (en) Solar groove type heat collector and low temperature stirling generator group combined generating system
CN201589446U (en) Internal quartz solar energy light and heat converter
Tiwari et al. Effect of the baffle plate on transient performance of built-in-storage water heater
CN211716673U (en) Superconductive heat solar heat dissipation device
JPS583004Y2 (en) solar heat collector
CN201575612U (en) External quartz array solar energy photo-thermal converter
CN202281397U (en) Wind driven Fresnel solar energy focusing hot-air device
CN111981710B (en) Tower type solar heat absorber with heat storage capacity