JPS5949044B2 - High gradient magnetic separation device - Google Patents

High gradient magnetic separation device

Info

Publication number
JPS5949044B2
JPS5949044B2 JP3397777A JP3397777A JPS5949044B2 JP S5949044 B2 JPS5949044 B2 JP S5949044B2 JP 3397777 A JP3397777 A JP 3397777A JP 3397777 A JP3397777 A JP 3397777A JP S5949044 B2 JPS5949044 B2 JP S5949044B2
Authority
JP
Japan
Prior art keywords
magnetic
filter
separation device
fluid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3397777A
Other languages
Japanese (ja)
Other versions
JPS53119475A (en
Inventor
満 藤田
俊春 渡部
嘉郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3397777A priority Critical patent/JPS5949044B2/en
Publication of JPS53119475A publication Critical patent/JPS53119475A/en
Publication of JPS5949044B2 publication Critical patent/JPS5949044B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators

Description

【発明の詳細な説明】 この発明は、被処理流体中に含有する常磁性粒子を捕獲
・分離する高勾配磁気分離装置に関するもので゛ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high gradient magnetic separation device that captures and separates paramagnetic particles contained in a fluid to be treated.

均一な磁界中に曲率半径の小さい尖鋭な表面をもつ強磁
性物体を導入して、この近傍に高度な磁気勾配を起生じ
、強磁性粒子は勿論、それ以外の常磁性粒子をも吸着し
て被処理液体または被処理粒体からこれらを分離する高
勾配磁気分離装置が最近開発され、工場排水からの重金
属除去、上下水道からの浮遊固形物、バクテリアの除去
等の水処理のほか、非鉄金属資源の採取、回収など極め
て広範囲な分野に利用されつ・ある。
By introducing a ferromagnetic object with a sharp surface with a small radius of curvature into a uniform magnetic field, a high magnetic gradient is generated in the vicinity of the object, which attracts not only ferromagnetic particles but also other paramagnetic particles. High-gradient magnetic separation equipment has recently been developed that separates these from liquids or granules to be treated. It is being used in an extremely wide range of fields such as resource extraction and recovery.

従来における高勾配磁気分離装置の基本的な構成は、第
1図に示すように対向した継鉄Ia、Ib内にコイルC
により均一な磁界Hを起生しこの継鉄Ia、Ibの対向
する端面間の空間部に被処理流体が流過するフィルタ室
Rを形成する。
The basic configuration of a conventional high gradient magnetic separation device is as shown in FIG.
A uniform magnetic field H is generated, and a filter chamber R through which the fluid to be treated flows is formed in the space between the opposing end faces of the yokes Ia and Ib.

このフィルタ室R内に線径が数(μ)乃至数10(μ)
の磁性不銹鋼ウールを円めてウェブ状とした磁性フィル
タFを充填し、この磁気フィルタF内に高度な磁気勾配
を起生じてフィルタ室Rの上部に設けた流入口から流入
する被処理流体中に含有する常磁性粒子を磁気フィルタ
Fに吸着して分離するよう構成されている。
In this filter chamber R, the wire diameter is several (μ) to several tens (μ).
A magnetic filter F formed by rolling magnetic stainless steel wool in the form of a web is filled, and a high magnetic gradient is generated in the magnetic filter F, which causes the fluid to be treated to flow in from the inlet provided at the upper part of the filter chamber R. The magnetic filter F is configured to attract and separate paramagnetic particles contained in the magnetic filter F.

しかしながら、このように構成した従来の高勾配磁気分
離装置には下記の欠点がある。
However, the conventional high gradient magnetic separation apparatus configured as described above has the following drawbacks.

(a) 高勾配磁気分離作用の基本的な性質として第
2図に示すように線径の小さな強磁性素線Wを磁界Hと
直交するように磁界H中に導入した場合、最も効果的に
素線Wの近傍に高度な磁気勾配を起生じ、常磁性粒子P
を強力に素線Wに吸着する。
(a) As shown in Figure 2, the basic properties of high-gradient magnetic separation are that when a ferromagnetic wire W with a small wire diameter is introduced into the magnetic field H at right angles to the magnetic field H, it is most effective. A high magnetic gradient is generated near the wire W, and paramagnetic particles P
is strongly adsorbed to the wire W.

しかるに、従来の装置における磁気フィルタは素線がウ
ェブ状に構成され、その長さの約173は磁界と略平行
に位置するため、強磁性素線が有効に作用せず、しかも
約10%以上の充填率に素線を充填することが困難であ
るため、高度な磁気勾配を効果的に起生することができ
ない。
However, in the magnetic filter in the conventional device, the strands are configured in the form of a web, and about 173 of the length of the ferromagnetic strands is located approximately parallel to the magnetic field, so the ferromagnetic strands do not work effectively, and moreover, the length of the strands is approximately 173 or more Since it is difficult to fill the wires with a filling rate of , it is not possible to effectively generate a high magnetic gradient.

(b) 強磁性素線をウェブ状とするため、この素線
を均一に充填することが困難であり、しかも磁界が均一
に起生されていない場合、磁力により素線がフィルタ室
の片方に偏移して被処理流体が流過するフィルタ室の断
面に均一に磁気勾配を起生することができず、分離性能
が不安定である。
(b) Since the ferromagnetic strands are in the form of a web, it is difficult to fill the strands uniformly, and if the magnetic field is not generated uniformly, the strands may be pushed to one side of the filter chamber by magnetic force. Due to the deviation, a magnetic gradient cannot be uniformly generated in the cross section of the filter chamber through which the fluid to be processed flows, resulting in unstable separation performance.

(C) 強磁性素線をウェブ状とするため、強磁性素
線のフィルタ室容積に対する充填率を調整することが困
難であり、被処理流体中に含有する常磁性粒子の性質に
適応した特性をもつよう磁気フィルタを調整することが
困難である。
(C) Since the ferromagnetic wires are in the form of a web, it is difficult to adjust the filling rate of the ferromagnetic wires to the filter chamber volume, and the characteristics are adapted to the properties of the paramagnetic particles contained in the fluid to be treated. It is difficult to adjust the magnetic filter to have a

そこで、発明者等は前記の諸欠点を克服すべく鋭意研究
を重ねた結果、線径の細い強磁性素線を織合せた金網を
重畳するか、またはこの金網を非磁性素材からなる金網
と共に重畳して磁気フィルタを構成し、しかも強磁性素
線がすべての磁界と直交するよう磁気フィルタを有効に
配設することにより、前記問題点を一挙に解決できるこ
とを突き止めた。
Therefore, the inventors conducted intensive research to overcome the above-mentioned drawbacks, and found that they either overlapped a wire mesh made of ferromagnetic wires with a small wire diameter, or combined this wire mesh with a wire mesh made of a non-magnetic material. It has been found that the above-mentioned problems can be solved at once by superimposing magnetic filters and arranging the magnetic filters so that the ferromagnetic wires are perpendicular to all magnetic fields.

従って、本発明の目的は簡単な構成で、被処理流体中に
含有する常磁性粒子を、その粒子の性質に適合した磁気
フィルタにより効果的にかつ安定して捕獲・分離するこ
とができる高度な分離性能を具えた高勾配磁気分離装置
を提供するにある。
Therefore, an object of the present invention is to provide an advanced technology that can effectively and stably capture and separate paramagnetic particles contained in a fluid to be treated using a magnetic filter that is suitable for the properties of the particles, with a simple configuration. An object of the present invention is to provide a high gradient magnetic separation device with separation performance.

この目的を達成するため、本発明に係る高勾配磁気分離
装置は、相対する継鉄の対向する端面間の空間部に被処
理流体の通路を構成し、前記端面間の通路部分に強磁性
細線で織った金網を複数重畳して構成した磁気フィルタ
を介挿し、この磁気フィルタをその全ての強磁性細線が
前記継鉄に装着した励磁コイルにより被処理流体の通路
に作用する磁界と直交するように配置し、かつ磁界と被
処理流体の流通方向が直交するように配置することを特
徴とする。
In order to achieve this object, the high gradient magnetic separation device according to the present invention configures a passage for the fluid to be treated in the space between the opposing end faces of the opposing yokes, and a ferromagnetic thin wire in the passage between the end faces. A magnetic filter composed of a plurality of superimposed ferromagnetic wire meshes is inserted, and the magnetic filter is inserted so that all of the ferromagnetic thin wires are orthogonal to the magnetic field acting on the passage of the fluid to be treated by the excitation coil attached to the yoke. It is characterized by being arranged so that the magnetic field and the flow direction of the fluid to be treated are perpendicular to each other.

なお、強磁性細線からなる金網のメツシュ、線径及び非
磁性素材の混入率を調整しかつ強磁性細線の充填率を調
整することにより磁気フィルタの特性の調整を可能とす
ることが好ましくまた、強磁性細線からなる金網と非磁
性素線からなる非磁性網とを所望の比率に重畳して構成
することも可能である。
In addition, it is preferable that the characteristics of the magnetic filter can be adjusted by adjusting the wire mesh made of ferromagnetic thin wires, the wire diameter, and the mixing rate of non-magnetic material, and adjusting the filling rate of the ferromagnetic thin wires. It is also possible to construct the wire mesh made of ferromagnetic thin wires and the non-magnetic mesh made of non-magnetic wires in a desired ratio.

さらにまた、特性の異る複数の磁気フィルタを被処理流
体の流通方向に段階的に配設することが好ましく、かつ
磁気フィルタを被処理流体の通路に対し着脱自在に装着
することが好ましい。
Furthermore, it is preferable to arrange a plurality of magnetic filters having different characteristics in stages in the flow direction of the fluid to be treated, and it is preferable that the magnetic filters are detachably attached to the passage for the fluid to be treated.

次に、本発明に係る高勾配磁気分離装置につき添付図面
を参照しながら以下詳細に説明する。
Next, the high gradient magnetic separation apparatus according to the present invention will be described in detail below with reference to the accompanying drawings.

第3図において、端面を対向配置したコ字状継鉄10お
よび12に、コイル14および16をそれぞれ巻回して
継鉄10,12内に均一な磁界18を起生するよう構成
する。
In FIG. 3, coils 14 and 16 are wound around U-shaped yokes 10 and 12 with their end faces facing each other, respectively, so that a uniform magnetic field 18 is generated within the yokes 10 and 12.

コ字状継鉄10,12の対向する上部端面間には、被処
理液に適合した網目をもち、かつ線径が数10(μ)乃
至100数10(μ)の所定の磁性不銹鋼線を織合せた
金網20 (第4図参照)を、適当な線径および網目の
樹脂網22と交互に重畳して構成した上部磁気フィルタ
24を着脱自在に介装する。
Between the opposing upper end surfaces of the U-shaped yokes 10 and 12, a predetermined magnetic stainless steel wire having a mesh size suitable for the liquid to be treated and having a wire diameter of several 10 (μ) to several 10 (μ) is installed. An upper magnetic filter 24, which is constructed by alternately overlapping interwoven wire mesh 20 (see FIG. 4) with resin mesh 22 of appropriate wire diameter and mesh size, is removably interposed.

コ字状継鉄10.12の対向する下部端面間には、上記
範囲内における所定の線径の強磁性素線がらなり、かつ
上部磁気フィルタ24の金網20より細かい適当な網目
をもつ金網26 (第4図参照)を重畳して構成した下
部磁気フィルタ28を、上部磁気フィルタ24との間に
中間空間部30を設けて着脱自在に介装する。
Between the opposing lower end faces of the U-shaped yoke 10.12 is a wire mesh 26 which is made up of ferromagnetic wires having a predetermined wire diameter within the above range and has an appropriate mesh that is finer than the wire mesh 20 of the upper magnetic filter 24. A lower magnetic filter 28 configured by overlapping magnetic filters (see FIG. 4) is removably interposed with an intermediate space 30 provided between the upper magnetic filter 24 and the upper magnetic filter 24.

さらに、上部磁気フィルタ24の上面には被処理流体の
供給口32を設け、下部磁気フィルタ28の下面には被
処理流体の排出口34を設ける。
Furthermore, a supply port 32 for the fluid to be treated is provided on the upper surface of the upper magnetic filter 24, and a discharge port 34 for the fluid to be processed is provided on the lower surface of the lower magnetic filter 28.

次に、このように構成される高勾配磁気分離装置の動作
について説明する。
Next, the operation of the high gradient magnetic separation apparatus configured as described above will be explained.

第3図においてコイル14.16に電流を供給して継鉄
10,12内に均一な磁界18を起生すると、上部磁気
フィルタ24および下部磁気フィルタ28を構成する線
径の細いすべての強磁性素線が磁界18に直交するため
、これらの磁気フィルタ24.28内に勾配の高い磁界
が起生ずる。
In FIG. 3, when a uniform magnetic field 18 is generated in the yokes 10 and 12 by supplying current to the coils 14 and 16, all the ferromagnetic wires with small diameters constituting the upper magnetic filter 24 and the lower magnetic filter 28 Since the strands are perpendicular to the magnetic field 18, a high gradient magnetic field is created within these magnetic filters 24,28.

このうち、上部磁気フィルタ24は網目の粗い金網20
と非磁性の樹脂網22とを交互に重畳して構成され、下
部磁気フィルタ28は上部磁気フィルタ24より網目の
細かい金網26を重畳して構成され、強磁性素線の充填
率が相違するため、下部磁気フィルタ28においては上
部磁気フィルタ24より強力な磁気勾配が生ずる。
Among these, the upper magnetic filter 24 is made of coarse wire mesh 20.
The lower magnetic filter 28 is constructed by overlapping a wire mesh 26 with a finer mesh than the upper magnetic filter 24, and the filling rate of the ferromagnetic wires is different. , a stronger magnetic gradient occurs in the lower magnetic filter 28 than in the upper magnetic filter 24.

そこで、常磁性粒子を含有する被処理液を供給口32か
ら流入すると、上部磁気フィルタ24の金網20に常磁
性粒子の一部分が高勾配磁界により吸着して捕獲される
Therefore, when a liquid to be treated containing paramagnetic particles flows in from the supply port 32, a portion of the paramagnetic particles are attracted and captured by the wire mesh 20 of the upper magnetic filter 24 by the high gradient magnetic field.

さらに、被処理液が落下して下部磁気フィルタ28を流
過する際残留した常磁性粒子は下部磁気フィルタ28の
金網26に吸着して分離され、上部および下部の特性の
異る磁気フィルタに常磁性粒子が分割して吸着されるた
め、フィルタの目詰り等に起因してフィルタ性能が短期
間に低下することなく、常磁性粒子が分離される。
Further, when the liquid to be treated falls and flows through the lower magnetic filter 28, the remaining paramagnetic particles are attracted to the wire mesh 26 of the lower magnetic filter 28 and separated, and the paramagnetic particles that remain are separated by the upper and lower magnetic filters having different characteristics. Since the magnetic particles are divided and adsorbed, the paramagnetic particles can be separated without the filter performance decreasing in a short period of time due to filter clogging or the like.

常磁性粒子を分離した処理済みの被処理液は排出口34
から外部に排出される。
The processed liquid from which paramagnetic particles have been separated is discharged from the outlet 34.
is discharged to the outside.

なお、この実施例においては、磁気フィルタを上部及び
下部にそれぞれ2段階増加することにより、さらに分離
性能を向上することができる。
In this embodiment, the separation performance can be further improved by increasing the number of magnetic filters by two stages in the upper and lower parts.

第5図は別の実施例を示し、中空円筒状の継鉄40内に
コイル42を同心的に埋設し、継鉄40の内径より小さ
い直径の円柱状鉄心44を継鉄40内に同心的に収納し
て継鉄40の内面と円柱状鉄心44の外面との間に同心
的に円筒状間隙部を形成したものであり、この間隙部の
上部および下部に第3図に示した実施例と同様な上部磁
気フィルタ46および下部磁気フィルタ48を着脱自在
に装着したものである。
FIG. 5 shows another embodiment, in which a coil 42 is buried concentrically within a hollow cylindrical yoke 40, and a cylindrical core 44 having a diameter smaller than the inner diameter of the yoke 40 is concentrically embedded within the yoke 40. A cylindrical gap is formed concentrically between the inner surface of the yoke 40 and the outer surface of the cylindrical core 44, and the embodiment shown in FIG. An upper magnetic filter 46 and a lower magnetic filter 48 similar to the above are removably attached.

従って、本実施例によれば、上部磁気フィルタ46の上
方より矢印方向に流入する被処理液中に含有する常磁性
粒子を第3図に示した実施例と全く同様に捕獲・分離す
ることができる。
Therefore, according to this embodiment, paramagnetic particles contained in the liquid to be treated flowing in the direction of the arrow from above the upper magnetic filter 46 can be captured and separated in exactly the same manner as in the embodiment shown in FIG. can.

前述した実施例から明らかなように、本発明装置におい
ては、線径の細い強磁性素線で織った金網を被処理流体
の通路内に、その一方の織線が流体の流れと並行し、ま
た他方の織線が流体の流れと直交するよう配置される。
As is clear from the embodiments described above, in the apparatus of the present invention, a wire mesh made of ferromagnetic wires with a small wire diameter is placed in the passage of the fluid to be treated, one of the woven wires being parallel to the flow of the fluid, The other weaving line is arranged perpendicular to the fluid flow.

このため、従来の磁気フィルタのように、単にフィラメ
ントが流体の流れと並行するかまたは直交するのみでは
、磁場を乱す要因としては一次元的であるのに対し、本
発明の磁気フィルタは二次元的であり、磁場はより多く
乱れ、従ってフィルタ効率が一層向上する。
Therefore, unlike conventional magnetic filters in which the filament is simply parallel to or perpendicular to the flow of fluid, the factor that disturbs the magnetic field is one-dimensional, whereas the magnetic filter of the present invention is two-dimensional. , the magnetic field is more disturbed and the filter efficiency is therefore further improved.

このように、本発明装置によれば、線径の細い強磁性素
線を被処理流体の通路に高い充填率で充填することがで
きかつすべての素線を磁界に直交させて効率よく高勾配
の磁界を起生ずることができる。
As described above, according to the apparatus of the present invention, it is possible to fill the passage of the fluid to be treated with ferromagnetic wires having a small wire diameter at a high filling rate, and to make all the wires perpendicular to the magnetic field to efficiently achieve high gradients. can generate a magnetic field of

また、均一に充填された強磁性素線が不均一な磁界に作
用されて偏移することかなく、常に安定して常磁性粒子
を捕獲することができる。
Furthermore, the uniformly packed ferromagnetic wires do not shift due to the action of a non-uniform magnetic field, and paramagnetic particles can always be stably captured.

さらに、磁気フィルタの特性を金網のメツシュ、素線々
径、非磁性素材混入率等の調整により、被処理流体の性
質に適応して調整することができ、しかも特性の異る磁
気フィルタを被処理流体の流通方向に段階的に配設する
ことにより、フィルタの目詰り等に起因してフィルタ性
能が短期間に低下することが防止され、フィルタの洗浄
回数を減少することができる等、従来装置に比べて極め
て多くの利点を有し、性能の向上並びに保守の省力化に
寄与する効果が極めて大きい。
Furthermore, the characteristics of the magnetic filter can be adjusted to suit the properties of the fluid to be treated by adjusting the wire mesh, wire diameter, non-magnetic material mixing rate, etc., and magnetic filters with different characteristics can be adjusted. By arranging the filter in stages in the flow direction of the processing fluid, it is possible to prevent the filter performance from decreasing in a short period of time due to filter clogging, etc., and to reduce the number of times the filter needs to be washed. It has many advantages compared to other devices, and has an extremely large effect in improving performance and saving labor in maintenance.

なお、前述した実施例においては、継鉄の対向する上下
端部にそれぞれ磁気フィルタを挿入した場合を示したが
、これらの実施例に限定されることなく、例えば上下い
ずれか一方に磁気フィルタを挿入し、他方は流体通流用
の孔を設けた構成とすることによって、前述した本願発
明の作用効果は充分得られる。
In addition, in the above-mentioned embodiment, a case was shown in which magnetic filters were inserted into the opposing upper and lower ends of the yoke, but the invention is not limited to these embodiments. The above-described effects of the present invention can be sufficiently obtained by inserting one hole and having a hole for fluid communication on the other side.

以上、本発明の好適な実施例について説明したが、本発
明の精神を逸脱しない範囲内において、種々の設計変更
を施すことができることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における高勾配磁気分離装置の構成を示す
断面図、第2図は高勾配磁気分離装置の原理説明図、第
3図は本発明に係る高勾配磁気分離装置の一実施例を示
す一部断面斜視図、第4図は本発明装置の磁気フィルタ
を構成する金網の斜視図、第5図は本発明装置の別の実
施例を示す要部断面斜視図である。 10.12・・・・・・継鉄、14,16・・・・・・
コイル、18・・・・・・磁界、20・・・・・・金網
、22・・・・・・樹脂網、24・・・・・・上部磁気
フィルタ、26・・・・・・金網、28・・・・・・下
部磁気フィルタ、30・・・・・・中間空間部、32・
・・・・・供給口、34・・・・・・排出口、40・・
・・・・継鉄、42・・・・・・コイル、44・・・・
・・円柱状鉄心、46・・曲玉部磁気フィルタ、48・
・・・・・下部磁気フィルタ。
FIG. 1 is a cross-sectional view showing the configuration of a conventional high-gradient magnetic separation device, FIG. 2 is a diagram explaining the principle of a high-gradient magnetic separation device, and FIG. 3 is an embodiment of a high-gradient magnetic separation device according to the present invention. FIG. 4 is a perspective view of a wire mesh constituting the magnetic filter of the apparatus of the present invention, and FIG. 5 is a perspective view of a main part of another embodiment of the apparatus of the present invention. 10.12...Yoke, 14,16...
Coil, 18... Magnetic field, 20... Wire mesh, 22... Resin mesh, 24... Upper magnetic filter, 26... Wire mesh, 28...Lower magnetic filter, 30...Intermediate space section, 32.
...Supply port, 34...Discharge port, 40...
...Yoke, 42...Coil, 44...
・・Cylindrical iron core, 46・・Curved ball magnetic filter, 48・
...Lower magnetic filter.

Claims (1)

【特許請求の範囲】 1 相対する継鉄の対向する端面間の空間部に被処理流
体の通路を構成し、前記端面間の通路部分に強磁性細線
で織った金網を複数重畳して構成した磁気フィルタを介
挿し、この磁気フィルタをその全ての強磁性細線が前記
継鉄に装着した励磁コイルにより被処理流体の通路に作
用する磁界と直交するように配置し、かつ磁界と被処理
流体の流通方向が直交するように配置することを特徴と
する高勾配磁気分離装置。 2、特許請求の範囲第1項記載の高勾配磁気分離装置に
おいて、強磁性細線からなる金網のメツシュ、線径及び
非磁性素材の混入率を調整しかつ強磁性細線の充填率を
調整することにより磁気フィルタの特性を調整可能とす
ることを特徴とする高勾配磁気分離装置。 3 特許請求の範囲第1項または第2項記載の高勾配磁
気分離装置において、磁気フィルタは強磁性細線からな
る金網と非磁性素線からなる非磁性網とを所望の比率に
重畳して構成することを特徴とする高勾配磁気分離装置
。 4 特許請求の範囲第1項乃至第3項のいずれかに記載
の高勾配磁気分離装置において、特性の異る複数の磁気
フィルタを被処理流体の流通方向に段階的に配設してな
る高勾配磁気分離装置。
[Scope of Claims] 1. A passage for the fluid to be treated is formed in the space between the opposing end faces of the opposing yoke, and a plurality of wire meshes woven from fine ferromagnetic wires are superimposed in the passage between the end faces. A magnetic filter is inserted, and this magnetic filter is arranged so that all of its ferromagnetic thin wires are perpendicular to the magnetic field acting on the passage of the fluid to be treated by the excitation coil attached to the yoke, and the magnetic filter is arranged such that the magnetic field and the fluid to be treated are A high gradient magnetic separation device characterized by being arranged so that the flow directions are perpendicular to each other. 2. In the high-gradient magnetic separation device according to claim 1, the wire mesh made of ferromagnetic thin wires, the wire diameter and the mixing rate of non-magnetic material are adjusted, and the filling rate of the ferromagnetic thin wires is adjusted. A high gradient magnetic separation device characterized in that characteristics of a magnetic filter can be adjusted by. 3. In the high gradient magnetic separation device according to claim 1 or 2, the magnetic filter is constructed by superimposing a wire mesh made of ferromagnetic fine wires and a nonmagnetic mesh made of nonmagnetic wires in a desired ratio. A high gradient magnetic separation device characterized by: 4. The high gradient magnetic separation device according to any one of claims 1 to 3, wherein a plurality of magnetic filters having different characteristics are arranged stepwise in the flow direction of the fluid to be treated. Gradient magnetic separation device.
JP3397777A 1977-03-29 1977-03-29 High gradient magnetic separation device Expired JPS5949044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3397777A JPS5949044B2 (en) 1977-03-29 1977-03-29 High gradient magnetic separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3397777A JPS5949044B2 (en) 1977-03-29 1977-03-29 High gradient magnetic separation device

Publications (2)

Publication Number Publication Date
JPS53119475A JPS53119475A (en) 1978-10-18
JPS5949044B2 true JPS5949044B2 (en) 1984-11-30

Family

ID=12401538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3397777A Expired JPS5949044B2 (en) 1977-03-29 1977-03-29 High gradient magnetic separation device

Country Status (1)

Country Link
JP (1) JPS5949044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229927A1 (en) * 1982-08-11 1984-02-16 Kraftwerk Union AG, 4330 Mülheim MAGNETIC SEPARATOR FOR CLEANING LIQUIDS

Also Published As

Publication number Publication date
JPS53119475A (en) 1978-10-18

Similar Documents

Publication Publication Date Title
Ge et al. Magnetic matrices used in high gradient magnetic separation (HGMS): A review
US5169006A (en) Continuous magnetic separator
EP0089200B1 (en) A high-gradient magnetic separator
DE2628095C3 (en) Magnetic separation device
US3676337A (en) Process for magnetic separation
US4472275A (en) Magnetic separator
US4110222A (en) Apparatus for separating magnetizable particles from a fluid
JPS6123005B2 (en)
US2951586A (en) Means for removing para-magnetic particles from fluids
US4668383A (en) Magnetic separator
US4124503A (en) Magnetic separators, apparatus and method
GB2079186A (en) Magnetic filter
JPS5949044B2 (en) High gradient magnetic separation device
AU680250B2 (en) Improvements in and relating to magnetic separation systems
GB1562941A (en) Magnetic separators
JP2011056369A (en) Magnetic separator, and magnetic separation system
JP2008018422A (en) Apparatus for separating and removing micromagnetic particles
RU187328U1 (en) MAGNETIC SEPARATOR
JPS58143814A (en) Magnetic separation apparatus
GB1488021A (en) Magnetic separation
AU653591B2 (en) Magnetic separator
JPH09327635A (en) Magnetic separating apparatus
RU2717817C1 (en) Highly gradient magnetic filter with a rigid matrix
RU197899U1 (en) HIGH-GRADIENT MAGNETIC SEPARATOR MATRIX
CA1044612A (en) Magnetic filter filtering in parallel, backwashing in series