JPS5948857B2 - antifriction alloy - Google Patents

antifriction alloy

Info

Publication number
JPS5948857B2
JPS5948857B2 JP53135929A JP13592978A JPS5948857B2 JP S5948857 B2 JPS5948857 B2 JP S5948857B2 JP 53135929 A JP53135929 A JP 53135929A JP 13592978 A JP13592978 A JP 13592978A JP S5948857 B2 JPS5948857 B2 JP S5948857B2
Authority
JP
Japan
Prior art keywords
friction
iron
molybdenum
sulfur
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135929A
Other languages
Japanese (ja)
Other versions
JPS54109013A (en
Inventor
ジヤン・ポ−ル・テラ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANTORU SUTEFUANOA DO RUSHERUSHU MEKANIKU HIDOROMEKANIKU E FUROTSUTOMAN
Original Assignee
SANTORU SUTEFUANOA DO RUSHERUSHU MEKANIKU HIDOROMEKANIKU E FUROTSUTOMAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANTORU SUTEFUANOA DO RUSHERUSHU MEKANIKU HIDOROMEKANIKU E FUROTSUTOMAN filed Critical SANTORU SUTEFUANOA DO RUSHERUSHU MEKANIKU HIDOROMEKANIKU E FUROTSUTOMAN
Publication of JPS54109013A publication Critical patent/JPS54109013A/en
Publication of JPS5948857B2 publication Critical patent/JPS5948857B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/043Sulfur; Selenenium; Tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/16Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は鉄、モリブデン及び硫黄からなる減摩合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anti-friction alloy consisting of iron, molybdenum and sulfur.

従来提案されたこの種の組成物は完全に満足しうるもの
でなかつた:従つて在来の潤滑剤とくに油又は脂肪類等
を併用することから完全に解放されることができず、こ
のことはとくに化学工学、航空宇宙工学、繊維産業など
若干の領域において妨げとなる。
Compositions of this type that have been proposed hitherto have not been completely satisfactory: they have therefore not been able to be completely freed from the concomitant use of conventional lubricants, in particular oils or fats, etc. This is especially a hindrance in some areas such as chemical engineering, aerospace engineering, and the textile industry.

そのほか不安定な潤滑下での運転で’極めて低い摩擦係
数を保証することができない。とくにこれら鉄、モリブ
デン及び硫黄からなる材料は二硫化モリブデン、ニセレ
ン化タングステン、黒鉛など或いはまたプラスチックの
ような固体潤滑剤よりよい結果が得られずその適用が極
限されておりこれら固体潤滑剤は使用が難しく、一方プ
ラスチックは温度が上るとその諸特性が失なわれる。本
発明は鉄、モリブデン及び硫黄からなる減摩合金でそれ
らの組成がすぐれた諸特性をとくに乾I燥状態において
もその物質全体にわたつて摩擦係数の極めて低い摩擦性
を得ることを可能にするものを目的とする。
In addition, it is not possible to guarantee an extremely low coefficient of friction due to operation under unstable lubrication. In particular, these materials consisting of iron, molybdenum, and sulfur do not give better results than solid lubricants such as molybdenum disulfide, tungsten diselenide, graphite, or plastics, and their applications are therefore limited. Plastics, on the other hand, lose their properties when the temperature rises. The present invention is an antifriction alloy consisting of iron, molybdenum, and sulfur, and its composition makes it possible to obtain friction properties with an extremely low coefficient of friction over the entire material even in dry conditions. aim at something.

本発明の要旨は、乾燥状態においてもその材質全体にわ
たつて摩擦係数が極めて低い摩擦特性を示す鉄、モリブ
デン及び硫黄からなる減摩合金において、それら成分の
重量組成が鉄8.0−26.6%、モリブデン41.0
−62.5%、硫黄23.3−40.5%の範囲内にあ
り、FeXMO3+YS4(ただしXは0を含まずかつ
1以下、yは0乃至1未満)なる組成に相当する結晶質
の母材中に少なくとも1種の分散相を含みかつ相手材料
との摩擦効果の下に反応して相手の表面上に対応する硫
化物を作るのに適していることを特徴とする減摩合金に
存する。
The gist of the present invention is to provide an anti-friction alloy consisting of iron, molybdenum and sulfur which exhibits extremely low coefficient of friction throughout the material even in a dry state, with a weight composition of iron 8.0-26. 6%, molybdenum 41.0
-62.5%, sulfur 23.3-40.5%, and corresponds to the composition FeXMO3+YS4 (where X does not include 0 and is 1 or less, and y is from 0 to less than 1). Anti-friction alloys, characterized in that they contain at least one dispersed phase in the material and are suitable for reacting under the frictional effect with a mating material to form a corresponding sulfide on the surface of the mating material. .

この組成は鉄−モリブデン−硫黄三成分系状態図の限ら
れた区域(状態図全面積の5%未満)に相当し意外にも
乾燥状態でさえ極めて摩擦係数の値が低い優れた摩擦特
性を有する。このマトリツクス中の分散相の一つは化合
物FeMO2S4又は鉄一モリブデ゛ン一硫黄平衡状態
図のε相:FeMO2であつてもよい。
This composition corresponds to a limited area (less than 5% of the total area of the phase diagram) of the iron-molybdenum-sulfur ternary phase diagram, and surprisingly exhibits excellent frictional properties with extremely low friction coefficient values even in dry conditions. have One of the dispersed phases in this matrix may be the compound FeMO2S4 or the epsilon phase of the iron-molybdenum-sulfur phase diagram: FeMO2.

本発明によると合金は、とくに基体上への鉄、モリブデ
ン及び硫黄間の化学反応又は溶融又は真空蒸着法又は金
属溶射用トーチを用いる基体への粉末混合物の溶射等に
よつて得られる。
According to the invention, the alloy is obtained, in particular, by chemical reaction between iron, molybdenum and sulfur onto a substrate, or by melting or vacuum deposition methods or by spraying a powder mixture onto the substrate using a metal spraying torch.

本発明合金は粉末冶金法によつても成形できる。金属マ
トリツクス又はポリマーマトリツクス又は潤滑剤中に充
填材として配合することもできる。乾燥状態で又は潤滑
された環境での摩擦が問題である場合、当業技術者は一
方では発熱及び焼付きの危険を低減させるため、また他
方では摩擦機構の効率を改良するため、従来からできる
だけ低い摩擦係数を要求している。
The alloy according to the invention can also be formed by powder metallurgy. They can also be incorporated as fillers in metal or polymer matrices or lubricants. If friction in dry conditions or in a lubricated environment is a problem, the person skilled in the art has conventionally tried as much as possible to reduce the risk of heat generation and seizure, on the one hand, and to improve the efficiency of the friction mechanism, on the other hand. Requires low coefficient of friction.

乾燥摩擦の領域では黒鉛、二硫化モリブデン、テフロン
被覆などのような固体潤滑剤型の解決手段に殆んど頼つ
ている。
In the area of dry friction, most rely on solid lubricant type solutions such as graphite, molybdenum disulfide, Teflon coatings, etc.

これらの解決手段は摩擦係数を著しく下げることができ
、摩耗を低減させ、従つてこのようにして調整した機構
の効率を.向上させるのに寄与している。しかし、この
種の解決手段にも種々の方法があり、高負荷及び/又は
高速の適用ができないとか、不安定な使用から、特に亜
鉛メツキよりはペンキ又はコーテインダによく似た表面
への固着によるものがある。そ3のうえ油型の流体を用
いて得られる潤滑性能は左程すぐれたものでなく、二硫
化モリブデンを用いても油の存在では表面から“脱落”
されて潤滑性能は改良されない。本発明によると、Fe
,MOを基質とする合金の・組成は今日までにかつて得
られなかつた乾燥状態での低い摩擦係数が達成できる。
These solutions make it possible to significantly lower the coefficient of friction, reducing wear and thus increasing the efficiency of mechanisms adjusted in this way. Contributes to improving. However, this type of solution also has a variety of methods, from inability to apply high loads and/or high speeds, from unstable use, and from sticking to surfaces, particularly those more similar to paint or coaters than galvanized. There is something. Third, the lubrication performance obtained using oil-type fluids is not as good as on the left, and even when molybdenum disulfide is used, it "falls off" from the surface in the presence of oil.
lubrication performance is not improved. According to the invention, Fe
, the composition of MO-based alloys can achieve low coefficients of friction in the dry state, hitherto unobtainable.

負荷、速度、相手方及び環境の諸条件が同じであると、
本発明のFe−MO−S組成では黒鉛又は二硫化モリブ
デン型の被覆で得られるものの約半分の摩擦係数が得ら
れる。しかし、Fe−MO−S三成分系状態図の特定領
域内に示された組成のみが、この種の低い摩擦係数の達
成を可能にすることを本発明者は知見した。
If the load, speed, other party, and environmental conditions are the same,
The Fe-MO-S composition of the present invention provides a coefficient of friction that is approximately half that obtained with graphite or molybdenum disulfide type coatings. However, the inventors have discovered that only compositions that fall within a specific region of the Fe-MO-S ternary phase diagram make it possible to achieve this type of low coefficient of friction.

該領域外、とくに化合物FeS,MOS2のものなどの
組成を示す領域では同じ摩擦諸条件について得られる摩
擦係数は本発明の化合物のものより少なくとも2倍大き
いことを認めた。従つて、例えば鋼種16NC6の直径
40mmの鋼管により、10μのFeMO2S4(Fe
8.O−26.6%,MO4l.O−62.5%,S2
3.3−40.5%の組成物によつて限定された領域内
の化合物)の被覆を施したXC34の鋼板を摩擦し、鋼
管を板に押しつける負荷を360kg/♂、鋼管の回転
速度を0.55m/Sとすると空気中で得られる摩擦係
数は0.04−{).05である。同じ条件で鋼板上黒
鉛コーテイングの場合は0.1、テフロン被覆の場合は
0.10−0.12、一方MOS2被覆の場合は0.0
8の摩擦係数となる。同様に、本発明のFe−MO−S
三成分系状態図の領域の外部にある組成は上述のものと
同じ条件についてはすべて0.08以上の摩擦係数であ
る。そのうえ本発明の組成物は油の存在において脱落現
象を生ずることなしに使用できることを特記すべきであ
る。本発明の場合、油による潤滑が不安定である場合で
も、潤滑面の損傷はかなり低減され、得られる摩擦係数
は本発明のFe−MO−S被覆では低いものである、即
ち摩擦係数が小さくなればなるほど潤滑面の損傷が低減
されることとなる。以下本発明の一例を添附第1乃至4
図に基いてさらに詳しく記述する。
Outside this region, especially in the region exhibiting compositions such as those of the compounds FeS, MOS2, it has been found that the friction coefficients obtained for the same friction conditions are at least twice as large as those of the compounds of the invention. Therefore, for example, 10 μ of FeMO2S4 (Fe
8. O-26.6%, MO4l. O-62.5%, S2
A steel plate of XC34 coated with a compound (within a region defined by a composition of 3.3-40.5%) is rubbed, the load of pressing the steel pipe against the plate is 360 kg/♂, and the rotational speed of the steel pipe is increased. If it is 0.55m/S, the friction coefficient obtained in air is 0.04-{). It is 05. Under the same conditions, 0.1 for graphite coating on steel plate, 0.10-0.12 for Teflon coating, and 0.0 for MOS2 coating.
The friction coefficient is 8. Similarly, Fe-MO-S of the present invention
All compositions outside the region of the ternary phase diagram have friction coefficients of 0.08 or more under the same conditions as described above. It should be noted moreover that the compositions of the invention can be used in the presence of oil without shedding phenomena. In the case of the present invention, even if the oil lubrication is unstable, the damage to the lubricated surface is considerably reduced and the obtained friction coefficient is low for the Fe-MO-S coating of the present invention, i.e. the friction coefficient is small. The more damage to the lubricated surface is reduced. Below, examples of the present invention are attached Nos. 1 to 4.
This will be described in more detail based on the diagram.

本発明者は鉄、モリブデン及び硫黄からなる三元合金の
摩擦について行なつた研究から本発明を開発した。
The present inventor developed the present invention from research conducted on the friction of ternary alloys consisting of iron, molybdenum, and sulfur.

この研究が鉄−モリブデン−硫黄三成分状態(第1図)
のABCDEFの面積(第2及び3図)で表わされた状
態図の全面積の辛うじて4.8%を占める極めて限られ
た領域の内部に位置する組成の合金が全く意外な挙動を
示すことを明かにした。この組成を有する材料がある種
の相手材料に対して摩擦する場合、この相手材料は、そ
の大部分がX線回析の結果相手材料金属の硫化物からな
る層で被覆されていることが立証された。
This study revealed that the iron-molybdenum-sulfur ternary state (Fig. 1)
An alloy with a composition located within an extremely limited region that occupies only 4.8% of the total area of the phase diagram expressed by the area of ABCDEF (Figures 2 and 3) exhibits completely unexpected behavior. revealed. When a material with this composition rubs against some kind of mating material, X-ray diffraction proves that this mating material is mostly coated with a layer of sulfide of the mating metal. It was done.

たとえば、相手の金属が鉄である場合、硫化鉄FeSに
よつて被覆される。ニツケルならば硫化ニツケルNiS
によつて被覆される。この被覆層が形成され次第、相対
運動の最初の数秒以内でも摩擦係数が乾燥状態において
も極めて小さい値となり、たとえば二硫化モリブデンを
用いて得られるものの半分より小さくなる。六角形AB
CDEFの領域を限定する鉄、モリブデン及び硫黄の比
率は第2及び3図に精確に表わしてあるが、各点の組成
は次のとおりである;即ち、この領域は下記比率に相当
する六角形ABCDEF内にある:鉄8.0−26.6
%、モリブデン41.(ト)−62.5%、硫黄23.
3−40.5%o本発明による材料は主として化合物T
lFeMO2S4と式T2=FeXMO3+YS4に相
当する固溶体とからなる多相固体である。
For example, when the other metal is iron, it is coated with iron sulfide FeS. For nickel, nickel sulfide NiS
covered by. Once this coating has been formed, even within the first few seconds of relative movement, the coefficient of friction, even in the dry state, has a very low value, for example less than half of that obtained with molybdenum disulfide. Hexagon AB
The proportions of iron, molybdenum and sulfur which define the area of the CDEF are precisely represented in Figures 2 and 3, but the composition of each point is as follows; that is, this area is a hexagonal shape corresponding to the following proportions: In ABCDEF: Iron 8.0-26.6
%, molybdenum 41. (g)-62.5%, sulfur 23.
3-40.5% o The material according to the invention mainly contains the compound T
It is a multiphase solid consisting of lFeMO2S4 and a solid solution corresponding to the formula T2=FeXMO3+YS4.

また特定組成の金属間化合物εをさまざまな量で含有し
ていてもよい。しかし特定の化合物FeMO2S4に相
当する点T1及び固溶体FeXMO3+YS4に相当す
る三角形T2で示される相のみを含有する合金も本発明
の一部である。領域ABCDEF内の材料組成を思慮深
く選択してその諸特性をとくに機械的諸特性及び耐食性
を、何らその摩擦特性に影響を及ぼすことなしに任意所
望の値にすることができる。
Further, the intermetallic compound ε having a specific composition may be contained in various amounts. However, alloys containing only the phase indicated by the point T1 corresponding to the specific compound FeMO2S4 and the triangle T2 corresponding to the solid solution FeXMO3+YS4 are also part of the invention. The composition of the material within the region ABCDEF can be judiciously chosen to bring its properties, in particular its mechanical properties and corrosion resistance, to any desired value without any influence on its frictional properties.

とくに金属間化合物εの存在はその材料を極めて硬くし
、また著しく耐食性を大きくし、モリブデンのこれら諸
性質に近くなる。化合物FeMO2S4及び/又は固溶
体FeXMO3+YS4のほかに、この材料はまた特定
の化合物FeS及びMOS2も含むことができる。
In particular, the presence of the intermetallic compound ε makes the material extremely hard and also significantly increases its corrosion resistance, approaching these properties of molybdenum. Besides the compounds FeMO2S4 and/or the solid solution FeXMO3+YS4, this material can also contain the specific compounds FeS and MOS2.

第3図はこれら各種化合物の存在範囲を示す。乾燥状態
においても摩擦係数の値は極めて低いままであり硫化鉄
又は二硫化モリブデンを単独で用いて得られるものより
遥かに低い。第4図は限定的ではなしに本発明の例を示
す顕微鏡写真であリマトリツクスFeXMO3+YS4
(灰色の地)中に分散したFeMO2S4相(白点)が
見られる。
FIG. 3 shows the range of existence of these various compounds. Even in the dry state, the coefficient of friction values remain very low and are much lower than those obtained using iron sulfide or molybdenum disulfide alone. FIG. 4 is a micrograph showing, without limitation, an example of the present invention using a rematrix FeXMO3+YS4.
FeMO2S4 phase (white dots) dispersed in the (gray background) can be seen.

黒点は気孔にあたる。減摩材料は遊離の鉄も遊離のモリ
ブデンも含まない。
The sunspots correspond to the stomata. The anti-friction material does not contain free iron or free molybdenum.

粉砕して粉末状態にし他の焼結材料たとえば鉄に又はポ
リマに又は在来の油又は脂肪など潤滑剤に充填材として
混和することができる。同様に、その機械的諸特性が金
属のものに近いので、むくの状態で使用でき、その製作
は鋳造により又は粉末冶金法とくに焼結・熱間圧縮又は
熱間等圧圧縮により或いはまた熱間押出、その他任意の
成形法によつて実施され、またメツキにより又は金属溶
射又は真空蒸着によりその他何らかの形の機械部品に適
した任意の表面処理法によつて施こされた数+ミクロン
までに達し得る厚い層としても使用できる。このことは
在来の固体潤滑剤ではその機械的諸特性が層の厚さが数
ミクロンを超えると接触領域でただちに除去され或いは
また脆性が過大なため破壊されるようなものであるので
実施不能である。すべての場合において鉄、モリブデン
及び硫黄は化学的に結合されていなくてはならない。
It can be ground into powder and incorporated as a filler in other sintered materials such as iron or polymers or in lubricants such as conventional oils or fats. Similarly, since its mechanical properties are close to those of metals, it can be used in the solid state, and its production can be by casting or by powder metallurgy, especially sintering, hot pressing or hot isostatic pressing, or also by hot pressing. by extrusion or any other forming method, and by plating or by metal spraying or vacuum deposition or by any other surface treatment method suitable for mechanical parts of up to several microns. It can also be used to obtain a thick layer. This is not possible with conventional solid lubricants since their mechanical properties are such that if the layer thickness exceeds a few microns, they are immediately removed in the contact area or are too brittle and are destroyed. It is. In all cases iron, molybdenum and sulfur must be chemically combined.

この材料の製造が中間の粉末状態を経過するなら、3種
の元素をよく混合したものを結合が起きるのに十分な温
度に加熱して溶融し又は溶融することなしに得られなけ
ればならない。その他の場合に用いられる製造法はこの
結合が硫黄含有の反応性雰囲気中において起きるように
しなくてはならない以下に示す実施例は限定的ではなく
本発明の合金の優れた性能を説明するものである。
If the production of this material is to pass through an intermediate powder state, a well-mixed mixture of the three elements must be obtained by heating to a temperature sufficient for bonding to occur, melting or not melting. The manufacturing method used in other cases must allow this bonding to occur in a sulfur-containing reactive atmosphere. be.

実施例 1 鉄、モリブデン及び硫黄の粉末を鉄19%、モリブデン
55%、硫黄26%の比率(第2及び3図の点1で表わ
されているもの)で混合する。
Example 1 Iron, molybdenum and sulfur powders are mixed in a ratio of 19% iron, 55% molybdenum and 26% sulfur (represented by point 1 in Figures 2 and 3).

この混合物を800℃とする。この温度ではこれら3種
の元素の間で結合反応が進行する。得られた生成物は次
に砕き均等にし次に4000kg/Cnl2の圧力下で
圧縮′して18×30×8mmの寸法の平行六面体の小
板とし、続いてアルゴン雰囲気中で4時間1100℃に
保つ。この板の硬度は50gの負荷の下で約480VH
である。この板を次に36kg/CIn2の負荷下で、
肌焼し焼戻しした16NC6鋼(炭素0.16%、ニツ
ケル1.5%及びクロム0.9%)の直径35mmの輪
をその中心線を中心にして1.1m/sの速度で回転さ
せて接触させ、そのときの摩擦係数を記録したところ、
0.035と一定であることを認めた。
This mixture is heated to 800°C. At this temperature, a bonding reaction proceeds between these three elements. The resulting product was then crushed to a uniform level and compressed under a pressure of 4000 kg/Cnl2 into parallelepiped platelets with dimensions of 18 x 30 x 8 mm, followed by heating at 1100° C. for 4 hours in an argon atmosphere. keep. The hardness of this board is about 480VH under a load of 50g
It is. This plate was then subjected to a load of 36 kg/CIn2,
A ring of 35 mm in diameter made of case hardened and tempered 16NC6 steel (0.16% carbon, 1.5% nickel and 0.9% chromium) was rotated around its center line at a speed of 1.1 m/s. When we brought them into contact and recorded the friction coefficient at that time,
It was confirmed that the value was constant at 0.035.

5時間の試験后、試験片を取外し秤量する。After 5 hours of testing, the specimens are removed and weighed.

減量は0.5mgである。相手の輪は黒く着色しており
X線分析では極めて薄い硫化鉄FeSの層で被われてい
ることを示す。
The weight loss is 0.5 mg. The other ring is colored black, and X-ray analysis shows that it is covered with an extremely thin layer of iron sulfide, FeS.

同じ試験条件でエーロゾルボンベで二硫化モリブデンを
吹付けた半硬化炭素鋼の小板は一定の摩擦係数0.08
である。
Under the same test conditions, a semi-hardened carbon steel plate sprayed with molybdenum disulfide using an aerosol cylinder has a constant friction coefficient of 0.08.
It is.

実施例 2 厚さ45μの鉄一モリブデン一硫黄合金層をXC38鋼
(炭素0.38%)の小板上に鉄22.7重量%とモリ
ブデンJモV.3重量%とを含むターゲツトと硫化水素1
0−4トール含有の残留雰囲気とからマグネトロン反応
性陰極スパツタリングによつて析着した。
Example 2 A 45μ thick iron-molybdenum-sulfur alloy layer was deposited on a platelet of XC38 steel (0.38% carbon) with 22.7% by weight of iron and molybdenum JMoV. 3% by weight and hydrogen sulfide 1
Deposited by magnetron reactive cathode sputtering from a residual atmosphere containing 0-4 Torr.

この析着工程中サブストレートを600℃に加.熱する
。この層の放射線結晶分析は式FeXMO3+YS4の
x=0.8,y=0.2の値の場合に相当する組成Fe
MO4S5のサブストレート中に分散したε相の存在を
示した。
During this deposition process, the substrate was heated to 600°C. heat. The radiation crystal analysis of this layer shows that the composition Fe corresponds to the value of x = 0.8, y = 0.2 of the formula FeXMO3 + YS4.
It showed the presence of ε phase dispersed in the MO4S5 substrate.

析着物の定量分析はそれが鉄15.5%、モリブデン6
1.2%、硫黄23.3%を含むことを示す。
Quantitative analysis of the deposit revealed that it was 15.5% iron and 6% molybdenum.
1.2% and 23.3% sulfur.

この組成は第2及び3図の点2によつて具体的に表して
ある。形成した層の負荷50gでのビツカース硬度は約
.650HVである。
This composition is illustrated by point 2 in FIGS. 2 and 3. The Bitkers hardness of the formed layer at a load of 50 g is approximately. It is 650HV.

このようにして被覆された小板はそのほか100時間含
塩噴霧にさらした后何らの表面劣化も示さない。その小
板を実施例1記載の試験条件で化学的に厚さ20μのニ
ツケル層を施こして被覆した鋼を相.手の輪として摩擦
させる試験中に測定した摩擦係数は一定で0.02に等
しく、2時間の試験后の摩耗度合は0.1mgであつた
The platelets coated in this way also show no surface deterioration after being exposed to salt spray for 100 hours. The platelets were coated with steel coated with a 20 μm thick layer of nickel chemically applied under the test conditions described in Example 1. The coefficient of friction measured during the hand wheel friction test was constant and equal to 0.02, and the degree of wear after the 2 hour test was 0.1 mg.

同じ条件下で、鉄40重量%、モリブデン39%、硫黄
21%の組成の鉄−モリブデン−硫黄合金の小板からな
る試験は摩擦係数0.18となり2時間の試験后の摩耗
は53mgであつた。
Under the same conditions, a test consisting of a platelet of iron-molybdenum-sulfur alloy with a composition of 40% iron, 39% molybdenum, and 21% sulfur had a friction coefficient of 0.18 and a wear of 53 mg after 2 hours of testing. Ta.

実施例 3 第2及び3図の点3で表わされる組成、すなわち鉄17
%、モリブデン55%及び硫黄28%の鉄−モリブデン
−硫黄の合金を実施例1記載の方法により調整する。
Example 3 The composition represented by point 3 in Figures 2 and 3, i.e. iron 17
%, 55% molybdenum and 28% sulfur, an iron-molybdenum-sulfur alloy is prepared by the method described in Example 1.

この化合物を微細に砕き鉄粉に鉄85%と鉄−モリブデ
ン−硫黄合金15%との比率で混入し、4500kg/
Cwfの負荷で圧縮して平行六面体の小板を作りこれを
アルゴン雰囲気中で2時間1100℃の温度に加熱する
。上記実施例1記載の試験条件下で試験中に測定した摩
擦係数は一定で0.045に等しく2時間の試験后の摩
耗は0.2mgであつた。
This compound was finely crushed and mixed into iron powder at a ratio of 85% iron and 15% iron-molybdenum-sulfur alloy, and 4500kg/
Parallelepiped platelets are formed by compression under a Cwf load and heated to a temperature of 1100° C. for 2 hours in an argon atmosphere. The coefficient of friction measured during the test under the test conditions described in Example 1 above was constant and equal to 0.045, and the wear after the 2 hour test was 0.2 mg.

鉄85%及び二硫化モリブデン15%の混合物を、同じ
条件で圧縮し加熱し試験して摩擦係数が0.085、2
時間の試験后の摩耗は17.6mgであつた。
A mixture of 85% iron and 15% molybdenum disulfide was compressed and heated under the same conditions and tested, and the coefficient of friction was 0.085.
The wear after the hour test was 17.6 mg.

実施例 4 実施例3のものと同じ鉄−モリブデン−硫黄合金を微細
に粉砕して50μを超えない粒度の粉末を作る。
Example 4 The same iron-molybdenum-sulfur alloy as in Example 3 is finely ground to produce a powder with a particle size not exceeding 50 microns.

この粉末を次に中性の油(半漂白ワセリン26)の油1
00gあたり粉末1gの比率で懸濁させる。実施例1の
試験条件で炭素0.32%の非合金鋼の小板と肌焼、焼
戻しした16NC6鋼の輪とを用いて、上記潤滑剤の存
在における摩擦係数は0.016であり、同じ条件で純
ワセリンを用いると摩擦係数は0.12となり同じ油に
黒鉛1%を加えたものでは摩擦係数は0.07となる。
This powder is then mixed with 1 part of neutral oil (26 parts of semi-bleached petrolatum).
Suspend at a ratio of 1 g of powder per 00 g. Using the test conditions of Example 1 with small plates of non-alloyed steel with 0.32% carbon and rings of case hardened and tempered 16NC6 steel, the coefficient of friction in the presence of the above lubricant was 0.016 and the same If pure petrolatum was used under these conditions, the friction coefficient would be 0.12, and if the same oil was added with 1% graphite, the friction coefficient would be 0.07.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉄−モリブデン−硫黄三成分系平衡状態図。 Figure 1 is an equilibrium diagram of the iron-molybdenum-sulfur ternary system.

Claims (1)

【特許請求の範囲】 1 乾燥状態においてもその材質全体にわたつて摩擦係
数が極めて低い摩擦特性を示す鉄、モリブデン及び硫黄
からなる減摩合金において、それら成分の重量組成が鉄
8.0−26.6%、モリブデン41.0−62.5%
、硫黄23.3−40.5%の範囲にあり、Fe_xM
o_3_+_yS_4(ただしxは0を含まずかつ1以
下、yは0乃至1未満)なる組成に相当する結晶質の母
材中に少なくとも1種の分散相を含み、かつ相手材料と
の摩擦効果の下に反応して相手の表面上に対応する硫化
物を作るのに適していることを特徴とする減摩合金。 2 結晶質マトリックスがFeMO_4S_5の組成に
相当する特許請求の範囲第1項記載の減摩合金。 3 マトリックス中に少なくともFeMo_2S_4が
分散されている特許請求の範囲第1項記載の減摩合金。 4 結晶質マトリックス中に少なくともFeSが分散さ
れている特許請求の範囲第1項記載の減摩合金。 5 結晶質マトリックス中に少なくともFeが分散され
ている特許請求の範囲第1項記載の減摩合金。 6 結晶質マトリックス中に少なくともε相:FeMo
_2が分散されている特許請求の範囲第1項記載の減摩
合金。 7 Moの割合が少なくとも55.0重量%である特許
請求の範囲第1項記載の減摩合金。
[Scope of Claims] 1. An anti-friction alloy consisting of iron, molybdenum and sulfur which exhibits extremely low coefficient of friction throughout the material even in a dry state, the weight composition of these components being iron 8.0-26. .6%, molybdenum 41.0-62.5%
, sulfur in the range of 23.3-40.5%, Fe_xM
o_3_+_yS_4 (where x does not include 0 and is less than or equal to 1, and y is from 0 to less than 1), containing at least one kind of dispersed phase in the crystalline base material, and under the effect of friction with the other material. An anti-friction alloy characterized in that it is suitable for reacting with and forming a corresponding sulfide on the surface of its counterpart. 2. The anti-friction alloy according to claim 1, wherein the crystalline matrix corresponds to the composition of FeMO_4S_5. 3. The anti-friction alloy according to claim 1, wherein at least FeMo_2S_4 is dispersed in the matrix. 4. The anti-friction alloy according to claim 1, wherein at least FeS is dispersed in the crystalline matrix. 5. The anti-friction alloy according to claim 1, wherein at least Fe is dispersed in the crystalline matrix. 6 At least ε phase in the crystalline matrix: FeMo
The anti-friction alloy according to claim 1, wherein _2 is dispersed. 7. Anti-friction alloy according to claim 1, in which the proportion of Mo is at least 55.0% by weight.
JP53135929A 1977-11-07 1978-11-06 antifriction alloy Expired JPS5948857B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR000007733360 1977-11-07
FR7733360A FR2407986A1 (en) 1977-11-07 1977-11-07 ANTIFRICTION ALLOY AND ITS MANUFACTURING PROCESS

Publications (2)

Publication Number Publication Date
JPS54109013A JPS54109013A (en) 1979-08-27
JPS5948857B2 true JPS5948857B2 (en) 1984-11-29

Family

ID=9197320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53135929A Expired JPS5948857B2 (en) 1977-11-07 1978-11-06 antifriction alloy

Country Status (9)

Country Link
US (1) US4261741A (en)
EP (1) EP0001953B1 (en)
JP (1) JPS5948857B2 (en)
BR (1) BR7807281A (en)
CA (1) CA1106649A (en)
DE (1) DE2861370D1 (en)
ES (1) ES474829A1 (en)
FR (1) FR2407986A1 (en)
IT (1) IT1160909B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010049A (en) * 1989-03-24 1991-04-23 The Regents Of The University Of Michigan Modified molybdenum sulfide hydrodesulfurization/hydrodenitrogenation catalysts
AT402227B (en) 1995-05-17 1997-03-25 Chemetall Gmbh SOLID LUBRICANT, ESPECIALLY FOR FRICTION PADS, FRICTION PAD MIXTURES AND FRICTION PADS
US6423419B1 (en) * 1995-07-19 2002-07-23 Teer Coatings Limited Molybdenum-sulphur coatings
US6042949A (en) * 1998-01-21 2000-03-28 Materials Innovation, Inc. High strength steel powder, method for the production thereof and method for producing parts therefrom
JP2003313312A (en) * 2002-04-24 2003-11-06 Nisshinbo Ind Inc Non-asbestos friction material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB747662A (en) * 1952-10-06 1956-04-11 Metro Cutanit Ltd Improvements relating to materials highly resistant to heat and oxidation
US2770527A (en) * 1953-05-28 1956-11-13 Du Pont Ternary ferrous group metal sulfides of molybdenum and tungsten and their preparation
GB794982A (en) * 1954-11-26 1958-05-14 Birmingham Small Arms Co Ltd Improvements in or relating to solid lubricants
US2977302A (en) * 1956-06-29 1961-03-28 Alpha Molykote Corp Method of lubrication employing a mixed metal sulfide lubricant and bearing surface with same applied thereto
GB807909A (en) * 1956-07-06 1959-01-21 Gen Motors Corp Improved porous sintered metal friction element
US2945291A (en) * 1958-11-28 1960-07-19 Gen Motors Corp Frictional material
GB956568A (en) * 1959-07-30 1964-04-29 Gen Electric Solid lubricant
US3008225A (en) * 1959-11-30 1961-11-14 Sk Wellman Co Friction composition
US3479289A (en) * 1967-10-16 1969-11-18 Boeing Co High strength,self-lubricating materials
JPS5130529B1 (en) * 1971-07-09 1976-09-01
JPS4937808A (en) * 1972-08-16 1974-04-08
US4028097A (en) * 1973-03-02 1977-06-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Self-lubricating iron base alloy

Also Published As

Publication number Publication date
US4261741A (en) 1981-04-14
IT7869534A0 (en) 1978-11-06
ES474829A1 (en) 1980-01-16
JPS54109013A (en) 1979-08-27
BR7807281A (en) 1979-06-12
FR2407986A1 (en) 1979-06-01
EP0001953A1 (en) 1979-05-16
FR2407986B1 (en) 1980-06-20
IT1160909B (en) 1987-03-11
DE2861370D1 (en) 1982-01-28
EP0001953B1 (en) 1981-11-25
CA1106649A (en) 1981-08-11

Similar Documents

Publication Publication Date Title
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
US6689424B1 (en) Solid lubricant coatings produced by thermal spray methods
US5643531A (en) Ferrous alloy composition and manufacture and coating methods of mechanical products using the same
US4101319A (en) Plasma deposition welding powder for producing wear resistant layers
Cui et al. Microstructure and tribological property of CoCrFeMoNi High entropy alloy treated by ion sulfurization
KR20000005819A (en) Plain bearing and method for the production thereof
RU2359051C2 (en) Charge for antifriction composite material on basis of aluminium and sintered antifriction composite material on basis of aluminium, received with its application
JPH05230670A (en) Multilayer composite sliding material excellent in seizing resistance
Xie et al. Corrosion Resistance to Molten Zinc of a Novel Cermet Coating Deposited by Activated Combustion High-Velocity Air Fuel (AC-HVAF)
Namer et al. The influence of nano particles additive on tribological properties of aa2024-t4 coated with tin or sin thin films
JPS5948857B2 (en) antifriction alloy
US3993478A (en) Process for dispersoid strengthening of copper by fusion metallurgy
JP3091690B2 (en) Method for producing TiB2-based coating
Lobova et al. Effect of Substrate Condition on the Structural and Tribotechnical Characteristics of Molybdenum Diselenide (MoSe 2) Coatings
US4495252A (en) Wear-resistant metallic article
Umanskii Titanium carbonitride composite with iron―chromium binder
Hui et al. A study of wear resistance of a new brush-plated alloy Ni-Fe-WS
JP3370785B2 (en) Copper-based sintered sliding material
Zhang et al. Tribological properties of lead-free Cu–FeS composites under dry sliding condition
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JPS5933186B2 (en) Sliding material with thermal spray coating
Burkov et al. Wear resistance of Fe 33 Ni 8 Cr 8 W 8 Mo 8 Co 8 C 16 B 11 metallic glass-based electrospark coatings
JPS63282221A (en) Manufacture of composite sintered material
JP7488527B2 (en) Sliding component and manufacturing method thereof
JP3294209B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding characteristics