JPS5948846B2 - Method for manufacturing large diameter steel pipes with excellent strength and toughness - Google Patents

Method for manufacturing large diameter steel pipes with excellent strength and toughness

Info

Publication number
JPS5948846B2
JPS5948846B2 JP5680176A JP5680176A JPS5948846B2 JP S5948846 B2 JPS5948846 B2 JP S5948846B2 JP 5680176 A JP5680176 A JP 5680176A JP 5680176 A JP5680176 A JP 5680176A JP S5948846 B2 JPS5948846 B2 JP S5948846B2
Authority
JP
Japan
Prior art keywords
steel
toughness
pipe
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5680176A
Other languages
Japanese (ja)
Other versions
JPS52139616A (en
Inventor
甫 中杉
浩昭 増井
哲雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5680176A priority Critical patent/JPS5948846B2/en
Publication of JPS52139616A publication Critical patent/JPS52139616A/en
Publication of JPS5948846B2 publication Critical patent/JPS5948846B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は強度と靭性の優れた大径鋼管の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing large diameter steel pipes with excellent strength and toughness.

近年天然ガス、原油の大陸輸送の発展に伴い、輸送パイ
プの大径化及びそれに伴う厚肉化の方向へと進行してい
る。
In recent years, with the development of continental transportation of natural gas and crude oil, the diameter of transportation pipes has become larger and the walls thereof have become thicker.

これは一方においては厚肉太径管の造管成形の困難さを
露顕させ、他方においてそれに伴う強度及び靭性への高
い要求を呼び起すことにもなってきている。
On the one hand, this has exposed the difficulty of forming thick-walled, large-diameter pipes, and on the other hand, it has also brought about higher demands for strength and toughness.

とりわけ降伏点が37kg/mA以上で、板厚が15m
m〜80mm程度の大径管で、かつ高い破壊靭性が要求
されると通常のUO成形等の冷間の造管方法では必しも
容易ではない。
In particular, the yield point is 37 kg/mA or more and the plate thickness is 15 m.
If the pipe has a large diameter of approximately 80 mm and requires high fracture toughness, it is not necessarily easy to use a cold pipe forming method such as ordinary UO forming.

UO造管法とは、平板となった熱延鋼板をまずエツジブ
レイナー(edge planer)で板の両端の開先
加工をし、次にクリンピングプレス (crimping press)で板端を曲げ加工し
、さらにUプvス(U −ing press)で鋼板
をU形にし、続いてOプL/ス(0−ing pres
s)でO形にし、さらに内面及び外面のシーム(sea
m)溶接で縫合を行い、さらに拡管工程(mechan
icalexpanding)、水圧試験、そして各種
非破壊検査を行って完全なパイプとして出荷するもので
ある。
The UO pipe making method involves first creating a bevel on both ends of a flat hot-rolled steel plate using an edge planer, then bending the ends using a crimping press. Furthermore, the steel plate is made into a U shape using U-ing press, and then O-ing press is applied.
s) to form an O shape, and then seam the inner and outer surfaces (sea
m) Perform suturing by welding, and then perform the pipe expansion process (mechan).
icalexpanding), water pressure tests, and various non-destructive tests before being shipped as complete pipes.

このUO造管法はとりわけ厚板の大径管の製造方法とし
ては能率、精度共最も優れていると考えられており、今
後も大径管の製造の主流を占めるものと考えられる。
This UO pipe manufacturing method is considered to be the most efficient and accurate method for manufacturing thick plate large-diameter pipes, and is expected to continue to be the mainstream method for manufacturing large-diameter pipes in the future.

ところがこのUO造管法も近年のパイプの厚肉大径化、
高強度化に対してはがなり成形の点で限界にきているこ
とが知られている。
However, this UO pipe manufacturing method has also become increasingly thicker and larger in diameter in recent years.
It is known that the strength has reached its limit in terms of elastic forming.

その最も重要な技術上の問題点はOプレスにおける必要
量のアップセット(up−set)率が厚肉大径管では
頗る与えにくいということである。
The most important technical problem is that the required up-set rate in the O-press is extremely difficult to achieve in thick-walled, large-diameter pipes.

つまりOプレスで真円度の高い円形にパイプがなるには
円周方向に十分な圧縮歪を与えることが必要であり、こ
の圧縮歪をアップセット率と称している。
In other words, in order for the pipe to form a highly circular shape using an O-press, it is necessary to apply sufficient compressive strain in the circumferential direction, and this compressive strain is called the upset rate.

その定義は素材板巾を2b、素材板厚をt。、パイプ直
径(外径)をD、円周率をπとするときb 7゛7プパ7ト率=(、(D to)−1)X100(
%)で表わす。
The definition is that the width of the material is 2b and the thickness of the material is t. , when the pipe diameter (outer diameter) is D and the circumference is π, then b 7゛7pupa7to ratio = (, (D to) - 1) x 100 (
%).

通常0.2%以上程度のアップセット率を与えてやる必
要があるが厚肉大径管ではOプレスの能力上十分なアッ
プセット率を与えることができないことも考えられる。
Normally, it is necessary to give an upset rate of about 0.2% or more, but it may not be possible to give a sufficient upset rate in thick-walled, large-diameter pipes due to the capacity of the O press.

さらに高強度になるほど必要なアップセット率は従来材
より高くする必要がある。
Furthermore, as the strength increases, the required upset rate must be higher than that of conventional materials.

現状のOプレス荷重は3000Ton前後であり、物理
的に厚肉材のアップセット率は低く抑えられてしまう。
The current O-press load is around 3000 tons, which physically limits the upset rate of thick materials to a low level.

本発明はかかる難題を一挙に解決すべき画期的な厚肉大
径管の製造方法である。
The present invention is an epoch-making method for manufacturing thick-walled, large-diameter pipes that solves these problems all at once.

すなわち、Nb、■、TiおよびMoの1種以上を含み
かつ鋼中水素が4.5ppm以下とした鋼を制御圧延(
Controlled Rolling、以下CR)を
施すことにより降伏点及び降伏比を下げた厚鋼板を製造
し、これをUO成形法で造管した後に再加熱を行うもの
でこれでUO成形が容易にできるばかりでなく再加熱に
より強度及び靭性の両方が飛躍的に向上することが明か
となった。
That is, a steel containing one or more of Nb, ■, Ti, and Mo and containing hydrogen in the steel of 4.5 ppm or less was subjected to controlled rolling (
Controlled Rolling (hereinafter referred to as CR) is applied to produce a thick steel plate with a lower yield point and yield ratio, which is then reheated after being formed into a pipe using the UO forming method, which makes UO forming easier. It has become clear that both strength and toughness are dramatically improved by reheating.

たとえば本発明の製造条件よりなるものは降伏点が再加
熱によりものによっては10kg/m4近く上昇するの
で再加熱後の強度保証さえすればUO造管時にはそれよ
り降伏点が約10kg/−程度低い材料の成形が可能と
なり、又厚肉大径管の成形力ははるかに軽減される。
For example, the yield point of products made under the manufacturing conditions of the present invention increases by nearly 10 kg/m4 due to reheating, so as long as the strength after reheating is guaranteed, the yield point will be about 10 kg/- lower than that when making UO pipes. It becomes possible to form the material, and the forming force for thick-walled, large-diameter pipes is much reduced.

本発明で重要なことは、冶金学的機構と機械加工学との
組合せが周到であることが必要不可欠な点である。
What is important in the present invention is that it is essential that the metallurgical mechanism and machining are carefully combined.

つまり本成分系ではCRままでは降伏比(降伏点÷引張
強さ)は0.85以下程度と低いが、組織の中のマルテ
ンサイトやベイナイト等の変態生成物の転位欠陥が造管
後の再加熱工程により炭素C1窒素Nでピンニング(p
inning)されると降伏点が急上昇する。
In other words, in this component system, the yield ratio (yield point ÷ tensile strength) is as low as 0.85 or less if CR is used, but the dislocation defects of transformation products such as martensite and bainite in the structure regenerate after pipe forming. Pinning (p
(inning), the yield point increases rapidly.

この場合、水素との関係も重要であり、鋼中水素濃度が
4.5ppmを越えるとC,Nの拡散活動が鈍り再加熱
工程でも十分な降伏点上昇が認められない。
In this case, the relationship with hydrogen is also important; if the hydrogen concentration in the steel exceeds 4.5 ppm, the diffusion activity of C and N slows down, and a sufficient rise in yield point is not observed even in the reheating process.

これは従来の平板ではあまり顕著ではないが、パイプは
内面に圧縮歪を有しており、これがC,Hの格子間拡散
に影響を与えるものでとりわけ低水素の条件が必要とな
ってくるものと思われる。
This is not so noticeable in conventional flat plates, but pipes have compressive strain on their inner surfaces, which affects the interstitial diffusion of C and H, and especially in pipes that require low hydrogen conditions. I think that the.

これ以外にも水素が4.5p¥mを越えるとCR後に鋼
板に鎖点が出やすいことになることも一つの理由である
In addition to this, another reason is that if hydrogen exceeds 4.5 p\m, chain points are likely to appear on the steel plate after CR.

なお水素は低いほど上記特性が良好であり、板厚25m
m超では3.5p−以下が好ましい。
The lower the hydrogen content, the better the above characteristics.
When it exceeds m, it is preferably 3.5 p- or less.

なお脱水素処理には真空脱ガス処理やスラブを長時間灼
熱徐冷する方法等通常用いられている方法を適宜採用す
ればよい。
Note that for the dehydrogenation treatment, a commonly used method such as a vacuum degassing treatment or a method of slowly cooling a slab under scorching heat for a long time may be appropriately employed.

それ以外の製造条件の限定理由を以下に述べる。The reason for limiting other manufacturing conditions will be described below.

Cは鋼の強化に重要であり、最低0.01%は必要であ
る。
C is important for strengthening steel, and a minimum content of 0.01% is required.

一方0.20%超も含有されると溶接性の劣下が著しい
On the other hand, if the content exceeds 0.20%, weldability will be significantly deteriorated.

ところで本発明のようにNb、V、TiあるいはMOの
微細炭化物、炭窒化物を析出硬化のみならずオーステナ
イト粒の成長抑制にも有効に利用する場合はそれらの元
素を十分に固溶させるためにむしろCは0.10%以下
程度が好ましい。
By the way, when fine carbides and carbonitrides of Nb, V, Ti, or MO are effectively used not only for precipitation hardening but also for suppressing the growth of austenite grains as in the present invention, it is necessary to sufficiently dissolve these elements in solid solution. Rather, it is preferable that C be about 0.10% or less.

変態転位へのCの拡散を容易にし、かつ降伏点上昇を十
分確保するためには0.03%〜0.08%が最も好ま
しい。
The most preferable range is 0.03% to 0.08% in order to facilitate the diffusion of C into transformation dislocations and to ensure a sufficient rise in yield point.

Siは鋼の脱酸の補助に有効であり、最低0.03%は
必要である。
Si is effective in assisting in deoxidizing steel, and a minimum content of 0.03% is required.

一方強度向上にも有効に働くが、1.0%超では溶接性
の劣下が著しい。
On the other hand, it works effectively to improve strength, but if it exceeds 1.0%, weldability deteriorates significantly.

Mnは強度向上に有効であり、最低0.5%は必要であ
る。
Mn is effective in improving strength, and a minimum content of 0.5% is required.

一方5.0%超も含まれるとMnの偏析で変態点の低下
の著しい領域が生じ、靭性劣下が大きい。
On the other hand, if the content exceeds 5.0%, Mn segregation causes regions where the transformation point is significantly lowered, resulting in a significant deterioration in toughness.

強度と靭性のバランスから最も好ましいMnは1.0−
2.2%テアル。
The most preferable Mn is 1.0- from the balance of strength and toughness.
2.2% theal.

AIは鋼の脱酸に不可欠であり、最低0.002%は必
要である。
AI is essential for deoxidizing steel, and a minimum of 0.002% is required.

一方0.3%超ではA t 203のクラスターによる
ヘゲ疵の多発があり好ましくない。
On the other hand, if it exceeds 0.3%, it is not preferable because it causes frequent sagging defects due to A t 203 clusters.

Nb、■、TiおよびMoは本発明の主要な元素であり
、圧延後に微細炭化物、炭窒化物を形成し、鋼の引張強
さの向上に寄与し、それにはその1種以上の合計を最低
0.005%以上含むことが必要である。
Nb, ■, Ti, and Mo are the main elements of the present invention, and they form fine carbides and carbonitrides after rolling and contribute to improving the tensile strength of steel. It is necessary to contain 0.005% or more.

一方1.0%超も含まれると粗大析出物が生成し、また
圧延前の加熱時の溶解量も少くむしろ強度は飽和し、靭
性のみ劣下する。
On the other hand, if the content exceeds 1.0%, coarse precipitates will form, and the amount dissolved during heating before rolling will be small, rather the strength will be saturated and only the toughness will deteriorate.

なお、0.8%以下であれば溶接性の劣下も大きくなく
好ましい。
Note that if the content is 0.8% or less, weldability will not deteriorate significantly, which is preferable.

強度と靭性の最も好ましいバランスは0.01〜0.5
0%である。
The most preferable balance between strength and toughness is 0.01-0.5
It is 0%.

Sは本発明では特定しないが、低いほど靭性に好ましく
0.010%以下程度で特に靭性の向上が認められる
Although S is not specified in the present invention, the lower the S content, the better it is for toughness, and when it is about 0.010% or less, the toughness is particularly improved.

Pもあえて特定しないが、再加熱で焼戻し脆化をなるべ
く小さく抑えるには0.020%以下が好ましい。
Although P is not specified intentionally, it is preferably 0.020% or less in order to suppress temper embrittlement due to reheating as small as possible.

Ni、 Cu、 Cr、 CoからなるA群の元素は比
較的靭性の劣下を大きくせずに強度、とくに引張強さを
向上させるのに有効でありそれにはその1種以上を合計
で0.03%以上含むことが好ましい。
Group A elements consisting of Ni, Cu, Cr, and Co are effective in improving strength, especially tensile strength, without causing a relatively large deterioration in toughness. It is preferable that the content is 0.3% or more.

一方旬%超では鋼の変態点を下げて、炭窒化物の粗大析
出を促進し強度、靭性上好ましくない。
On the other hand, if it exceeds 1%, it lowers the transformation point of the steel and promotes coarse precipitation of carbonitrides, which is unfavorable in terms of strength and toughness.

強度と靭性の最も好ましいバランスからは0.1〜4.
5%が良い。
The most preferable balance between strength and toughness is 0.1 to 4.
5% is good.

さらにW、BからなるB群の元素は微細窒化物を形成し
、Nb、 V、 TiあるいはMoはど有効ではないが
加熱時のオーステナイト粒成長抑制に有効であり、それ
にはその1種以上を合計で0.0005%以上必要であ
る。
Furthermore, elements of the B group consisting of W and B form fine nitrides, and although Nb, V, Ti, and Mo are not effective, they are effective in suppressing austenite grain growth during heating. A total of 0.0005% or more is required.

一方、0.30%超も含まれると粗大窒化物生成により
Nb、 V、 TiあるいはM。
On the other hand, if the content exceeds 0.30%, coarse nitrides will be formed, resulting in Nb, V, Ti or M.

の効果を半減するので好ましくない。This is not preferable because it reduces the effect by half.

稀土類元素、Ca、 Mg、 ZrからなるC群の元素
は硫化物の展伸化を防止し、衝撃値の向上に有効であり
、それには1種以上を合計で0.001%以上必要であ
る。
Group C elements consisting of rare earth elements, Ca, Mg, and Zr are effective in preventing the expansion of sulfides and improving the impact value, and for this purpose, one or more of them is required in a total amount of 0.001% or more. be.

一方0.1%超も含まれるとそれの酸化物が粗大化しす
ぎてがえって靭性の劣下を招く。
On the other hand, if it is contained in an amount exceeding 0.1%, its oxide becomes too coarse, resulting in a decrease in toughness.

次に製造工程の限定理由を述べる。Next, we will discuss the reasons for the limitations on the manufacturing process.

まず圧延条件であるが、950℃以下の累積圧下率が3
0%未満と低すぎると変態生成物が粗大化しすぎて靭性
の劣下が大きい。
First, regarding the rolling conditions, the cumulative reduction rate below 950℃ is 3
If it is too low, such as less than 0%, the transformation product becomes too coarse, resulting in a large deterioration in toughness.

95%超では圧延時にNb、 V、 TiあるいはMo
の炭化物、炭窒化物の析出が促進されすぎて圧延後の降
伏点の低下がさほど期待できないばかりか、再加熱工程
時に必要なC,Nの有効量を減らしてしまう。
If it exceeds 95%, Nb, V, Ti or Mo is added during rolling.
Precipitation of carbides and carbonitrides is promoted so much that not only can the yield point after rolling not be expected to decrease much, but also the effective amounts of C and N required during the reheating process are reduced.

要はCRで微細なフェライト地の組織と第2相というべ
き微細な変態生成物を作り、さらに適度のNb、■、T
iあるいはMoの炭化物、炭窒化物を形成する必要があ
り、それに最適な950℃以下の累積圧下率は50〜8
0%である。
The key is to use CR to create a fine ferrite structure and a fine transformation product that can be called a second phase, and also to create a suitable amount of Nb, ■, and T.
It is necessary to form carbides and carbonitrides of i or Mo, and the optimal cumulative reduction rate below 950°C is 50 to 8
It is 0%.

なお圧延は必しもオーステナイト域で行う必要はなく、
フェライトが50%以下程度の2相域圧延でもかまわな
い。
Note that rolling does not necessarily have to be carried out in the austenite region;
Rolling in a two-phase region with a ferrite content of about 50% or less may be used.

しかし、590℃未満であるとフェライトが50%超の
低温の2相域になるので降伏比が高くなって本発明の目
的は達っせられない。
However, if the temperature is less than 590° C., the ferrite becomes a low-temperature two-phase region of more than 50%, resulting in a high yield ratio and the object of the present invention cannot be achieved.

造管後の再加熱工程の加熱温度は圧延後の変態生成物中
の転位欠陥にC,Nが拡散しうればよいのであるからそ
れには100℃以上であればよい。
The heating temperature in the reheating step after pipe making is sufficient to allow C and N to diffuse into dislocation defects in the transformed product after rolling, so it is sufficient that it is 100° C. or higher.

しかしながら、Nb、■、TiあるいはMoの存在下で
はそれらの親和力に基く拡散の困難さがあり、一方孤島
状の変態生成物間を拡散移動するためには温度は350
℃以上が好ましい。
However, in the presence of Nb, ■, Ti, or Mo, diffusion is difficult due to their affinity; on the other hand, in order to diffuse between isolated transformation products, the temperature is 350°C.
℃ or higher is preferable.

一方750℃超では変態生成物が分解してしまい強度の
低下がある。
On the other hand, if it exceeds 750°C, the transformation product will decompose, resulting in a decrease in strength.

またNb、 V、 TiおよびMoの微細炭化物、炭窒
化物の粗大化による強度低下を防ぐには650℃以下が
好ましい。
Further, the temperature is preferably 650° C. or lower in order to prevent a decrease in strength due to coarsening of fine carbides and carbonitrides of Nb, V, Ti, and Mo.

さらに本発明で特筆すべき点は再加熱により単に降伏点
の上昇があるだけでなく、靭性、とりわけ破壊伝播停止
特性の著しい向上が認められることでこれは理由は必し
も明確ではないが、一つには靭性に有害なNb、V、T
iあるいはMoの超微細析出物が適度に粗大化すること
と、一方変態生成物が、C,Nでピンニングされてさら
に硬くなり、地のフェライト等の組織との硬度差を大き
くすることにより、セパレーションを助長し、従って破
壊伝播停止特性が向上することの二点が考えられる。
Furthermore, what is noteworthy about the present invention is that reheating not only increases the yield point, but also significantly improves the toughness, especially the fracture propagation arresting properties, although the reason for this is not necessarily clear. One is Nb, V, and T, which are harmful to toughness.
By moderately coarsening the ultrafine precipitates of i or Mo, and by pinning the transformation products with C and N, they become even harder, increasing the hardness difference with the underlying ferrite structure. Two possible reasons are that it promotes separation and therefore improves fracture propagation arresting properties.

この靭性向上に最も適した温度は450℃〜650℃で
ある。
The most suitable temperature for improving this toughness is 450°C to 650°C.

以上の点から強度と靭性のバランスから最も好ましい温
度範囲は450℃〜650℃である。
From the above points, the most preferable temperature range from the balance of strength and toughness is 450°C to 650°C.

同様の理由で保定時間は1分〜10時間の範囲が好まし
い、強度と靭性のバランスからは10分〜2時間が最も
好ましい。
For the same reason, the holding time is preferably in the range of 1 minute to 10 hours, and most preferably 10 minutes to 2 hours from the viewpoint of the balance between strength and toughness.

なお、ここで保定とは必しもある温度に一定に保定する
意味ではなく最高温度に到達後直ちに冷却開始しても良
く、要するに最高温度が上記の温度範囲に入っており、
かつ特定温度範囲内での累積の保持時間が上記の特定時
間内に入っていればよい。
Note that holding here does not necessarily mean holding the temperature constant, but cooling may start immediately after reaching the maximum temperature; in short, the maximum temperature is within the above temperature range,
Moreover, it is sufficient that the cumulative holding time within the specific temperature range falls within the above-mentioned specific time.

この場合は累積保持時間を保定時間と呼ぶこととする。In this case, the cumulative retention time will be referred to as retention time.

なお、本発明の対象とする板厚は15mm〜80mmで
ある。
Note that the plate thickness targeted by the present invention is 15 mm to 80 mm.

つまり本発明の目的から15mm未満は容易にUO成形
できるので発明の対象となりえず、一方80mm超では
仮に本発明の方法に従ってもUO成形は不可能なので発
明の対象外である。
In other words, from the purpose of the present invention, a diameter of less than 15 mm cannot be covered by the invention because UO molding can be easily performed, whereas a diameter of more than 80 mm cannot be subjected to UO molding even if the method of the present invention is followed, so it is outside the scope of the invention.

強度、靭性とUO成形性のバランスから好ましい板厚範
囲は25〜48mm程度である。
In view of the balance between strength, toughness and UO formability, the preferred plate thickness range is about 25 to 48 mm.

一方、再加熱工程後の降伏点は37kg/−以上を対象
とする。
On the other hand, the yield point after the reheating step is 37 kg/- or more.

さらに板厚25〜48mmに対する再加熱工程後の降伏
点は40〜63kg/mIt程度である。
Further, the yield point after the reheating process for a plate thickness of 25 to 48 mm is about 40 to 63 kg/mIt.

次に本発明の実施例を以下に示す。Next, examples of the present invention will be shown below.

〔実施例 1〕 第1表に示す化学成分の鋼を転炉(El、B2は電気炉
)で出鋼した。
[Example 1] Steel having the chemical composition shown in Table 1 was tapped in a converter (El and B2 are electric furnaces).

このうちB1、B2、C1゜C2、El、B2、Fl、
F2、■、K、 M、 N、 P、 Qは真空脱ガス処
理を施し、G1、G2、G3は特殊精錬処理で脱燐処理
後真空脱ガス処理を施した。
Among these, B1, B2, C1°C2, El, B2, Fl,
F2, ■, K, M, N, P, and Q were subjected to vacuum degassing treatment, and G1, G2, and G3 were subjected to vacuum degassing treatment after dephosphorization treatment in special refining treatment.

なお、Dl、B2、K、 L、 0以外は造塊、分塊圧
延法でスラブとし一方D1、B2、K、L、0は連続鋳
造法でスラブとした。
Note that the slabs other than Dl, B2, K, L, and 0 were made into slabs by ingot-forming and blooming rolling methods, while the slabs for D1, B2, K, L, and 0 were made into slabs by continuous casting.

このうちA1、A2、El、B2、G1、G2、Hl、
B2、J、Pは分塊圧延後にスラブの24時間均熱徐冷
をし、一方DI、B2、L、 0もスラブの24時間均
熱徐冷を行っている。
Among them, A1, A2, El, B2, G1, G2, Hl,
For B2, J, and P, the slabs were soaked and slowly cooled for 24 hours after blooming, while for DI, B2, L, and 0, the slabs were also soaked and slowly cooled for 24 hours.

なお、真空脱ガス処理、スラブの長時間均熱徐冷はいず
れも脱水素処理の一種でもある。
Note that vacuum degassing treatment and long-time soaking and slow cooling of slabs are both types of dehydrogenation treatment.

熱延条件、熱延板の板厚、UO成形のOプレス時の限界
アップセット率、造管直径、熱延板の降伏点と母材靭性
及びUO成成形前再加熱処理後パイプの降伏点と母材靭
性(なお、UOO形後再加熱処理をしない従来法のパイ
プはUOO形後の降伏点及び母材靭性)及びUOO形後
の再加熱処理条件をそれぞれ第1表に示す。
Hot rolling conditions, thickness of hot rolled sheet, limit upset rate during O pressing of UO forming, pipe forming diameter, yield point and base material toughness of hot rolled sheet, yield point of pipe after reheating treatment before UO forming Table 1 shows the yield point and base material toughness (yield point and base material toughness after UOO forming for conventional pipes that do not undergo reheating after UOO forming) and reheating treatment conditions after UOO forming.

なお、当実験においてはここでアップセット率が0.2
0%未満のパイプは形状性が悪かった。
In addition, in this experiment, the upset rate was 0.2.
Pipes with less than 0% had poor shape.

なお、引張試験はAPI引張試1@片(圧延直角方向)
で行い、降伏点は0.5%under 1oadノ測定
である。
In addition, the tensile test is API tensile test 1 @ piece (direction perpendicular to rolling).
The yield point was measured at 0.5% under 1 oad.

シャルピー試験は2mmV1ツチ衝撃試験(圧延直角方
向)である。
The Charpy test is a 2 mm V1 impact test (in the direction perpendicular to rolling).

DWTT (Drop WeightTear Te5
t)試験(圧延直角方向)は85%5ATT(Shea
r Area Transition Tempera
ture)と言ってAPI法で85%延性破面率を示す
試験温度で評価し、この温度の低いほど破壊伝播停止特
性が優れることを示す。
DWTT (Drop WeightTear Te5
t) Test (direction perpendicular to rolling) is 85% 5ATT (Shea
r Area Transition Tempera
It is evaluated at a test temperature showing a ductile fracture ratio of 85% by the API method, and the lower this temperature is, the better the fracture propagation arresting property is.

さて、第1表に示すように本発明の化学成分、製造工程
からなるものはとりわけ再加熱処理を行ったパイプでの
強度、靭性が造管前つまり熱延板のそれよりはるかに向
上することがわかる。
Now, as shown in Table 1, the chemical composition and manufacturing process of the present invention significantly improves the strength and toughness of the reheated pipe compared to that of the hot-rolled sheet before pipe forming. I understand.

一方、H量が4.5ppnはり多いA3、G3はいずれ
も他の条件は本発明の条件にあるがパイプの強度、靭性
の特性は熱延板のそれに比べてさほど向上していない。
On the other hand, in A3 and G3, which have a higher H content by 4.5 ppn, the other conditions are within the conditions of the present invention, but the strength and toughness characteristics of the pipe are not significantly improved compared to those of the hot rolled sheet.

一方、化学成分が本発明の中に入っていても製造工程が
本発明外の0. P、又はその逆のQ、 Rはいず
れもパイプの強度、靭性が劣っている。
On the other hand, even if the chemical components are included in the invention, the manufacturing process is outside the invention. P, or vice versa, Q and R, both have inferior pipe strength and toughness.

なお、水素誘起割れ性を表わすBP (British
Petroleum)テストでは第1表の本発明鋼のう
ちDl、El、Fl、G1、■、L、 Mはいずれもク
ラックフリーであり、他の比較鋼はストレート・ワレま
たはステップワイズクラックが若干見られた。
In addition, BP (British
Petroleum) tests showed that among the invention steels in Table 1, Dl, El, Fl, G1, ■, L, and M were all crack-free, while other comparative steels showed slight straight cracks or stepwise cracks. Ta.

〔実施例 2〕 第2表に示す化学成分の鋼を実施例1と同様の試験を行
なった。
[Example 2] The same tests as in Example 1 were conducted using steel having the chemical composition shown in Table 2.

その結果を第2表に示す。第2表に示すように本発明鋼
X1は熱延板の降伏点が低く、従ってOプレス時のアッ
プセット率も低くOプレスが容易でパイプの形状性も良
好であり、かつ再加熱処理によりパイプの降伏点、靭性
が大変向上している。
The results are shown in Table 2. As shown in Table 2, the present invention steel The yield point and toughness of the pipe are greatly improved.

一方、比較鋼のうち、Yはパイプの降伏点はXlと同程
度であるが本発明の方法によらないので熱延板の降伏点
が高すぎてOプレス時のアップセット率が低くなり、O
プレスが困難で、従ってパイプの形状性は悪い。
On the other hand, among the comparative steels, the pipe yield point of Y is similar to that of Xl, but since the method of the present invention is not applied, the yield point of the hot rolled sheet is too high and the upset rate during O-pressing is low. O
It is difficult to press and therefore the shape of the pipe is poor.

以上に示したように本発明は強度が高くかつ高い靭性を
必要とする厚肉大径管の製造に極めて有効である。
As shown above, the present invention is extremely effective in manufacturing thick-walled, large-diameter pipes that require high strength and high toughness.

なお、本発明の原理から考えても本発明は必しもUO成
形法にもとすくパイプの製造のみに適用されるだけでな
くスパイラルパイプや他の中、小径管へも利用すること
は有用である。
Furthermore, considering the principle of the present invention, the present invention is not necessarily applied only to the production of pipes using the UO forming method, but it is also useful to use it for spiral pipes and other medium and small diameter pipes. It is.

工程等から考えてUO成形法にもとすく大径パイプに適
用されることが最も有用であることは言うまで゛もない
It goes without saying that in view of the process, etc., it is most useful to apply the UO molding method to large diameter pipes.

なお、UO成形後の加熱処理の方法はいがなる方法でも
良く、とくにパイプ全長に均一な温度を必要条件として
要求するものではないことを付記したい。
It should be noted that any heat treatment method after UO molding may be used, and that a uniform temperature over the entire length of the pipe is not particularly required.

このため本発明の工業的価値はさらに広められるものと
考えられる。
Therefore, it is believed that the industrial value of the present invention will be further expanded.

また本発明のパイプは水素誘起ワレ性への抵抗力も大き
いことを付記しておく。
It should also be noted that the pipe of the present invention also has high resistance to hydrogen-induced cracking.

〔実施例 3〕 第3表に示す化学成分の鋼を転炉で出鋼真空脱ガス処理
を行った。
[Example 3] Steel having the chemical composition shown in Table 3 was tapped in a converter and subjected to vacuum degassing treatment.

ここでZは連続鋳造法、Wは通常の造塊・分塊圧延法で
スラブとした。
Here, Z is a continuous casting method, and W is a slab made by a normal ingot-forming/blurring rolling method.

熱延条件、熱延板の板厚、モナカ方式のエルボ(Elb
ow)管のプレス成形及び溶接後の寸法、成骨後の再加
熱処理条件、さらに熱延板の材質及び最終製品のエルボ
管の材質を第4表に示す。
Hot rolling conditions, hot rolled sheet thickness, Monaca method elbow (Elb
ow) Table 4 shows the dimensions of the pipe after press forming and welding, the reheating treatment conditions after bone formation, the material of the hot rolled plate, and the material of the elbow pipe of the final product.

なお、ここでエルボ管の形状性は管端の真円度Dmax
−Dmin 〔Xl0Q(%)、ここで O Dmax :最大外径、Dmin :最小外径、Do:
製造目標外径〕で表わし、それの小さい方が形状は良好
であり、通常1%以下であれば製品として十分である。
In addition, here, the shape of the elbow tube is determined by the roundness Dmax of the tube end.
-Dmin [Xl0Q (%), where O Dmax: maximum outer diameter, Dmin: minimum outer diameter, Do:
The smaller the outer diameter, the better the shape, and usually 1% or less is sufficient for the product.

ここで溶接は入熱量が外面45KJ/cm、内面40K
J/cmの潜弧溶接である。
Here, the heat input for welding is 45KJ/cm on the outside and 40K on the inside.
J/cm submerged arc welding.

又、ここでプレス成形はWは常温における冷間プレスで
あり、Zは常温における冷間プレス及び石00℃に保定
後の温間プレスである。
Further, in the press forming, W is cold pressing at room temperature, and Z is cold pressing at room temperature and warm pressing after holding the stone at 00°C.

第3表、第4表に示すように本発明は強度及び亀裂伝播
停止特性の優れたモナカ方式のエルボ管等のフイツテイ
ンダス(Fittings)の製造にも極めて有効であ
り、少いプレス所要力で高強度、高靭性、かつ形状性の
優れた製品が製造可能である。
As shown in Tables 3 and 4, the present invention is extremely effective in manufacturing fittings such as Monaca type elbow pipes, which have excellent strength and crack propagation arresting properties, and can produce high-quality fittings with a small press force. It is possible to manufacture products with excellent strength, high toughness, and shape.

但し、500℃の温間プレスでは靭性はやや劣下してい
る。
However, the toughness is slightly degraded by warm pressing at 500°C.

なお、フイツテインダスは言うまでもなく厚肉大径鋼管
の一種であり、寒冷地のガスラインパイプのポンプステ
ーション回りに使用される。
Needless to say, Fitzteindus is a type of thick-walled, large-diameter steel pipe that is used around pump stations for gas line pipes in cold regions.

Claims (1)

【特許請求の範囲】 1C:0.01〜0.20%、Si : 0.03〜1
.0%、Mn:0.5〜5.0%、Al : 0.00
2〜0.30%を含み、さらにNb、 V、 Tiおよ
びMoの1種以上を計0.005〜1.0%を含み、か
つ鋼中水素量が4.5ppmJ!下とし、残部Feおよ
び不可避不純物よりなる鋼を、950℃以下の累積圧下
率が30〜95%で、仕上げ温度が590℃以上となる
ように熱間圧延して板厚15mm〜80mmの鋼板とな
し、該鋼板を成形し溶接して鋼管となした後、温度10
0℃〜750℃で保定時間1分〜10時間の加熱処理を
施すことを特徴とする強度と靭性の優れた大径鋼管の製
造方法。 2C:0.01〜0.20%、Si : 0.03〜1
.0%、Mn:0.5〜5.0%、AI : 0.00
2〜0.30%を含み、さらにNb、 V、 Tiおよ
びMoの1種以上を計0.005〜1.0%を含み、さ
らにNi、 Cu、 Cr、 CoからなるA群の元素
の1種以上を計0.03〜10%、B、 WからなるB
群の元素の1種以上を計0.0005〜0.30%、稀
土類元素、Ca、 Mg、 Zrからなる0群の元素の
1種以上を計0.001〜0.1%の各群のいずれか1
群又は2群以上を含み、かつ鋼中水素量が4.5pIl
rr1以下とし、残部Feおよび不可避不純物よりなる
鋼を、950℃以下の累積圧下率が30〜95%で、仕
上げ温度が590℃以上となるように熱間圧延して板厚
15mm〜80mmの鋼板となし、該鋼板を成形し、溶
接して鋼管となした後、温度100℃〜750℃で保定
時間1分〜10時間の加熱処理を施すことを特徴とする
強度と靭性の優れた大径鋼管の製造方法。
[Claims] 1C: 0.01-0.20%, Si: 0.03-1
.. 0%, Mn: 0.5-5.0%, Al: 0.00
2 to 0.30%, and further contains a total of 0.005 to 1.0% of one or more of Nb, V, Ti, and Mo, and the amount of hydrogen in the steel is 4.5 ppmJ! A steel plate with a thickness of 15 mm to 80 mm is obtained by hot rolling a steel consisting of the remainder Fe and unavoidable impurities at a cumulative reduction rate of 30 to 95% below 950 °C and a finishing temperature of 590 °C or above. None, after forming and welding the steel plate into a steel pipe, the temperature was 10
A method for producing a large-diameter steel pipe with excellent strength and toughness, which comprises performing heat treatment at 0°C to 750°C for a holding time of 1 minute to 10 hours. 2C: 0.01-0.20%, Si: 0.03-1
.. 0%, Mn: 0.5-5.0%, AI: 0.00
2 to 0.30%, further contains one or more of Nb, V, Ti, and Mo in a total of 0.005 to 1.0%, and further contains one of the elements of group A consisting of Ni, Cu, Cr, and Co. B consisting of B and W with a total of 0.03 to 10% of seeds or more
0.0005 to 0.30% in total of one or more elements of Group 0, and 0.001 to 0.1% of one or more of Group 0 elements consisting of rare earth elements, Ca, Mg, and Zr. any one of
group or contains two or more groups, and the amount of hydrogen in the steel is 4.5 pIl
A steel plate with a thickness of 15 mm to 80 mm is obtained by hot rolling a steel with a rr of 1 or less and the balance being Fe and unavoidable impurities at a cumulative reduction rate of 30 to 95% at 950 °C or less and a finishing temperature of 590 °C or higher. After the steel plate is formed and welded to form a steel pipe, it is heat treated at a temperature of 100°C to 750°C for a holding time of 1 minute to 10 hours.A large diameter pipe with excellent strength and toughness. Method of manufacturing steel pipes.
JP5680176A 1976-05-18 1976-05-18 Method for manufacturing large diameter steel pipes with excellent strength and toughness Expired JPS5948846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5680176A JPS5948846B2 (en) 1976-05-18 1976-05-18 Method for manufacturing large diameter steel pipes with excellent strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5680176A JPS5948846B2 (en) 1976-05-18 1976-05-18 Method for manufacturing large diameter steel pipes with excellent strength and toughness

Publications (2)

Publication Number Publication Date
JPS52139616A JPS52139616A (en) 1977-11-21
JPS5948846B2 true JPS5948846B2 (en) 1984-11-29

Family

ID=13037491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5680176A Expired JPS5948846B2 (en) 1976-05-18 1976-05-18 Method for manufacturing large diameter steel pipes with excellent strength and toughness

Country Status (1)

Country Link
JP (1) JPS5948846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124554A (en) * 1984-11-20 1986-06-12 Nippon Steel Corp Steel for high toughness electric welded steel tube superior in sour resistance

Also Published As

Publication number Publication date
JPS52139616A (en) 1977-11-21

Similar Documents

Publication Publication Date Title
RU2210603C2 (en) Method of production of superstrength weldable steels
EP2799575B1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
CN112752857B (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JP2010084171A (en) High toughness welded steel pipe having high crushing strength and method for producing the same
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP3226278B2 (en) Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability
JP2001200334A (en) 60 kilo class high tensile strength steel excellent in weldability and toughness
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP5381234B2 (en) Manufacturing method of line pipe with high compressive strength
JP3620326B2 (en) Seamless steel pipe with fine grain structure and small strength variation
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
KR20190071360A (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP4345160B2 (en) High strength steel pipe and manufacturing method thereof
JP2001262276A (en) Seamless steel pipe excellent in wear resistance and weldability and its producing method
JPS5948846B2 (en) Method for manufacturing large diameter steel pipes with excellent strength and toughness
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
CN111566248B (en) Hot-rolled steel sheet and steel pipe having excellent low-temperature toughness, and method for producing same
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same
JPH05214499A (en) Production of high ni alloy-clad steel plate excellent in sour resistance and toughness at low temperature