JPS5946102A - Composite membrane selectively permeable for gaseous oxygen - Google Patents

Composite membrane selectively permeable for gaseous oxygen

Info

Publication number
JPS5946102A
JPS5946102A JP57156758A JP15675882A JPS5946102A JP S5946102 A JPS5946102 A JP S5946102A JP 57156758 A JP57156758 A JP 57156758A JP 15675882 A JP15675882 A JP 15675882A JP S5946102 A JPS5946102 A JP S5946102A
Authority
JP
Japan
Prior art keywords
water
oxide
metal oxide
porous
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57156758A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Atsuo Imai
今井 淳夫
Tsutomu Takamura
高村 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57156758A priority Critical patent/JPS5946102A/en
Priority to US06/475,687 priority patent/US4483694A/en
Priority to CA000423565A priority patent/CA1194925A/en
Priority to EP83102715A priority patent/EP0097770B1/en
Priority to DE8383102715T priority patent/DE3381577D1/en
Publication of JPS5946102A publication Critical patent/JPS5946102A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laminated Bodies (AREA)
  • Hybrid Cells (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare composite membrane selectively permeable for gaseous oxygen but prohibiting steam or carbon dioxide in air to permeate into the main body of an electrode, by integrally adhering a thin layer comprising hydrous or hydratable metal oxide on one side of a porous membrane. CONSTITUTION:As a porous membrane, for example, a porous fluorine resin film, a porous polycarbonate membrane or a porous cellulose ester membrane can be represented. As hydrous or hydratable metal oxide is defined by one having superior adsorptivity for water wherein adsorbed water can be a surface hydroxyl group, chemically or physiclally adsorbed water. Specific examples are stannic dioxide, zinc oxide or aluminum oxide alone or a composite in an arbitrary combination comprising two kinds or more of them. In the case of the composite membrane with a two-layered structure, a thin layer of hydrous or hydratable metal oxide is directly adhered to one surface of the porous membrane by a vapor deposition method or a sputtering method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空体電極を製造する際に用いて有効な酸素ガ
ス選択透過性複合11a−に関し、更に詳しくは薄くて
も長7時間に亘り重負荷放電が可能で、保存性能にも優
れた窒ス電極用の酸素ガ亥選択透過性複合j戻に関・す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an oxygen gas selectively permeable composite material useful for manufacturing air body electrodes for hydrogen/oxygen fuel cells, metal/air cells, and oxygen sensors. Regarding No. 11a-, more specifically, the present invention relates to an oxygen gas permselective composite material for nitrogen electrodes which is capable of performing heavy load discharge for a long period of 7 hours even if it is thin and has excellent storage performance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種の燃料電池、空気/ 1llj鉛電池を
はじめとする空気金属電池やガルバニ型の酸素゛センサ
などの全気電極には1.ガス拡散電極が用いられてきて
いる。このガス拡散電極としてかよ′、初期には均一な
孔径分布を有する浮型の多孔質電極が用いられてきたが
、最近では、酸素−がスに対する電気化学的還元能(酸
素をイオン化する)を有し、かつ集電体機能も併用する
多孔質の電極本体と、該電極本体のガス側表面に一体的
に添着される薄膜状の撥水性層とから成る2層構造の電
極が多用されている。
Conventionally, all gas electrodes such as various fuel cells, air/air metal batteries including 1 1/2 lead-acid batteries, and galvanic type oxygen sensors have the following characteristics: Gas diffusion electrodes have been used. Initially, a floating porous electrode with a uniform pore size distribution was used as this gas diffusion electrode, but recently it has been developed to have an electrochemical reduction ability (to ionize oxygen) for oxygen gas. Two-layer electrodes are often used, consisting of a porous electrode body that also functions as a current collector, and a thin film-like water-repellent layer that is integrally attached to the gas side surface of the electrode body. There is.

このj、1;4合、電極本体は主として、゛酸素ガス還
元過電圧の低いニッケルタングステン酸;パラジウム・
コバルトで被覆された炭化タングステン;ニッケル:銀
;白金;パラジウムなどを活性炭粉末のような導電性粉
末に担持せしめて成る粉末にポリテトラフロロエ1チV
ンのような結着剤を添加した後、これを金属多孔質体、
カーボン多孔質体。
In this case, the electrode body is mainly made of ``nickel tungstic acid with low oxygen gas reduction overvoltage;
Powder made by supporting conductive powder such as activated carbon powder with tungsten carbide coated with cobalt; nickel: silver; platinum; palladium, etc.
After adding a binder such as
Carbon porous body.

カーデン繊維の不織布な−とと一体化したものが用いら
れている。
A non-woven fabric made of carden fiber is used.

1だ、電極本体のガス側表面に、添着される撥水性層と
しては主にポリテトラ・フロロエチレン。
1. The water-repellent layer attached to the gas side surface of the electrode body is mainly polytetrafluoroethylene.

ポリテトラフロロエチレジーへキザ70ロプロピレン共
重合体、ポリエチレンーテトララロロエチレン共重合体
などのフレ素樹脂、又はポリプロピレンなどの樹脂から
構成される確膜であ、って、例えば、粒径0.2〜40
μm17)これら樹脂粉末の゛焼結体;これら樹脂め繊
維を加熱処理して不織布化した紙状のもの;同じく繊維
布状のもの:これら樹脂の粉末Ω一部をラツ化黒鉛で置
きかえたもの:これらの微粉末を増孔剤・潤滑、油など
と共にロール加圧してから加熱処理したフィルム状のも
の、もしくはロール加圧後加熱処理をしないフィルム状
のもの;などの微細孔を分布する多孔性の薄膜である。
Polytetrafluoroethylene hekiza 70 is a membrane composed of resins such as polytetrafluoroethylene copolymer, polyethylene-tetraloroethylene copolymer, or polypropylene, and has a particle size of, for example, 0.2~40
μm17) A sintered body of these resin powders; a paper-like thing made by heat-treating these resinous fibers and making it into a non-woven fabric; also a fiber cloth-like thing: a part of these resin powders replaced with laminated graphite : A film-like film made by rolling these fine powders together with a pore-forming agent, lubricant, oil, etc. and then heat-treated, or a film-like film that is not heat-treated after roll-pressing. It is a thin film of sex.

しかしながら、上記した従来構造の空気電極において、
電極本体のガス側表面に添着されている撥水性層は、電
解液に対しては不透過性であるが、空包又は空気中の水
蒸気に対しては不透過性でtよない。
However, in the air electrode of the conventional structure described above,
The water-repellent layer attached to the gas-side surface of the electrode body is impermeable to the electrolyte, but not to water vapor in the empty package or air.

そのため、例えば空包中の水蒸気が撥水性層を通過して
電極本体に侵入し、その結果、電解液を稀釈したり、ま
たは逆に、電解液中の水が水−蒸気として撥水性層から
放散してし甘い電解液を濃縮することがある。この結果
、電解液の゛濃度が変動してしまい安定した放電を長時
間に亘シ維持することができなくなるという事態を生ず
る。
Therefore, for example, water vapor in the empty package may pass through the water-repellent layer and enter the electrode body, thereby diluting the electrolyte, or conversely, water in the electrolyte may escape from the water-repellent layer as water-steam. May dissipate and concentrate the sweet electrolyte. As a result, the concentration of the electrolyte fluctuates, resulting in a situation where stable discharge cannot be maintained for a long period of time.

空気中の炭酸ガスが撥水性層を通過して電極本体内に侵
入して活性層に吸ML/た場合、その部位の酸素ガスに
対する電気化学的還元能は低下して重負荷放電が阻害さ
れる。また、電解液がアルカリ電解液の場合には一1電
解腋の変質、濃度の低下又は陰極が亜鉛のときには該亜
鉛陰極の不働態化などの現象を引き起こす。更には、活
性層(電極本件の多孔質部分)で、炭酸塩を生成して孔
を閉塞し、電気化学的還元が行なわれる領域を減、少さ
せるので;i(@荷放電が明害される。
When carbon dioxide gas in the air passes through the water-repellent layer and enters the electrode body and is absorbed into the active layer, the electrochemical reduction ability for oxygen gas in that area decreases and heavy load discharge is inhibited. Ru. Furthermore, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte and a decrease in concentration, or when the cathode is zinc, the zinc cathode becomes passivated. Furthermore, in the active layer (the porous part of the electrode), carbonate is generated to block the pores and reduce the area where electrochemical reduction takes place; .

このようなこと(鍵、製造したljE池を長期間保存し
ておく話1合ぐ又は、長期間使用する」易合、電池の、
性能がNQR規準から低下、するという事態を夙く。
In such cases (when storing the manufactured ljE battery for a long period of time or using it for a long period of time), the battery
Prevent the situation where the performance deteriorates from the NQR standard.

このため、空気電極の撥水性層のガスll111″(空
包((il、 )に更に塩化カルシウムのような水分吸
収剤区はアルカリ土類金机の水酸化物のような炭酸ガス
吸収剤のF?jを設けた構造の電池が提案されている。
For this reason, in addition to the gas ll111'' (empty bag) in the water-repellent layer of the air electrode, a moisture absorbent such as calcium chloride is added to a carbon dioxide absorbent such as hydroxide of alkaline earth metal. A battery having a structure in which F?j is provided has been proposed.

これは、上記したような不都合な事態をある程度防止す
ることができるが、ある時間経過後、これら吸収剤が飽
和状態に注しその吸収能力を喪失すれば、その効果も消
滅するので何ら本質的な解決策ではあり得たい。
This can prevent the above-mentioned inconveniences to some extent, but after a certain period of time, if these absorbents reach a saturated state and lose their absorption capacity, the effect disappears, so there is nothing essential about it. I hope this is a viable solution.

また、上記した撥水性層の上に、′更に、ポリノロキサ
ン膜鼎の酸素力゛ス選択透j/M性の薄膜な一体的に積
層することが試みられている。しかし々から、現在まで
のところ、充分に有効な酸Xζガス選択透過性j1qは
開発゛されてい々い。
Furthermore, attempts have been made to integrally laminate a thin film having oxygen permeability of a polyoloxane film on top of the above-described water-repellent layer. However, to date, a sufficiently effective acid Xζ gas selective permeability j1q has not been developed.

〔発明の目的〕[Purpose of the invention]

本発明は、酸素ガスの選択透過能に優れ、したがって、
空気電極に適用した場合、空気中の水蒸久又は炭酸ガス
を電極本体内に侵入させることがなく、それゆえ、長期
に亘る重負荷放電が可能で保存性能にも優れた薄い空気
電極の製造に好適な酸素ガス選択透過性接合膜の提供を
目的とする。
The present invention has excellent selective permeability for oxygen gas, and therefore,
Manufacture of a thin air electrode that, when applied to an air electrode, does not allow water vapor or carbon dioxide in the air to enter the electrode body, and is therefore capable of long-term heavy load discharge and has excellent storage performance. The purpose of the present invention is to provide an oxygen gas permselective bonding membrane suitable for use in the present invention.

〔発明の概要〕[Summary of the invention]

本発明の複合膜は、第1の態様が孔径0.1μm以下の
微細孔を有する多孔性膜の片面に、含水性又は水和性金
属酸化物の薄層を一体的に添着したことを%徴とする二
層おη造の複合膜であり、第2の態様が該多孔性膜と該
金属酸化物の薄層の間に撥水性層を介在させて全体を一
体化した3層構造の複合j摸である。
The composite membrane of the present invention has a first aspect in which a thin layer of a water-containing or hydratable metal oxide is integrally attached to one side of a porous membrane having micropores with a pore size of 0.1 μm or less. It is a composite membrane with a two-layer structure, and the second aspect is a three-layer structure in which a water-repellent layer is interposed between the porous membrane and the thin layer of the metal oxide, and the whole is integrated. It is a compound j-mo.

本発明の複合膜において、多孔性膜は、その孔径が0.
1μm以下の微細孔を有す冬ものであればその材質は問
わないが、電極本体に添着することを考慮すれば、可撓
性に富むものであることが好ましい。また、該多孔性膜
tま、上記した微細孔が均一に分布するものが好ましく
、その微細孔の空孔容積が膜全容積に対しo、i〜90
係の範囲にあるものが好適である。
In the composite membrane of the present invention, the porous membrane has a pore diameter of 0.
The material may be any winter material as long as it has micropores of 1 μm or less, but it is preferable to use a material with high flexibility in consideration of attachment to the electrode body. In addition, it is preferable that the porous membrane has the above-mentioned fine pores uniformly distributed, and the pore volume of the fine pores is o, i~90 with respect to the total membrane volume.
Preferably, those within the above range are suitable.

このような多孔性I俣としては、i(’lえば、多孔性
フッ素樹脂膜(商品名、フロロJヒア;住友’Jf工(
株)製)、多孔性ポリカーボネート膜(部品名、ニュク
勺ポア;ニュクリポア・コービレーション製)、−多孔
性セルロースエステルjitJ (商品名、ミリポアメ
ンブランフィルタ−;ミリポアコーポレーション製)、
多孔性ポリプロピレン膜(商品名、セルガード;セラニ
ーズ・プラスチック社IJσ)をあげることができる。
Such porous materials include porous fluororesin membranes (trade name: Fluoro JHere; Sumitomo's Jf Engineering).
Co., Ltd.), porous polycarbonate membrane (part name, Nyukuipore; manufactured by Nuclepore Co., Ltd.), -Porous cellulose ester jitJ (trade name, Millipore membrane filter-; manufactured by Millipore Corporation),
Porous polypropylene membrane (trade name, Celguard; Celanese Plastics Co., Ltd. IJσ) can be mentioned.

これら多孔性1′’%において、その孔径が0゜1/1
mを超えると、該多孔性膜に後述する金属酸化物の薄層
又は撥水性層を形成したとき、これらの薄層又はお(水
性層にピンホールが多発するようになり、水蒸気又は戻
光ガスに対する侵入防止効果を喪失するとともに、その
機械的強度の低下を招いて破損し易くなる。
At these porosity of 1''%, the pore diameter is 0°1/1
If it exceeds m, when a thin metal oxide layer or a water-repellent layer (described later) is formed on the porous membrane, pinholes will occur frequently in the thin layer or the aqueous layer, and water vapor or return light will be generated. In addition to losing its gas intrusion prevention effect, it also causes a decrease in its mechanical strength and becomes easily damaged.

つぎに、本%明にかかる含水性又は水和性の金属酸化物
とは、水分に対し優れた吸メ′イ能を有し、吸着した水
が表面水酸基、化学吸着水および物理、g&着水として
存在し得る性質を有するものを指称し、具体的には、二
酸化スズ(Sn02)、酸化亜鉛(ZnO) 、酸化ア
兎ミニウム(At203)  +酸化マグネシウム(M
、FO) 、 112化カルシウム(Cab) 、 酸
化ストロンチウム(SrO) 、 酸化バリウム(Ba
d) 、二酸化チタン(TiO2)、二酸化ケイ素(S
tO,)のそれぞれ単独又は任意に2種以上を組合せた
複合体をあげることができる。
Next, the water-containing or hydratable metal oxides according to the present invention have an excellent ability to absorb water, and the adsorbed water can be absorbed into surface hydroxyl groups, chemically adsorbed water, and physical, g & It refers to substances that have the property of existing as water, specifically, tin dioxide (Sn02), zinc oxide (ZnO), aluminum oxide (At203) + magnesium oxide (M
, FO), calcium 112ide (Cab), strontium oxide (SrO), barium oxide (Ba
d), titanium dioxide (TiO2), silicon dioxide (S
tO,) may be used alone or in combination of two or more of them.

本発明の複合力莫は次のようにして製造することができ
る。まず、2層構造の複合膜の場合は、上記したような
多孔性膜の片面に、含水ヂ性又は水和性の金属酸化物の
薄層を直接添着する。
The composite power module of the present invention can be manufactured as follows. First, in the case of a two-layer composite membrane, a thin layer of a hydrous or hydratable metal oxide is directly attached to one side of the porous membrane as described above.

添着の方法としては、薄膜形成法゛として多用されてい
る蒸着法、スパッタリング法が好適である。
Suitable methods for attachment include vapor deposition and sputtering, which are often used as thin film forming methods.

このとき、薄層の厚みは0.01〜1.0−μデあるこ
とが好ましく、該厚みが帆01μm未満の場合には、形
成された薄層にピンホールが多発するようになりその水
蒸気又は炭酸ガスに対する侵入防止効果が低減すると同
時に、薄層の機械的強度が低下して破損し易くなる。ま
た、逆に、111m を超えると酸素ガスの透過量が減
少するので、作成した電極の重負荷放電特性を低下せし
める。
At this time, the thickness of the thin layer is preferably 0.01 to 1.0 μm, and if the thickness is less than 0.1 μm, pinholes will occur frequently in the formed thin layer and the water vapor will vaporize. Alternatively, the effect of preventing the intrusion of carbon dioxide gas is reduced, and at the same time, the mechanical strength of the thin layer is reduced, making it easy to break. On the other hand, if the length exceeds 111 m 2 , the amount of permeation of oxygen gas decreases, which deteriorates the heavy load discharge characteristics of the prepared electrode.

つき猾こ、3J=m造の後金j凡のJ7′合にCよ、多
孔性膜の片面に、まず、撥水性層を形成し、ついで、2
 r8’24?々造の複合膜のとさと同じように、蒸着
法、スパッタリング法などを適用して該撥水性層の上に
含水性名は水和性の金属酸化物の薄層を形成する。
Tsukiyoko, 3J = m construction, after gold j, J7', C, first, a water repellent layer is formed on one side of the porous membrane, and then 2
r8'24? As with conventional composite films, a thin layer of a water-containing metal oxide is formed on the water-repellent layer by applying a vapor deposition method, a sputtering method, or the like.

ここで、もl水性層を構成する拐質としては、撥水性、
耐電解液性を有するものであればよく、実用上、例えば
ポリテトラフロロエチレン(PTFE)、70ロエチレ
ングロピレン(FEP) 、ヒIJフェニレンオキサイ
ド(ppo) 、ポリフェニレンサルファイド(PPS
)、ポリエチレン(PE) 、ポリプロピレン(pp)
  及びこれらの共重合体又はこれらの混合物々とをあ
げることができる。
Here, the particles constituting the aqueous layer include water repellent,
Any material may be used as long as it has electrolyte resistance, and in practical use, for example, polytetrafluoroethylene (PTFE), 70-ethyleneglopylene (FEP), HIJ phenylene oxide (PPO), polyphenylene sulfide (PPS), etc.
), polyethylene (PE), polypropylene (pp)
and copolymers thereof or mixtures thereof.

なお、このとき、撥水性層の材質としてポリフロロエチ
レンプロピレン(FEP) 、ポリエチレン(PE)、
エチレン−テトラフロロエチレン共重合体のような熱融
着可能な材質を用いれば、適当な熱処理をすることによ
シ該複合膜の機械的強度を上げることが可能となる。
At this time, the material of the water repellent layer is polyfluoroethylene propylene (FEP), polyethylene (PE),
If a heat-sealable material such as ethylene-tetrafluoroethylene copolymer is used, it is possible to increase the mechanical strength of the composite membrane by performing appropriate heat treatment.

本発明にかかる撥水性層としては、更に、各種の有機化
合物、例えば、ペンシトリフルオライド、m−クロロペ
ンシトリフルオライド、ヘキサフロロベンゼン、ペンタ
70ロベンゼン、インタフロロスチレンなどのフッ素化
有機化合物及びこれらの混合物;例えば、Cl=C12
の飽和炭化水素化合物、01〜C12の不飽和炭化水素
化合物、C8〜CI4のアルキルベンゼン化合物、スチ
レン、α−メチルスチレンなどの炭化水素系の化合物及
びこれらの混合物等をプラズマ重合して多(し性膜の上
に形成した薄層をあげることができる。これらの薄層は
いずれも一ンホールが存在せず、しかも酸素ガスに対す
る選択透過性に優れている。とくに、上記したフッ素化
有機化合物は、その単分子をプラズマ重合して形成した
薄層が、水蒸気又は炭酸ガスに対する侵入防止効果に優
れているので有用である。
The water-repellent layer according to the present invention may further include various organic compounds, such as fluorinated organic compounds such as pencitrifluoride, m-chloropencitrifluoride, hexafluorobenzene, penta-70 lobenzene, and interfluorostyrene; mixture; for example, Cl=C12
Hydrocarbon compounds such as saturated hydrocarbon compounds of 01 to C12, unsaturated hydrocarbon compounds of 01 to C12, alkylbenzene compounds of C8 to CI4, styrene, α-methylstyrene, and mixtures thereof, etc. Examples include thin layers formed on membranes. None of these thin layers have a single hole and have excellent selective permeability to oxygen gas. In particular, the above-mentioned fluorinated organic compounds A thin layer formed by plasma polymerizing the single molecule is useful because it has an excellent effect of preventing water vapor or carbon dioxide from entering.

形成する薄膜の厚みは、実用上o、o i〜1.0μm
の範囲にあることが好ましく、該厚みが0.01μm未
満の場合には、形成された薄層・が島状となって多孔性
膜の表面を一様に被覆することができず、炭酸ガス又は
水蒸気の侵入に対する防止効果が減退する。更には薄層
全体の機械的強度も低下する。
The thickness of the thin film to be formed is practically o, o i ~ 1.0 μm
If the thickness is less than 0.01 μm, the formed thin layer becomes island-like and cannot uniformly cover the surface of the porous membrane, and carbon dioxide gas Or the prevention effect against the intrusion of water vapor is reduced. Moreover, the mechanical strength of the entire thin layer is also reduced.

逆に厚みが1.0μmを超えると、電極を組立てたとき
に電極本体に供給される酸素ガス量が不足し、電極の放
電特性が低下する(重負荷放電が困a:+Cになる)。
On the other hand, if the thickness exceeds 1.0 μm, the amount of oxygen gas supplied to the electrode body will be insufficient when the electrode is assembled, and the discharge characteristics of the electrode will deteriorate (heavy load discharge becomes difficult and a: +C).

また、上記した薄層打11単一層として形成されてもよ
いが、この層の上に更に別種の有機化合物から成る高分
子薄膜を形成することもできる。
Further, although the thin layer 11 described above may be formed as a single layer, a polymer thin film made of another type of organic compound may be further formed on this layer.

このようにして形成された撥水性層の上に、更に、含水
性又は水利性の金属酸化物の薄層が積層される。その厚
みは、撥水性層の場合と同様の理由により0.01〜1
.0μmであることが好ましい。
A thin layer of water-containing or water-friendly metal oxide is further laminated on the water-repellent layer thus formed. The thickness is 0.01 to 1 for the same reason as the water repellent layer.
.. Preferably, it is 0 μm.

2層構造及び3層構造いずれの場合にあっても、含水性
又は水利性の金属酸化物の薄層の形成にあたっては、そ
の蒸着源又はスz!ツタ源としてこれら金属酸化物それ
自体を適用することができるが、蒸着源又はスパッタ源
として、酸2もと反応してこれらの金属酸化物を生成す
る各種の金属単体を用い、かつ、雰囲気を酸素雰囲気に
すると、該金属酸化物の薄層形成速度が高ま夛、また、
薄層形成の操作も容易になるので好ましい。
In both the two-layer structure and the three-layer structure, when forming a thin layer of water-containing or water-friendly metal oxide, the deposition source or sz! These metal oxides themselves can be used as the ivy source, but it is also possible to use various elemental metals that react with acids to produce these metal oxides as a vapor deposition source or sputtering source, and to maintain the atmosphere. In an oxygen atmosphere, the rate of thin layer formation of the metal oxide increases, and
This is preferable because it facilitates the operation of forming a thin layer.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜0 平均孔径0.03μmの微細孔を均一に分布し、空孔容
積0.42%の多孔性ポリカーがネート膜(商品名、ニ
ュクリポア;ニュクリヂアコーポレーション、厚み5μ
m)の片面にSn r Zn r AL +M? 、C
a * Sr * Ba s Tl * St  をス
パッタ源とし、圧力2 X 10−3Torrのアルゴ
ンと酸素との混合ガス(Ar 90vot%、0210
vot%)、高周波電力100Wの条件でスA?ツタ処
理を施し、各種の含水性又は水利性の金属酸化物の薄層
を形成した。厚み0.2 μm。
Examples 1 to 0 A porous polycarbonate membrane (trade name, Nuclepore; Nuclesia Corporation, thickness 5μ
Sn r Zn r AL +M on one side of m)? , C
Using a*Sr*BasTl*St as a sputtering source, a mixed gas of argon and oxygen (Ar 90vot%, 0210
vot%), S A? under the condition of high frequency power 100W? An ivy treatment was applied to form a thin layer of various hydrous or hydrophilic metal oxides. Thickness: 0.2 μm.

実施例10〜18 実施例1〜9で用いたと同じ仕様の多孔性ポリカーボネ
ート膜の片面に、アルゴンガス圧1×10Torr j
高周波出力200Wの条件でフロ四エチレンプロピレン
(FE;P)をスノやラダして、1すみ0,2μtnの
拵水性層を形成した。ついで、この上に、実施例1〜9
と同様にして各種の含水(<U又は水利性金属酸化物の
薄層(厚み0.2μn+)を形成した。
Examples 10 to 18 Argon gas pressure of 1 x 10 Torr was applied to one side of a porous polycarbonate membrane having the same specifications as those used in Examples 1 to 9.
Furo-tetraethylene propylene (FE; P) was splattered under conditions of a high-frequency output of 200 W to form a layer with a thickness of 0.2 μtn per corner. Then, on top of this, Examples 1 to 9
In the same manner as above, various water-containing (<U) or thin layers (thickness 0.2 μn+) of water-containing metal oxides were formed.

実施例19〜27 実施例1〜9で用いたのと同じ仕様の多孔住ポリカーボ
ネート膜をグラズマ反応槽に装イーし、外部から13.
56 ME(zの高周波電力を印加して、槽内iC7ル
:l’ ン6001nl /禎、ペンタフロロスチレン
モノマーガス600+++f!/―を導入して、RF’
 出力0.4 W / at!の榮件でグラズマ重合反
応を行ない該ポリカーボネートj漠の片面に厚み(1,
2/Lmのペンタフロロスチレン重合体の薄層を形成し
た。
Examples 19 to 27 A porous polycarbonate membrane having the same specifications as those used in Examples 1 to 9 was placed in a glazma reaction tank, and 13.
Applying high frequency power of 56 ME (z), introducing 6001 nl of iC7 into the tank and introducing pentafluorostyrene monomer gas 600+++f!/-, RF'
Output 0.4 W/at! Glazma polymerization reaction is carried out under the conditions of
A thin layer of 2/Lm pentafluorostyrene polymer was formed.

ついで、この上に、実施例1〜9と同様にして各種の含
水性又は水利性の金属酸化物の薄層(0,2μm )を
形成した。
Then, a thin layer (0.2 μm) of various water-containing or water-friendly metal oxides was formed thereon in the same manner as in Examples 1 to 9.

以上27釉類の複合膜につき、その複合膜の酸素透過速
度(JO2: CC/5ec・d・cm H旬をガスク
ロマトグラフを検出手段とする等圧法で測定し、また、
水蒸気透過速度(JH20: CC/5ec−d−cr
n)(S’ )をJIS Z0208(カップ法)に’
;”、I:、じた方法で1llll定し、この両者の比
(J Ox / J+−r2o )をガス透過比として
算出した。
For the composite membrane of the above 27 glazes, the oxygen permeation rate (JO2: CC/5ec・d・cm H) of the composite membrane was measured by an isobaric method using a gas chromatograph as a detection means, and
Water vapor transmission rate (JH20: CC/5ec-d-cr
n) (S') to JIS Z0208 (cup method)'
;'', I:, was determined by the same method, and the ratio of the two (JOx/J+-r2o) was calculated as the gas permeation ratio.

なお、比較のために、Jすみ5011mのポリシロキサ
ン)Iは(比較例1)、厚み20μmの中密度ポリエチ
レンIIIΣ(比較例2)、厚み2011mの二軸配向
性ポリプロピレン膜“(比較例3)、厚み20jamの
ポリテトラフロロエチレ・ン膜(比11ス例4)、厚み
20μmの市販FEP IIN (比較例5)、実施例
10〜18のスパッタリング法で成膜した厚み0.2μ
mのFEP 1摸(比較例6)についても、同様にJO
21JH,oを測定し、JO,/ Jl−120を算出
した。
For comparison, the polysiloxane I in J corner 5011m (Comparative Example 1) is 20 μm thick medium density polyethylene IIIΣ (Comparative Example 2), and the 2011 m thick biaxially oriented polypropylene film (Comparative Example 3) , a polytetrafluoroethylene film with a thickness of 20 jam (Comparative Example 4), a commercially available FEP IIN with a thickness of 20 μm (Comparative Example 5), and a film with a thickness of 0.2 μm formed by the sputtering method of Examples 10 to 18.
Similarly, for FEP 1 (comparative example 6) of m
21JH,o was measured and JO,/Jl-120 was calculated.

以上の結果を一括して表に示した。The above results are summarized in the table.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の複合膜は、その
厚みが極めて薄いにもかかわらず、空気中の水蒸気の透
過を許さず、酸素ガス選択透過能が大きいので、これを
電極本体と組合せて成る空気電極は、全体を薄くでき、
しかも長時間に亘9重負荷放電が可能になるとともに、
その保存性能も向上する。また、耐漏液性も向上する。
As is clear from the above explanation, although the composite membrane of the present invention is extremely thin, it does not allow the permeation of water vapor in the air and has a high ability to selectively permeate oxygen gas. The combined air electrode can be made thinner as a whole,
Moreover, it is possible to discharge 9 heavy loads over a long period of time, and
Its storage performance is also improved. In addition, leakage resistance is also improved.

しだがって、本発明の複合膜の工業的価値は極めて大で
ある。
Therefore, the industrial value of the composite membrane of the present invention is extremely large.

Claims (1)

【特許請求の範囲】 1、 孔径0.1μm以下の微細孔を有する多孔性膜の
片面に、含水性又は水利性金属酸化物の薄層を一体的に
添着したことを特徴とする酸素ガス選択透過性複合膜。 2、該金属酸化物が、二酸化スズ、酸化亜鉛、酸化アル
ミニウム、酸化マグネシウム、酸化カルシウム、酸化ス
トロンチウム、酸化バリウム、二酸化チタン、二酸化ケ
イ素の群から選ばれる少なくとも1種の含水性又は水利
性金属酸化物である特許請求の範囲第1項記載の酸素ガ
ス選択透過性複合膜。 3、該薄層の厚みが0.01〜1.0μmである特許請
求の範囲第1項記載の酸素ガス選択透過性複合膜。 4、孔径0.1μm以下の微細孔を有する多孔性膜の片
面に、撥水性層及び含水性又は水利性金属酸化物の薄層
をこの順序で一体的に積層して成ることを特徴どする酸
素ガス選択透過性複合膜。 5、 該金属酸化物が、二酸化スズ、酸化亜鉛、酸化ア
ルミニウム、酸化マダネシウノ・、酸化カルシウム、酸
化ストロンチウム、酸化バリウム、二酸化チタン、二酸
化ケイ素の群から選ばれる少なくとも1種の金属酸化物
である特許請求の範囲第4項記載の酸素ガス選択透過性
複合11;工。 6、 該撥水性層が、フッ素化有機化合物の単分子のプ
ラズマ重合体の薄層である特許請求の範囲第4項記載の
酸素ガス選択透過性複合膜。 7、該撥水性層及び該金属酸化物の薄層の厚みが、それ
ぞれ、0.01〜1.0μmである特許請求の範囲第4
〜第6項いずれかに記載の酸素ガス選択透過性複合膜。
[Claims] 1. Oxygen gas selection characterized in that a thin layer of water-containing or water-friendly metal oxide is integrally attached to one side of a porous membrane having micropores with a pore diameter of 0.1 μm or less. Permeable composite membrane. 2. The metal oxide is at least one hydrous or water-containing metal oxide selected from the group of tin dioxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, titanium dioxide, and silicon dioxide. The oxygen gas selectively permeable composite membrane according to claim 1, which is a product. 3. The oxygen gas selectively permeable composite membrane according to claim 1, wherein the thin layer has a thickness of 0.01 to 1.0 μm. 4. A water repellent layer and a thin layer of water-containing or water-friendly metal oxide are integrally laminated in this order on one side of a porous membrane having micropores with a pore diameter of 0.1 μm or less. Oxygen gas selective permeability composite membrane. 5. A patent in which the metal oxide is at least one metal oxide selected from the group of tin dioxide, zinc oxide, aluminum oxide, iron oxide, calcium oxide, strontium oxide, barium oxide, titanium dioxide, and silicon dioxide. Oxygen gas selectively permeable composite 11 according to claim 4; 6. The oxygen gas permselective composite membrane according to claim 4, wherein the water-repellent layer is a thin layer of a monomolecular plasma polymer of a fluorinated organic compound. 7. Claim 4, wherein the water repellent layer and the metal oxide thin layer each have a thickness of 0.01 to 1.0 μm.
- The oxygen gas selectively permeable composite membrane according to any one of Items 6 to 6.
JP57156758A 1982-06-24 1982-09-10 Composite membrane selectively permeable for gaseous oxygen Pending JPS5946102A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57156758A JPS5946102A (en) 1982-09-10 1982-09-10 Composite membrane selectively permeable for gaseous oxygen
US06/475,687 US4483694A (en) 1982-06-24 1983-03-14 Oxygen gas permselective membrane
CA000423565A CA1194925A (en) 1982-06-24 1983-03-14 Oxygen gas permselective membrane
EP83102715A EP0097770B1 (en) 1982-06-24 1983-03-18 Oxygen gas permselective membrane
DE8383102715T DE3381577D1 (en) 1982-06-24 1983-03-18 PERM-SELECTIVE MEMBRANE FOR OXYGEN GAS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156758A JPS5946102A (en) 1982-09-10 1982-09-10 Composite membrane selectively permeable for gaseous oxygen

Publications (1)

Publication Number Publication Date
JPS5946102A true JPS5946102A (en) 1984-03-15

Family

ID=15634673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156758A Pending JPS5946102A (en) 1982-06-24 1982-09-10 Composite membrane selectively permeable for gaseous oxygen

Country Status (1)

Country Link
JP (1) JPS5946102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521114A (en) * 2010-03-05 2013-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Oxygen separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521114A (en) * 2010-03-05 2013-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Oxygen separation membrane

Similar Documents

Publication Publication Date Title
US4483694A (en) Oxygen gas permselective membrane
US4599157A (en) Oxygen permeable membrane
JPS6321315B2 (en)
JPS5955314A (en) Manufacture of composite permselective membrane for gaseous oxygen
JPS5955315A (en) Manufacture of composite film having selective oxygen permeability
JPS5946102A (en) Composite membrane selectively permeable for gaseous oxygen
JPS59150508A (en) Preparation of oxygen gas permselective composite membrane
JPH0417259A (en) Battery
JPS6051505A (en) Gas selective composite membrane
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS5946104A (en) Composite membrane selectively permeable for gaseous oxygen
JPS5998706A (en) Oxygen gas permselective composite membrane
JPS60179112A (en) Compound film having permselectivity for oxygen
JPS6051502A (en) Gas permselective composite membrane
JPS5946103A (en) Composite membrane selectively permeable for gaseous oxygen
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS5955316A (en) Manufacture of permselective composite membrane for gaseous oxygen
JPS58225573A (en) Air electrode and its production method
JPS5958759A (en) Air electrode and its manufacture
JPS5994382A (en) Air battery
JPS58225571A (en) Air electrode and its production method
JPS58225575A (en) Air electrode and its production method
JPS60133675A (en) Air electrode
JPS5998466A (en) Manufacturing method of air electrode
JPH02109254A (en) Battery