JPS5955315A - Manufacture of composite film having selective oxygen permeability - Google Patents

Manufacture of composite film having selective oxygen permeability

Info

Publication number
JPS5955315A
JPS5955315A JP57164025A JP16402582A JPS5955315A JP S5955315 A JPS5955315 A JP S5955315A JP 57164025 A JP57164025 A JP 57164025A JP 16402582 A JP16402582 A JP 16402582A JP S5955315 A JPS5955315 A JP S5955315A
Authority
JP
Japan
Prior art keywords
dioxide
metal oxide
composite membrane
oxygen gas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57164025A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Atsuo Imai
今井 淳夫
Tsutomu Takamura
高村 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57164025A priority Critical patent/JPS5955315A/en
Publication of JPS5955315A publication Critical patent/JPS5955315A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/128
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a favorable composite film having oxygen permselectivity for manufacturing an air electrode without intruding water vapor or carbon dioxide in the air into the electrode itself, by forming a thin film consisting a metallic oxide having a rutile-type crystal structure on a porous film surface. CONSTITUTION:As a porous film, a porous fluororesin film and a porous polycarbonate film are given as an example. Metallic oxide having a rutile-type crystal structure may be interpreted as a substance having a structure which consists of aggregates sharing the edges of oriented regular octahedrons and being arranged in one dimension. In case of a composite film having a two layered structure, the metallic oxide thin film having the rutile-type crystal structure is coated directly on one side of the porous film.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空気電極を製造する際に用いて有効な酸素ガ
ス選択透過性複合膜の製造方法に関し、更に詳しくは、
薄くても長時間に亘、!7重負荷放電が可能で、保存性
能にも優れた空気電極用の酸素ガス選択透過性複合膜の
製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides an oxygen gas selectively permeable composite membrane that is effective for use in manufacturing air electrodes for hydrogen/oxygen fuel cells, metal/air batteries, and oxygen sensors. For more details on the manufacturing method,
Even if it is thin, it lasts for a long time! The present invention relates to a method for manufacturing an oxygen gas selectively permeable composite membrane for air electrodes that is capable of 7-load discharge and has excellent storage performance.

[発明の技術的背景とその問題点] 従来から、各種の燃料電池、空気/亜鉛電池をはじめと
する空気金属電池やガルバニ型の酸素センサなどの空気
電極には、ガス拡散電極が用いられてきている。このガ
ス拡散電極としては、初期には均一な孔径分布を有する
原型の多孔質電極が用いられてきたが、最近では、酸素
ガスに対する電気化学的還元能(酸素をイオン化する)
を有し、かつ集電体機能も併有する多孔質の電極本体と
、該電極本体のガス側表面に一体的に添着される薄膜状
の撥水性層とから成る2層構造の電極が多用されている
[Technical background of the invention and its problems] Gas diffusion electrodes have traditionally been used as air electrodes in various fuel cells, air metal batteries including air/zinc batteries, and galvanic oxygen sensors. ing. Initially, a prototypical porous electrode with a uniform pore size distribution was used as this gas diffusion electrode, but recently, electrochemical reduction ability for oxygen gas (ionizing oxygen) has been used.
Electrodes with a two-layer structure consisting of a porous electrode body that also has a current collector function and a thin film-like water-repellent layer that is integrally attached to the gas side surface of the electrode body are often used. ing.

この場合、電極本体は主として、酸素ガス還元過電圧の
低いニッケルタングステン酸;ノ(ラジウム・コバルト
で被覆された炭化タングステン;ニッケル;銀;白金;
)くラジウムなどを活1生炭粉末のような導電性粉末に
担時せしめて成る粉末にポリテトラフロロエチレンのよ
うな結着剤を添加した後、これを金属多孔質体、カーボ
ン多孔質体、カーボン繊維の不織布などと一体化したも
のカS用いられている0 まだ、電極本体のガス側表面に、添着される撥水性層と
しては主にポリテトラフロロエチレン、ポリテトラフロ
ロエチレン−へキサフロロプロピレン共重合体、ポリエ
チレン−テトラフロロエチレン共重合体などのフッ素樹
脂、又はポリプロピレンなどの樹脂から構成される薄膜
であって、例えば、粒径0.2〜=10μmのこれら樹
脂粉末の焼結体;これら樹脂の繊維を加熱処理して不織
布化した紙状のもの;同じく繊維布状のもの;これら樹
脂の粉末の一部をフッ化黒鉛で置きかえたもの;これら
の微粉末を増孔剤・潤滑油などと共にロール加圧してか
ら加熱処理したフィルム状のもの、もしくはロール加圧
後加熱処理をしないフィルム状のもの−などの微細孔を
分布する多孔性の薄膜である。
In this case, the electrode body is mainly composed of nickel tungstic acid, which has a low oxygen gas reduction overpotential; tungsten carbide coated with radium and cobalt; nickel; silver; platinum;
) After adding a binder such as polytetrafluoroethylene to a powder made by supporting radium or the like in a conductive powder such as live carbon powder, this is mixed into a porous metal body or a porous carbon body. However, the water-repellent layer attached to the gas side surface of the electrode body is mainly made of polytetrafluoroethylene or polytetrafluoroethylene-hexane. A thin film composed of a fluororesin such as a fluoropropylene copolymer, a polyethylene-tetrafluoroethylene copolymer, or a resin such as polypropylene, for example, by sintering powder of these resins with a particle size of 0.2 to 10 μm. Materials; paper-like materials made by heating the fibers of these resins and making them into non-woven fabrics; similar fiber cloth-like materials; materials in which part of the powder of these resins is replaced with graphite fluoride; these fine powders are used as pore-forming agents. - A porous thin film with fine pores distributed, such as a film that is heat-treated after being rolled with lubricating oil or the like, or a film that is not heat-treated after being rolled.

しかしながら、上記した従来構造の空気電極において、
電極本体のガス側表面に添着されている撥水性層は、′
α電解液対しては不透過性であるが、空気又は空気中の
水蒸気に対しては不透過性ではない。
However, in the air electrode of the conventional structure described above,
The water-repellent layer attached to the gas side surface of the electrode body is
It is impermeable to the alpha electrolyte, but not to air or water vapor in the air.

そのため、例えば空気中の水蒸気が撥水性層を通過して
電極本体に侵入し、その結果、電解液を稀釈したり、ま
だは逆に、電解液中の水が水蒸気として撥水性層から放
散してしまい電解液を濃縮することがある。この結果、
電解液の濃度が変動してしまい安定した放電を長時間に
亘シ維持することができなくなるという事態を生ずる。
Therefore, for example, water vapor in the air may pass through the water-repellent layer and enter the electrode body, resulting in dilution of the electrolyte, or conversely, water in the electrolyte may evaporate from the water-repellent layer as water vapor. This may cause the electrolyte to become concentrated. As a result,
This causes a situation in which the concentration of the electrolyte fluctuates, making it impossible to maintain stable discharge for a long period of time.

空気中の炭酸ガスが撥水性層を通過して電極本体内に侵
入して活性層に吸着した場合、その部位の酸素ガスに対
する電気化学的還元能は低下して重負荷放電が阻害され
る。まだ、電解液がアルカリ電解液の場合には、電解液
の変質、濃度の低下又は陰極が亜鉛のときには該亜鉛陰
極の不動態化などの現象を引き起こす。更には、活性層
(電極本体の多孔質部分)で、炭酸塩を生成して孔を閉
塞し、電気化学的還元が行なわれる領域を減少させるの
で重負荷放電が阻害される。
When carbon dioxide gas in the air passes through the water-repellent layer, enters the electrode body, and is adsorbed on the active layer, the electrochemical reduction ability for oxygen gas at that location decreases, and heavy load discharge is inhibited. However, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte, reduction in concentration, or passivation of the zinc cathode when the cathode is zinc are caused. Furthermore, in the active layer (the porous part of the electrode body), carbonate is generated to block the pores and reduce the area where electrochemical reduction takes place, thereby inhibiting heavy load discharge.

このようなことは、製造した電池を長期間保存しておく
場合、又は、長期間使用する場合、電池の性能が設計規
準から低下するという事態を招く。
This causes a situation in which the performance of the battery deteriorates from the design standard when the manufactured battery is stored or used for a long period of time.

このだめ、空気電極の撥水性層のガス側(空気側)に更
に塩化カルシウムのような水分吸収剤又はアルカリ土類
金属の水酸化物のような炭酸ガス吸収剤の層を設けた構
造の電池が提案されている。
This battery has a structure in which a layer of a moisture absorbent such as calcium chloride or a carbon dioxide absorbent such as alkaline earth metal hydroxide is further provided on the gas side (air side) of the water-repellent layer of the air electrode. is proposed.

これは、上記したような不都合な事態をある程度防止す
ることはできるが、ある時間経過後、これら吸収剤が飽
和状態に達しその吸収能力を喪失すれば、その効果も消
滅するのでなんら本質的な解決策ではあり得ない。
This can prevent the above-mentioned inconveniences to some extent, but if these absorbents reach a saturated state and lose their absorption capacity after a certain period of time, the effect disappears, so there is no essential effect. It can't be a solution.

また、上記した撥水性層の上に、更にポリシロキサン膜
等の酸素ガス選択透過性の薄膜を一体的に積層すること
が試みられている。しかしながら現在までのところ、充
分に有効な酸素ガス選択透過性膜は開発されていない。
Furthermore, attempts have been made to further integrally laminate a thin film selectively permeable to oxygen gas, such as a polysiloxane film, on the water-repellent layer described above. However, to date, no sufficiently effective oxygen gas selectively permeable membrane has been developed.

[発明の目的] 本発明は、酸素ガスの選択透過能に優れ、したがって、
空気電極に通用した場合、空気中の水蒸気又は炭酸ガス
を′電極本体内に侵入させることがなく、それゆえ、長
期に亘る重負荷放電が可能で保存性能にも優れた薄い空
気電極の製造に好適な酸素ガス選択透過性複合膜の製造
方法を提供する事を目的きする。
[Object of the invention] The present invention has excellent selective permeability for oxygen gas, and therefore,
When applied to air electrodes, water vapor or carbon dioxide in the air will not be allowed to enter the electrode body, making it possible to produce thin air electrodes that can perform heavy load discharge over long periods of time and have excellent storage performance. The object of the present invention is to provide a method for manufacturing a suitable oxygen gas permselective composite membrane.

[発明の概要] 本発明の複合膜の製造方法は、第1の態様が孔径01μ
m以下の微細孔を有する多孔性膜の表面にルチル型結晶
構造の金属酸化物の薄層を該金属酸化物をスパッタ又は
蒸着源として、又、反応槽ガスを酸素を10%以下含有
する、又は含有しない不活性ガスとしたスパッタ又は蒸
着法を用いて形成することを特徴とする2層構造の複合
膜の製造方法であり、第2の態様が該多孔性膜と該金属
酸化物の薄層の間に発水性層を介在させて全体を一体化
した3層構造の複合膜の製造方法である。
[Summary of the Invention] The method for manufacturing a composite membrane of the present invention has a first aspect in which the pore size is 01 μm.
A thin layer of a metal oxide with a rutile type crystal structure is formed on the surface of a porous film having micropores of 1.0 m or less, and the metal oxide is used as a sputtering or vapor deposition source, and the reaction tank gas contains 10% or less of oxygen. A method for producing a two-layer composite film, characterized in that the film is formed using a sputtering or vapor deposition method using an inert gas that does not contain a porous film and a thin film of the metal oxide. This is a method for manufacturing a composite membrane having a three-layer structure in which a water-repellent layer is interposed between the layers and the entire membrane is integrated.

本発明の複合膜の製造方法において、多孔性膜は、その
孔径が0,1μm以下の微細孔を有するものであればそ
の材質は問わないが、電極本体に添着することを考慮す
れば、可撓性に富むものであることが好ましい。また、
該多孔性膜は、上記した微細孔が均一に分布するものが
好ましく、その微細孔の 孔容積が膜全容積に対し、0
.1〜90%の範囲−あるものが好適である。
In the method for producing a composite membrane of the present invention, the material of the porous membrane does not matter as long as it has micropores with a pore diameter of 0.1 μm or less, but it is possible if it is attached to the electrode main body. It is preferable that the material is highly flexible. Also,
The porous membrane is preferably one in which the above-mentioned micropores are uniformly distributed, and the pore volume of the micropores is 0 relative to the total volume of the membrane.
.. A range of 1 to 90% is preferred.

このような多孔性膜としては、例えば多孔性フッ素樹脂
膜(商品名、フロロポア;住友電工(株)製)、多孔性
ポリカーボネート膜(商品名、ニュクリポア;ニークリ
ポア・コーポレーシロン製)、多孔性セルロースエステ
ル膜(商品名、ミリボアメンブランフィルタ−;ミリボ
アコーボレーシ冒ン製)、多孔性ポリプロピレン膜(商
品名、セルガード;セランズ・プラスチック社製)をあ
げることができる。これら多孔性膜において、その孔径
が0.1μmを超えると、該多孔性膜に後述する金属酸
化物の薄層又は発水性層を形成したとき、これらの薄層
又は発水性層にピンホールが多発するようになり、水蒸
気又は炭酸ガスに対する侵入防止効果を喪失するととも
に、その機械的強度の低下を招いて破損し易すくなる。
Such porous membranes include, for example, porous fluororesin membranes (trade name, Fluoropore; manufactured by Sumitomo Electric Industries, Ltd.), porous polycarbonate membranes (trade name, Nuclepore; manufactured by Niclepore Corporation), and porous cellulose esters. Examples include a membrane (trade name, Millibore Membrane Filter; manufactured by Millibore Co., Ltd.) and a porous polypropylene membrane (trade name, Celguard; manufactured by Cerans Plastics Co., Ltd.). In these porous membranes, if the pore diameter exceeds 0.1 μm, pinholes may be formed in the thin metal oxide layer or water-repellent layer, which will be described later, when formed on the porous membrane. This occurs frequently, and the effect of preventing water vapor or carbon dioxide from entering is lost, and its mechanical strength decreases, making it more likely to break.

つぎに、本発明にかかるルチル型結晶構造の金属酸化物
とは、化学式AO2で示され、配位多面体は正8面体で
この8面体の稜を共有して1次元的に並んだ集合体が組
み合わさった構造を有するものを指称し、具体的には、
二酸化スズ(SnO2) 、二酸化チタン(TiO2)
、二酸化バナジウム(■02)、二酸化モリブデン(M
OO2) 、二酸化タングステン(WO2)。
Next, the metal oxide with the rutile crystal structure according to the present invention is represented by the chemical formula AO2, and the coordination polyhedron is a regular octahedron, and it is composed of aggregates arranged one-dimensionally sharing the edges of this octahedron. It refers to something that has a combined structure, specifically,
Tin dioxide (SnO2), titanium dioxide (TiO2)
, vanadium dioxide (■02), molybdenum dioxide (M
OO2), tungsten dioxide (WO2).

二酸化ルビジウム(RuO2) 、  二酸化ニオブ(
NbO2) 。
Rubidium dioxide (RuO2), niobium dioxide (
NbO2).

二酸化クロム(CrO2)、二酸化レニウム(α−Be
o 2 ) 。
Chromium dioxide (CrO2), rhenium dioxide (α-Be
o2).

二酸化オスミウム(O502) 、二酸化ロジウム(R
hO2) 。
Osmium dioxide (O502), rhodium dioxide (R
hO2).

二酸化バナジウム(1r02)、二酸化白金(P【0□
)のそれぞれ単独又は任意に2種以上を組合せた複合体
をあげることができる。
Vanadium dioxide (1r02), platinum dioxide (P0□
) may be used alone or in combination of two or more of them.

本発明の複合膜は次のようにして製造することができる
。まず、2層構造の複合膜の場合は、上記したような多
孔性膜の片面にルチル型結晶構造の金属酸化物の薄層を
直接添着する。
The composite membrane of the present invention can be manufactured as follows. First, in the case of a two-layer composite membrane, a thin layer of a metal oxide having a rutile crystal structure is directly attached to one side of the porous membrane as described above.

添着の方法として、薄膜形成法として多用されている蒸
着法、スパッタリング法を用い、反応槽ガスを酸素を1
0%以下含有する又は含有しない不活性ガスとすると好
適である。このとき、薄層の厚みは、0.01〜1.0
μmであることが好ましく、該厚みが0.01μm未満
の場合には、形成された薄層にピンホールが多発するよ
うになシその水蒸気又は炭酸ガスに対する侵入防止効果
が低減すると同時に薄層の機械的強度が低下して破損し
易すくなる。
As a method of impregnation, vapor deposition and sputtering methods, which are often used for forming thin films, are used, and the reaction tank gas is saturated with oxygen.
It is preferable to use an inert gas containing 0% or less or no inert gas. At this time, the thickness of the thin layer is 0.01 to 1.0
If the thickness is less than 0.01 μm, pinholes will occur frequently in the formed thin layer, and at the same time the effect of preventing water vapor or carbon dioxide from entering will be reduced. Mechanical strength decreases, making it more likely to break.

また、逆に11Imを超えると酸素ガスの透過量が減少
するので、作成した電極の重負荷放電特性を低下せしめ
る。
On the other hand, if it exceeds 11 Im, the amount of oxygen gas permeated decreases, which deteriorates the heavy load discharge characteristics of the prepared electrode.

つぎに、3層構造の複合膜の場合には、多孔性膜の片面
に、まず発水性層を形成し、ついで2層構造の複合膜の
ときと同じように、蒸着法、スパッタリン法を適用して
該発水性層の上にルチル型結晶構造の金属酸化物の薄層
を形成する。
Next, in the case of a three-layer composite membrane, a water-repellent layer is first formed on one side of the porous membrane, and then vapor deposition or sputtering is applied in the same way as in the case of a two-layer composite membrane. A thin layer of metal oxide of rutile type crystal structure is formed on the water-repellent layer.

ここで、発水性層を構成する材質としては、溌水性、耐
電解液性を有するものであればよく、実用上例えばポリ
テトラフロロエチレン(PTFIii)、フロロエチレ
ンプロピレン(FBP)、 、!−’ リフェニレンオ
キサイド(Pro) 、ポリフェニレンサルファイド(
PPS)、ポリエチレン(PE)、ポリプロピレン(P
P)及びこれらの共重合体又はこれらの混合物などをあ
げることができる。
Here, the material constituting the water repellent layer may be any material as long as it has water repellency and electrolyte resistance, and in practical use, for example, polytetrafluoroethylene (PTFIii), fluoroethylene propylene (FBP), etc. -' Riphenylene oxide (Pro), polyphenylene sulfide (
PPS), polyethylene (PE), polypropylene (P
P), copolymers thereof, or mixtures thereof.

なお、このとき、揚水性層の材質としてポリフロロエチ
レンプロピレン(FEP)、 ホIJエチレン(PR)
、エチレン−テトラフロロエチレン共重合体のような熱
融着可能な材質を用いれば、 本発明にかかる揚水性層としては、更に各種の有機化合
物、例えばペンシトリフルオライド、m−クロロベンシ
トリフルオライド、ヘキサフロロベンゼン、ペンタフロ
ロベンゼン、ペンタフロロスチレンなどのフッ素化有機
化合物及びこれらの混合物;例えば、C1−012の飽
和炭化水素化合物、01〜C12の不飽和炭化水素化合
物、Cr−C14のアルキルベンゼン化合物、スチレン
、α−メチルスチレンなどの炭化水素系の化合物及びこ
れらの混合物等、をプラズマ重合して多孔性膜の上に形
成した薄層をあげることができる。これらの薄層はいず
れもピンホールが存在せず、しかも酸素ガスに対する選
択透過性に優れている。とくに、上記したフッ素化有機
化合物は、その単分子をプラズマ重合して形成しだ薄層
が水蒸気又は炭酸ガスに対する侵入防止効果に優れてい
るので有用である。形成する薄膜の厚みは、実用上0.
01〜1.0μmの範囲にあることが好ましく、該厚み
が0.01μm未満の場合には形成された薄層が島状と
なって該多孔性膜の表面を一様に被覆することができず
、炭酸ガス又は水蒸気の侵入に対する防止効果が低下す
る。更には薄層全体の機械的強度も低下する。逆に厚み
が1.0μmを超えると、電極を組立てたときに電極本
体に供給される酸素ガス量が不足し、電極の放電特性が
低下する(重負荷放電が困難になる)。
At this time, polyfluoroethylene propylene (FEP) and HoIJ ethylene (PR) are used as the material for the water pumping layer.
If a heat-sealable material such as ethylene-tetrafluoroethylene copolymer is used, the water-lifting layer according to the present invention may further contain various organic compounds such as pencitrifluoride, m-chlorobencitrifluoride, Fluorinated organic compounds such as hexafluorobenzene, pentafluorobenzene, pentafluorostyrene, and mixtures thereof; for example, C1-012 saturated hydrocarbon compounds, 01-C12 unsaturated hydrocarbon compounds, Cr-C14 alkylbenzene compounds, Examples include a thin layer formed on a porous membrane by plasma polymerizing hydrocarbon compounds such as styrene, α-methylstyrene, and mixtures thereof. All of these thin layers are free of pinholes and have excellent permselectivity for oxygen gas. In particular, the above-mentioned fluorinated organic compounds are useful because the thin layer formed by plasma polymerizing their single molecules has an excellent effect of preventing water vapor or carbon dioxide from entering. The thickness of the thin film to be formed is practically 0.
The thickness is preferably in the range of 0.01 to 1.0 μm, and when the thickness is less than 0.01 μm, the formed thin layer becomes island-like and can uniformly cover the surface of the porous membrane. First, the effect of preventing the intrusion of carbon dioxide gas or water vapor is reduced. Moreover, the mechanical strength of the entire thin layer is also reduced. On the other hand, if the thickness exceeds 1.0 μm, the amount of oxygen gas supplied to the electrode body will be insufficient when the electrode is assembled, and the discharge characteristics of the electrode will deteriorate (heavy load discharge becomes difficult).

また、上記した薄層は、単一層として形成されてもよい
が、この層の上に更に別種の有機化合物から成る高分子
薄膜を形成することもできる。
Further, the above-mentioned thin layer may be formed as a single layer, but it is also possible to further form a polymer thin film made of another type of organic compound on this layer.

このようにして形成された揚水性層の上に、更に、ルチ
ル型詰、晶構造の金属酸化物の薄層が積層される。その
厚みは、揚水性層の場合と同様の理由によ、90.01
〜1.0μmであることが好ましい。
A thin layer of a metal oxide having a rutile-type packed crystal structure is further laminated on the water-pumping layer thus formed. Its thickness is 90.01 for the same reason as for the pumping layer.
It is preferable that it is -1.0 micrometer.

[発明の実施例] 実施例1〜13 平均孔径0.03μmの微細孔を均一に分布し、空孔容
fi0.42%の多孔性ポリカーボネート膜(商品名、
ニュクリポア;ニュクリボアコーポレーション、厚み5
μm)の片面に、各種のルチル型結晶構造の金属酸化物
をスパッタ源とし圧力2 X 1O−3TOrrの酸素
を含まないアルゴンガス中、高周波電力100 Wの条
件でスパッタ処理を施し、各種のルチル型結晶構造の金
属酸化物の薄層を形成した。厚み0.2μm0 実施例14〜26 実施例1〜13で用いたと同じ仕様の多孔性ポリカーボ
ネート膜の片面に、アルゴンガス(酸素を含まず)圧I
XIF2Torr高周波出力200 Wの条件でフロロ
エチレンプロピレン(FFfP)ヲスパッタして、厚み
0.2μmの揚水性層を形成した。ついで、この上に、
実施例1〜13と同様にして各種のルチル型結晶構造の
金属酸化物の薄層(厚み0.2μm)を形成した。
[Examples of the invention] Examples 1 to 13 A porous polycarbonate membrane (trade name,
Nucleipore; Nucleipore Corporation, thickness 5
A sputtering process was performed on one side of the rutile-type crystal structure metal oxides using various rutile-type crystal structure metal oxides as a sputtering source in oxygen-free argon gas at a pressure of 2 x 10-3 TOrr and a high-frequency power of 100 W. A thin layer of metal oxide with a type crystal structure was formed. Thickness: 0.2 μm0 Examples 14 to 26 One side of a porous polycarbonate membrane having the same specifications as those used in Examples 1 to 13 was heated with argon gas (without oxygen) at a pressure of I
Fluoroethylene propylene (FFfP) was sputtered under the conditions of XIF2 Torr and high frequency output of 200 W to form a water pumping layer with a thickness of 0.2 μm. Then, on top of this,
A thin layer (thickness: 0.2 μm) of various metal oxides having a rutile crystal structure was formed in the same manner as in Examples 1 to 13.

実施例27〜39 実施例1〜13で用いたのと同じ仕様の多孔性ポリカー
ボネート膜をプラズマ反応槽に装填し、外部から13.
56MHzの高周波電力を印加して、槽内に酸素を含ま
ないアルゴン600m1l/in i n、ペンタフロ
ロスチレンのモノマーガス600m4/rrIin 5
r: 導入してRF出力0.4 W/cr/l の条件
でプラズマ重合反応を行ない該ポリカーボネート膜の片
面に厚み0.2μmのペンタフロロスチレン重合体の薄
層を形成した。
Examples 27-39 A porous polycarbonate membrane having the same specifications as used in Examples 1-13 was loaded into a plasma reactor, and 13.
Applying high frequency power of 56 MHz, oxygen-free argon in the tank is 600 ml/in, pentafluorostyrene monomer gas is 600 m4/rr in 5
r: was introduced and a plasma polymerization reaction was carried out under the conditions of RF output of 0.4 W/cr/l to form a thin layer of pentafluorostyrene polymer having a thickness of 0.2 μm on one side of the polycarbonate film.

ついで、この上に実施例1〜13と同様:てして各種の
ルチル型結晶構造の金属酸化物の薄層(0,2μm)を
形成した。
Then, as in Examples 1 to 13, a thin layer (0.2 μm) of various metal oxides having a rutile crystal structure was formed thereon.

比較例1〜4 スパッタ反応槽中に混合ガス(酸素5gvo1%、アル
ゴン50vo1%)を用いた他は、実施例1〜4と同様
にして各種のルチル型結晶構造の金属酸化物の薄層(0
,2μm)を形成した。
Comparative Examples 1 to 4 Thin layers of metal oxides with various rutile crystal structures ( 0
, 2 μm) was formed.

比較例5〜8 スパッタ反応槽中に混合ガス(酸素50yo1%、アル
ゴン5Qvo1%)を用いた他は、実施例14〜17と
同様にして各種のルチル型結晶構造の金属酸化物の薄層
(0,2μm)を形成した。
Comparative Examples 5-8 Various thin layers of metal oxides with rutile crystal structure ( 0.2 μm) was formed.

比較例9〜12 スパッタ反応槽中に混合ガス(酸素50VOlチ、アル
ゴン5Qvo1%)を用いた他は、実施例27〜30と
同様にして各種のルチル型結晶構造の金属酸化物の薄層
(0,2μm)を形成した。
Comparative Examples 9-12 Thin layers of metal oxides with various rutile crystal structures ( 0.2 μm) was formed.

比較例13〜18 同様に比較として、厚み(資)μmのポリシロキサン膜
(比較例13)、厚み加μmの中密度ポリエチレン膜(
比較例14)、厚み(至)μmの二軸配向性ポリプロピ
レン膜(比較例15)、厚み加μmのポリテトラフロロ
エチレン膜(比較例16)、厚みmμmのFEP膜(比
較例17)、実施例14〜26のスパッタリング法で成
膜した厚み0.2μm0FFiP膜(比較例18 )を
それぞれ用いた。
Comparative Examples 13 to 18 Similarly, for comparison, a polysiloxane film (comparative example 13) with a thickness of μm and a medium-density polyethylene film with a thickness of μm (
Comparative Example 14), biaxially oriented polypropylene film with a thickness of (to) μm (Comparative Example 15), polytetrafluoroethylene film with a thickness of μm (Comparative Example 16), FEP film with a thickness of mμm (Comparative Example 17), implementation A 0.2 μm thick 0FFiP film (Comparative Example 18) formed by the sputtering method of Examples 14 to 26 was used, respectively.

以上57種類の複合膜、比較膜につき、その酸素透過速
度(J O2: c9/5ec−d −crrLHg 
)をガスク0?トゲラフを検出手段とする等工法で測定
し、また水蒸気透過速度(JH2o : cc/5ec
−c、n ・cm)Ig)をJ I 8 Z0208(
カップ法)に準じた方法で測定し、この両者の比(JO
2/JH20)  をガス透過比として算出した0以上
の結果を一括して表に示した。
For the above 57 types of composite membranes and comparative membranes, their oxygen permeation rates (J O2: c9/5ec-d -crrLHg
) to Gask 0? It is measured by a method such as using a spike rough as a detection means, and the water vapor permeation rate (JH2o: cc/5ec
-c, n ・cm) Ig) to J I 8 Z0208 (
cup method), and the ratio of the two (JO
2/JH20) as the gas permeation ratio and the results of 0 or more are collectively shown in the table.

以下余白 〔発明の効果] 以上の説明で明らかなように、本発明の複合膜は、その
厚みが極めて薄いにもかかわらず、空気中の水蒸気の透
過を許さず、酸素ガス選択透過能が大きいので、これを
電極本体と組合せて成る空気電極は、全体を薄くでき、
しかも長時間に亘り重負荷放電が可能になるとともに、
その保存性能も向上する。まだ耐漏液性も向上する。
Margins below [Effects of the Invention] As is clear from the above description, the composite membrane of the present invention does not allow the permeation of water vapor in the air and has a high oxygen gas selective permeability, despite its extremely thin thickness. Therefore, an air electrode made by combining this with the electrode body can be made thinner overall.
Moreover, it is possible to discharge heavy loads for a long time, and
Its storage performance is also improved. It also improves leakage resistance.

したがって、本発明の複合膜の工業的価値は極めて犬で
ある。
Therefore, the industrial value of the composite membrane of the present invention is extremely limited.

Claims (1)

【特許請求の範囲】 (1)孔径0.1μm以下の微岬孔を有する多孔性膜の
表面K、ルチル型結晶構造の金属酸化物の薄層を該金属
酸化物をスパッタ又は蒸着源とし0〜IQ vo1%の
酸素を含む反応ガス中におけるスパッタ又は蒸着により
形成したことを特徴きする酸素ガス選択透過性複合膜の
製造方法。 (2)該金属酸化物が、二酸化スズ、二酸化チタン、二
酸化バナジウム、二酸化モリブデン、二酸化タングステ
ン、二酸化ルビジウム、ニア11化ニオブ、二酸化クロ
ム、二酸化レニウム、二酸化オスミウム、二酸化ロジウ
ム、二酸化イリジウム、二酸化白金の群から選ばれる少
なくとも1種のルチル型結晶構造の金属酸化物である特
許請求の範囲第1項記載の酸素ガス選択透過性複合膜の
製造方法。 (3)該薄層の厚みがo、o i〜1.0μmである特
許請求の範囲第1項記載の酸素ガス選択透過性複合膜の
製造方法。 (4ン孔径0.1μm以下の微細孔を有する多孔性膜の
表面に、撥水性層及びルチル型結晶構造の金属酸化物の
薄層をO〜IQ vol %の酸素を含む反応ガス中に
おけるスパッタ又は蒸着によシ形成し、この順序で一体
的に積層して成ることを特徴とする酸素ガス選択透過性
複合膜の製造方法。 (5)該金属酸化物が、二酸化スズ、二酸化チタン、二
酸化バナジウム、二酸化モリブデン、二酸化タングステ
ン、二酸化ルビジウム、二酸化二オフ、二酸化クロム、
二酸化レニウム、二酸化オスミウム、二酸化ロジウム、
二酸化イリジウム、二酸化白金の群から選ばれる少なく
とも1種のルチル型結晶構造の金属酸化物である特許請
求の範囲第4項記載の酸素ガス選択透過性複合膜の製造
方法。 (6)該撥水絶層がフッ素化有機化合物の単分子のプラ
ズマ重合体の薄層である特許請求の範囲第4項記載の酸
素ガス選択透過性複合膜の製造方法。 (7)該撥水性層及び該金属酸化物の薄層の厚みがそれ
ぞれ0.01〜1.0μmである特許請求の範囲第4項
記載の酸素ガス選択透過性複合膜の製造方法。
Scope of Claims: (1) On the surface K of a porous film having micropores with a pore diameter of 0.1 μm or less, a thin layer of a metal oxide with a rutile type crystal structure is formed using the metal oxide as a sputtering or vapor deposition source. A method for producing an oxygen gas selectively permeable composite membrane, characterized in that the membrane is formed by sputtering or vapor deposition in a reactive gas containing 1% of oxygen. (2) The metal oxide is tin dioxide, titanium dioxide, vanadium dioxide, molybdenum dioxide, tungsten dioxide, rubidium dioxide, niobium decide, chromium dioxide, rhenium dioxide, osmium dioxide, rhodium dioxide, iridium dioxide, platinum dioxide. The method for producing an oxygen gas selectively permeable composite membrane according to claim 1, wherein at least one metal oxide having a rutile crystal structure is selected from the group consisting of: (3) The method for producing an oxygen gas selectively permeable composite membrane according to claim 1, wherein the thin layer has a thickness of o, o i to 1.0 μm. (A water repellent layer and a thin layer of a metal oxide with a rutile crystal structure are formed on the surface of a porous film having micropores with a pore diameter of 0.1 μm or less by sputtering in a reactive gas containing O to IQ vol% oxygen. A method for producing an oxygen gas permselective composite membrane, characterized in that the metal oxide is formed by vapor deposition and integrally laminated in this order. (5) The metal oxide is tin dioxide, titanium dioxide, or Vanadium, molybdenum dioxide, tungsten dioxide, rubidium dioxide, dioff dioxide, chromium dioxide,
rhenium dioxide, osmium dioxide, rhodium dioxide,
The method for producing an oxygen gas selectively permeable composite membrane according to claim 4, which is at least one metal oxide having a rutile crystal structure selected from the group of iridium dioxide and platinum dioxide. (6) The method for producing an oxygen gas selectively permeable composite membrane according to claim 4, wherein the water-repellent layer is a thin layer of a monomolecular plasma polymer of a fluorinated organic compound. (7) The method for producing an oxygen gas permselective composite membrane according to claim 4, wherein the water repellent layer and the metal oxide thin layer each have a thickness of 0.01 to 1.0 μm.
JP57164025A 1982-09-22 1982-09-22 Manufacture of composite film having selective oxygen permeability Pending JPS5955315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164025A JPS5955315A (en) 1982-09-22 1982-09-22 Manufacture of composite film having selective oxygen permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164025A JPS5955315A (en) 1982-09-22 1982-09-22 Manufacture of composite film having selective oxygen permeability

Publications (1)

Publication Number Publication Date
JPS5955315A true JPS5955315A (en) 1984-03-30

Family

ID=15785360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164025A Pending JPS5955315A (en) 1982-09-22 1982-09-22 Manufacture of composite film having selective oxygen permeability

Country Status (1)

Country Link
JP (1) JPS5955315A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902307A (en) * 1988-11-18 1990-02-20 California Institute Of Technology Synthesis of SiO2 membrane on porous support and method of use of same
US5108465A (en) * 1989-06-29 1992-04-28 Merck Patent Gesellschaft Mit Beschrankter Haftung Process and device for obtaining pure oxygen
US5181941A (en) * 1991-12-16 1993-01-26 Texaco Inc. Membrane and separation process
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
JP2021002519A (en) * 2019-06-19 2021-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for forming a hydrophobic electroconductive microporous layer useful as gasdiffusion layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902307A (en) * 1988-11-18 1990-02-20 California Institute Of Technology Synthesis of SiO2 membrane on porous support and method of use of same
US5108465A (en) * 1989-06-29 1992-04-28 Merck Patent Gesellschaft Mit Beschrankter Haftung Process and device for obtaining pure oxygen
US5181941A (en) * 1991-12-16 1993-01-26 Texaco Inc. Membrane and separation process
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
JP2021002519A (en) * 2019-06-19 2021-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for forming a hydrophobic electroconductive microporous layer useful as gasdiffusion layer

Similar Documents

Publication Publication Date Title
US5748438A (en) Electrical energy storage device having a porous organic electrode
US4599157A (en) Oxygen permeable membrane
US4483694A (en) Oxygen gas permselective membrane
TW201214845A (en) Bifunctional (rechargeable) air electrodes
JPS6321315B2 (en)
CA2853747C (en) Membrane electrode assembly for fuel cell
KR20070019868A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
US8815335B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
JPS5955315A (en) Manufacture of composite film having selective oxygen permeability
JPS5955314A (en) Manufacture of composite permselective membrane for gaseous oxygen
JPS59150508A (en) Preparation of oxygen gas permselective composite membrane
JPH06342667A (en) High molecular type fuel cell
JPS5946104A (en) Composite membrane selectively permeable for gaseous oxygen
JPS6051505A (en) Gas selective composite membrane
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS5946102A (en) Composite membrane selectively permeable for gaseous oxygen
JPS5998706A (en) Oxygen gas permselective composite membrane
JPS5958759A (en) Air electrode and its manufacture
JPH0459007B2 (en)
JPS62252067A (en) Composite separator for battery
JPS5955316A (en) Manufacture of permselective composite membrane for gaseous oxygen
JPS5946103A (en) Composite membrane selectively permeable for gaseous oxygen
JPS58225571A (en) Air electrode and its production method
JPS58225573A (en) Air electrode and its production method
RU2154817C2 (en) Current-conducting composite polymer membrane