JPS5946000A - Preparation of substance to operate magnetic feezing - Google Patents

Preparation of substance to operate magnetic feezing

Info

Publication number
JPS5946000A
JPS5946000A JP57150903A JP15090382A JPS5946000A JP S5946000 A JPS5946000 A JP S5946000A JP 57150903 A JP57150903 A JP 57150903A JP 15090382 A JP15090382 A JP 15090382A JP S5946000 A JPS5946000 A JP S5946000A
Authority
JP
Japan
Prior art keywords
magnetic
substance
single crystal
processing
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57150903A
Other languages
Japanese (ja)
Other versions
JPS5948800B2 (en
Inventor
Akio Sato
明男 佐藤
Hideki Nakagome
秀樹 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57150903A priority Critical patent/JPS5948800B2/en
Priority to EP83303090A priority patent/EP0104713B1/en
Priority to DE8383303090T priority patent/DE3377517D1/en
Priority to EP86117025A priority patent/EP0223265B1/en
Priority to DE8686117025T priority patent/DE3382670T2/en
Publication of JPS5946000A publication Critical patent/JPS5946000A/en
Publication of JPS5948800B2 publication Critical patent/JPS5948800B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • ing And Chemical Polishing (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled substance removing simply processing strain on the surface, showing improved thermal conductivity in a cryogenic range, by removing the processing strain layer on the surface by etching treatment at the final process of processing a single crystal mass of a magnetic material. CONSTITUTION:In preparing a substance to operate magnetic freezing, having a given shape, by processing a single crystal mass of a magnetic substance (e.g., single crystal mass of gadolinium gallium garnet), a processing strain layer on the surface of the material is removed by etching treatment (e.g., etching treatment with hot phosphoric acid, etc.) at the final process. The processing strain layer can be removed by a simple process. Consequently, the substance to operate magnetic freezing having good thermal conductivity at cryogenic range without complicating the production process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気冷凍作業物質の製造方法に係り、符に、
簡単な工程で表面の加工歪層を除去できるようにした製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a magnetically refrigeration working material, and includes the following steps:
The present invention relates to a manufacturing method that enables removal of a processed strain layer on the surface through a simple process.

〔発明の背景技術およびその問題点〕[Background technology of the invention and its problems]

従来、磁性体の磁気熱号効果を利用した磁気冷凍機が知
ら几ている。この磁気冷凍機は、気体冷凍機に較べて単
位体積当りの除法能力が高く、この結果、冷凍機を小型
化できると云う長所を備えている。
Conventionally, magnetic refrigerators that utilize the magnetocaloric effect of magnetic materials have been known. This magnetic refrigerator has a higher division capacity per unit volume than a gas refrigerator, and as a result has the advantage that the refrigerator can be made smaller.

、ところで、−気冷練機の場合には、断熱磁化によって
磁性体に発生した熱を外部へ逃がす排熱過程と、断熱消
磁によって冷えた磁性体で冷部対象から熱を奪わせる吸
熱過程との2つの熱交換過程を交互に行なわせる必要が
ある。したがって、冷凍効率は、吸熱、排熱の熱交換に
要する時間によって左右される。このため、磁性体、す
なわち磁気冷凍作業物質としては、磁気モーメントが単
に大きいだけではなく、冷凍機の動作温度範囲で熱伝導
率の高いものが望まれる。
By the way, in the case of a -air cooling kneader, there is a heat exhaustion process in which the heat generated in the magnetic material is released to the outside by adiabatic magnetization, and an endothermic process in which heat is removed from the cold object by the magnetic material cooled by adiabatic demagnetization. It is necessary to perform the two heat exchange processes alternately. Therefore, refrigeration efficiency depends on the time required for heat exchange between heat absorption and exhaust heat. For this reason, the magnetic material, ie, the magnetic refrigeration material, is desired to have not only a large magnetic moment but also a high thermal conductivity within the operating temperature range of the refrigerator.

一般に、磁気冷凍作業物質は、磁性体単結晶腕体から切
出し加工、整形加工して製造されるが、これら作業物質
の熱伝導率は、通常、温度が下がるとともに増加し、l
O〜40にで最大となplさらに温度が下がると減少す
る傾向を示す。そして、上記ピーク値より低温側におけ
る熱伝導率は、作業物質の表面状態によシ異な91表面
に加工歪が残っていると熱伝導率が低下する。このため
、磁性体単結晶腕体よシ、加工によって所望形状の磁気
冷凍作業物を取り出すに当って表面の加工歪を簡単に取
り除くことができ、熱伝導率の良い良質の作業物質を製
造できる製造方法の出現が強く望まれているのが実情で
ある。
In general, magnetic refrigeration materials are manufactured by cutting and shaping magnetic single crystal arms, but the thermal conductivity of these materials usually increases as the temperature decreases;
pl reaches a maximum at 0~40, and shows a tendency to decrease as the temperature further decreases. The thermal conductivity at a temperature lower than the above-mentioned peak value varies depending on the surface condition of the work material. 91 If processing strain remains on the surface, the thermal conductivity decreases. Therefore, when processing a magnetic single-crystal arm body to take out a magnetically frozen workpiece in a desired shape, processing distortion on the surface can be easily removed, and high-quality workpieces with good thermal conductivity can be manufactured. The reality is that the emergence of a manufacturing method is strongly desired.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、製造工程の複雑化を招くことな
しに表面の加工歪を簡単に除去でき、もって、極低温領
域において勝れた熱伝導特性を発揮する磁気冷凍作業物
質を製造する方法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to easily remove processing distortion from the surface without complicating the manufacturing process, and thereby to achieve success in the cryogenic region. An object of the present invention is to provide a method for manufacturing a magnetic refrigeration material that exhibits excellent heat conduction properties.

〔発明の概要〕[Summary of the invention]

本発明は、磁性体単結晶腕体より 71[1工によって
所望形状の磁気冷凍作業物質を得るに当り、最終工程で
、上記物刊の表面の加工歪層をエツチング処理によって
除去するようにしたことを特徴としている。
In the present invention, when obtaining a magnetic refrigeration material in a desired shape from a magnetic single-crystal arm body by one process, the strained layer on the surface of the material is removed by etching in the final process. It is characterized by

〔発明の効果〕〔Effect of the invention〕

上記の製造方法を採用すると、磁気冷凍作業物−質の表
面に存在している加工歪層を簡単に、かつ確実に除去す
ることができる。したがって、製造工程の複雑化を招く
ことなしに極低温下において熱伝導率の良い磁気冷凍作
業物質を製造できる。
By employing the above manufacturing method, the strained layer existing on the surface of the magnetically frozen material can be easily and reliably removed. Therefore, a magnetic refrigeration material with good thermal conductivity can be produced at extremely low temperatures without complicating the production process.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、磁性体単結晶腕体ふしてガトリ=ウムガリウムガ
ーネット(GGG)の単結晶椀体を用意した。次に、上
記単結晶椀体から2つの直方体状ブロックを切出し、こ
れら2つの直方体状ブロックの表面をそれぞれラッピン
グ仕上げした。続いて、一方のブロックについては、そ
の表面に160℃のシん酸を接和させて表面層を厚さ5
0〜60μmに亘って除去し、これを試料Aとした。!
!た、ラッピング仕上げだけを施した他方のブロックは
参考試料Bとした。
First, a magnetic single crystal arm and a single crystal bowl of Gatrium gallium garnet (GGG) were prepared. Next, two rectangular parallelepiped blocks were cut out from the single crystal bowl, and the surfaces of these two rectangular parallelepiped blocks were finished by lapping. Next, for one block, 160°C cynic acid was bonded to the surface to form a surface layer with a thickness of 5.
A portion of 0 to 60 μm was removed, and this was designated as sample A. !
! The other block, which was only subjected to a lapping finish, was designated as reference sample B.

これら試料Aおよび参考試料Bについて、それぞれ極低
温下における熱伝導率を測定したところ図に示す結果を
得た。図から判るように、エツチング処理によって表面
層が除去された試料Aは20に以下の温度領域において
参考試料Bに較べて大幅に熱伝導率が向上していること
が確認された。これは、エツチング処理によって表面の
加工歪層がなくなり、表面状態が改善された結果である
。したがって、本発明のように、最終工程において、磁
気冷凍作業物質の表面をエツチング処理すれば熱特性に
勝れた磁気冷凍作業物質を製造することができる。
The thermal conductivities of Sample A and Reference Sample B at extremely low temperatures were measured, and the results shown in the figure were obtained. As can be seen from the figure, it was confirmed that sample A, whose surface layer was removed by etching treatment, had significantly improved thermal conductivity compared to reference sample B in the temperature range below 20 degrees. This is the result of the etching process eliminating the strained layer on the surface and improving the surface condition. Therefore, as in the present invention, by etching the surface of the magnetic refrigeration material in the final step, it is possible to produce a magnetic refrigeration material with excellent thermal properties.

なお、本発明は、上記実施例に限定されるものではない
。すなわち、GGG以外に、Dy5At5012゜Gd
5At50,7.GdPO4、Dy2Ti20.等の磁
性体単結晶腕体から得られたものの表面に最終工程で熱
りん酸等でエツチング処理を施すことによって極低温下
における熱伝導特性に勝れた磁気冷凍作業物質を製造す
ることができる。
Note that the present invention is not limited to the above embodiments. That is, in addition to GGG, Dy5At5012°Gd
5At50,7. GdPO4, Dy2Ti20. By etching the surface of magnetic single crystal arms obtained from magnetic single crystal arms with hot phosphoric acid, etc. in the final step, it is possible to produce magnetic refrigeration materials with excellent heat conduction properties at extremely low temperatures. .

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る製造方法によって製造された磁気冷凍
作業物質(試料A)の熱伝導特性を別の製造方法によっ
て得られた磁気冷凍作業物質(参考試料B)のそれと比
較して示す図である。
The figure is a diagram showing the thermal conductivity properties of a magnetic refrigeration material (sample A) produced by the production method according to the present invention in comparison with that of a magnetic refrigeration material (reference sample B) obtained by another production method. be.

Claims (1)

【特許請求の範囲】[Claims] 磁性体単結晶腕体から加工によって所望形状の磁気冷凍
作業物質を得るに当り、最終工程で、上記物質の表面の
加工歪層をエツチング処理によって除去するようにした
ことを特徴とする磁気冷凍作業物質の製造方法。
A magnetic refrigeration work characterized in that, in obtaining a magnetic refrigeration work material of a desired shape by processing from a magnetic single crystal arm body, in the final step, a processed strain layer on the surface of the material is removed by etching treatment. A method of manufacturing a substance.
JP57150903A 1982-08-31 1982-08-31 Method for producing magnetic refrigeration working materials Expired JPS5948800B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57150903A JPS5948800B2 (en) 1982-08-31 1982-08-31 Method for producing magnetic refrigeration working materials
EP83303090A EP0104713B1 (en) 1982-08-31 1983-05-27 A magnetic refrigerator
DE8383303090T DE3377517D1 (en) 1982-08-31 1983-05-27 A magnetic refrigerator
EP86117025A EP0223265B1 (en) 1982-08-31 1983-05-27 A method for manufacturing the working material used in a magnetic refrigerator
DE8686117025T DE3382670T2 (en) 1982-08-31 1983-05-27 METHOD FOR PRODUCING THE WORKING MATERIAL USED IN A MAGNETIC COOLER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150903A JPS5948800B2 (en) 1982-08-31 1982-08-31 Method for producing magnetic refrigeration working materials

Publications (2)

Publication Number Publication Date
JPS5946000A true JPS5946000A (en) 1984-03-15
JPS5948800B2 JPS5948800B2 (en) 1984-11-28

Family

ID=15506900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150903A Expired JPS5948800B2 (en) 1982-08-31 1982-08-31 Method for producing magnetic refrigeration working materials

Country Status (1)

Country Link
JP (1) JPS5948800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574803A (en) * 2014-07-15 2017-04-19 弗劳恩霍夫应用研究促进协会 Air conditioning device having at least one heat pipe, in particular thermosiphon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574803A (en) * 2014-07-15 2017-04-19 弗劳恩霍夫应用研究促进协会 Air conditioning device having at least one heat pipe, in particular thermosiphon
CN106574803B (en) * 2014-07-15 2020-03-20 弗劳恩霍夫应用研究促进协会 Air conditioning device with at least one heat pipe, in particular a thermosiphon

Also Published As

Publication number Publication date
JPS5948800B2 (en) 1984-11-28

Similar Documents

Publication Publication Date Title
Pecharsky et al. The giant magnetocaloric effect in Gd5 (SixGe1-x) 4 materials for magnetic refrigeration
CN102400216B (en) Method for manufacturing single crystal grain niobium material for radio frequency superconducting cavity
KR101233462B1 (en) Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US20130283822A1 (en) Magnetic refrigerant bed and method for manufacturing the same
CN108735411B (en) Lanthanum-iron-silicon/gadolinium composite magnetic refrigeration material and preparation process thereof
JPS6230840A (en) Working substance for magnetic refrigerator and its production
JPS5946000A (en) Preparation of substance to operate magnetic feezing
CN106554006A (en) A kind of material with carbon element, preparation method and applications
US9824803B2 (en) Magnetic refrigeration material and manufacturing method of magnetic refrigeration material
CN103255384B (en) The barium ferrite film preparation method of crystal grain c-axis vertical film planar orientation growth
WO2004003100A1 (en) A moulding process of composite material including high-thermal­-conductor and room-temperature magnetic refrigerant
EP0223265B1 (en) A method for manufacturing the working material used in a magnetic refrigerator
CN103334043B (en) Magnetic alloy serving as magnetic refrigeration material
JPS5939799A (en) Production of operating material for magnetic refrigeration
JP3414699B2 (en) Oxide ceramic cold storage material and its manufacturing method
CN110556221B (en) Single crystal-like heterojunction room temperature magnetic refrigeration material with large magnetic entropy change and wide working temperature zone and preparation process thereof
CN109763049B (en) Composite magnetic refrigeration material, preparation method thereof and magnetic refrigeration equipment
CN102513536A (en) Process for preparing magnetic cooling material
JPS6383235A (en) Manufacture of working substance for magnetic refrigeration
JPS6230829A (en) Working substance for magnetic refrigeration and its production
CN103205590A (en) Preparation process of magnetic refrigeration material
CN108467928A (en) A method of improving LaFeSi alloy magnetic refrigeration material magnetic entropy varied curve halfwidths
JPH0330264A (en) Method for joining superconducting ceramic
CN108486469B (en) Nanocrystalline La1-xRxFeySizMethod for producing magnetocaloric effect material
CN109616271B (en) Cu-doped MnAl-based magnetic refrigeration material and preparation method thereof