JPH0330264A - Method for joining superconducting ceramic - Google Patents

Method for joining superconducting ceramic

Info

Publication number
JPH0330264A
JPH0330264A JP16482689A JP16482689A JPH0330264A JP H0330264 A JPH0330264 A JP H0330264A JP 16482689 A JP16482689 A JP 16482689A JP 16482689 A JP16482689 A JP 16482689A JP H0330264 A JPH0330264 A JP H0330264A
Authority
JP
Japan
Prior art keywords
superconducting
high temperature
bonding
uniaxial
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16482689A
Other languages
Japanese (ja)
Other versions
JPH0514383B2 (en
Inventor
Norimitsu Murayama
宣光 村山
Shuji Sakaguchi
修司 阪口
Taiji Kodama
児玉 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16482689A priority Critical patent/JPH0330264A/en
Publication of JPH0330264A publication Critical patent/JPH0330264A/en
Publication of JPH0514383B2 publication Critical patent/JPH0514383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To join easily and securely by a method wherein surfaces of superconducting ceramic sintered bodies perpendicular to a direction where current is easy to flow are aligned with each other and uniaxial high temperature pressure applied treatment is performed perpendicularly to the joined surfaces. CONSTITUTION:With respect to two or more high temperature superconducting ceramics having particle orientation microstructure such as Bi-Pb-Sr-Ca-Cu-O, surfaces of sintered bodies equal in crystal direction are brought into contact with each other and subjected to uniaxial high temperature pressure applied treatment in temperature range of 600 to 950 deg.C with applied pressure range of 10 to 100kg/cm<2>. As a method of uniaxial high temperature pressure applied treatment, hot pressing and hot forging are available. Thus superconducting ceramics can be joined with each other with sufficient junction strength and junction due to mutual diffusion between superconducting ceramics generates no different phase on the junction interface, thereby obtaining a high temperature superconducting ceramic joined body having high critical current density.

Description

【発明の詳細な説明】 (a)技術分野の説明 本発明は、ブロック状超電導コイルや超電導磁(b)従
来技術の説明 超電導体には、ゼロ抵抗、ジョセフソン効果、完全反磁
性などの特異な性質があり、それらの現象を利用して巨
大な超電導発電機、超高速コンピュータなどの開発が見
込まれている。最近になって、液体窒素温度以上で超電
導を示す高温超7R導セラミックスが発見されるに伴い
、産業への応用は、電力、エレクトロニクス、輸送、医
療などの各分野で飛躍的に広がり、近未来の社会を変え
てしまうことが予期されている。
Detailed Description of the Invention (a) Description of the technical field The present invention is based on block-shaped superconducting coils and superconducting magnets. (b) Description of the prior art These phenomena are expected to be used to develop giant superconducting generators, ultra-high-speed computers, and other devices. Recently, with the discovery of high-temperature super 7R conductive ceramics that exhibit superconductivity above liquid nitrogen temperatures, industrial applications have expanded dramatically in various fields such as electric power, electronics, transportation, and medicine, and are expected to be used in the near future. It is expected that this will change the society of the world.

しかしながら、これらの材料を実用化する段階で、特に
、電力応用の分野では超電導セラミックスと超電導セラ
ミックスとの接合化は超電導応用システムの開発に必要
不可欠な技術要素であり、ではならない。超電導セラミ
ックスの接合化に関ばならない問題点がある。
However, at the stage of putting these materials into practical use, especially in the field of electric power applications, the bonding of superconducting ceramics to superconducting ceramics is an essential technical element for the development of superconducting application systems. There are problems unrelated to bonding superconducting ceramics.

する研究は現段階では皆無であり、その技術開発が強く
望まれている。
There is currently no research to do so, and the development of this technology is strongly desired.

(C)発明が解決しようとする問題点 超電導セラミックスの接合には、接合強度の強さと共に
超電導セラミックスの持つ高い臨界電流密度が接合界面
でも保持されなければならない。
(C) Problems to be Solved by the Invention In joining superconducting ceramics, it is necessary to maintain high joint strength and the high critical current density of superconducting ceramics at the joining interface.

特に、接合界面に異相が生成すると超電導電流が阻止さ
れる。セラミックス構造材料では、一般に添加物を加え
て接合界面に中間生成層を生成させることにより強固な
接合を図ってきてきたが、超電導セラミックスでは、大
電流を流すためには添加物を加えることなく超電導セラ
ミックス同士の拡散により接合しなければならない。ま
た、最近発見された酸化物系高温超電導体は結晶構造の
関係から超電導電流においても2次元的な異方性を示し
ており、大電流を流すに望ましい方向に超電導セラミッ
クスを当接して接合し、接合界面にお(d)問題を解決
しようとする手段 本発明は前記事情に鑑み、従来の問題点を解決しようと
するもので、機械的応力などの利用により微″W結晶粒
子を特定方向に揃えた高い臨界電流密度を持つ超電導セ
ラミックス焼結体の電流の流れやすい方向に垂直な表面
をそれぞれ合わせて、接合表面に垂直方向に一軸性高温
加圧処理して容易かつ確実に接合できる方法を提供しよ
うとするものであり、600℃以上、10K3/cm2
以上の加圧温度で、超電導セラミックス同士の相互拡散
が容易に起こり、機械的に強固で、臨界Wi流密度の高
い超電導セラミックス接合体を得る接合方法を提供する
ものである. なお、上記の一軸性の高温加圧処理の方法としては、ホ
ットプレス法、ホットフォージ法なとがある。
In particular, if a different phase is generated at the bonding interface, superconducting current is blocked. In ceramic structural materials, strong bonding has generally been achieved by adding additives to generate an intermediate layer at the bonding interface. Ceramics must be bonded by diffusion. In addition, recently discovered oxide-based high-temperature superconductors exhibit two-dimensional anisotropy in superconducting current due to their crystal structure, and superconducting ceramics can be bonded by contacting them in the desired direction to flow a large current. (d) Means for Solving the Problem In view of the above circumstances, the present invention is an attempt to solve the conventional problems, and the present invention aims to solve the conventional problems by directing fine W crystal grains in a specific direction by using mechanical stress or the like. A method for easily and reliably joining superconducting ceramic sintered bodies with high critical current densities aligned with each other by aligning the surfaces perpendicular to the direction in which current flows and applying uniaxial high temperature pressure in the direction perpendicular to the joining surfaces. 600℃ or higher, 10K3/cm2
The present invention provides a bonding method in which mutual diffusion between superconducting ceramics easily occurs at the above pressurizing temperature, and a superconducting ceramic bonded body that is mechanically strong and has a high critical Wi flow density is obtained. Note that methods for the above-mentioned uniaxial high-temperature pressure treatment include a hot press method and a hot forge method.

上記構成に基づく接合方法により、超電導セラミックス
同士が充分な接合強度をもって接合でき、また、超電導
セラミックス同士の相互拡散による接合であるために接
合界面には異相の生成はなく、高い臨界電流密度を有す
る高温超電導セラミックス接合体が作製できた。この発
明は超電導セラミックスの接合化を可能とし、各種の超
電導応用システムの開発が可能となり、超電導セラミッ
クス材料としての実用化が加速される。
The bonding method based on the above structure allows superconducting ceramics to be bonded with sufficient bonding strength, and since the bonding is based on mutual diffusion between superconducting ceramics, there is no generation of different phases at the bonding interface, resulting in a high critical current density. A high-temperature superconducting ceramic bonded body was fabricated. This invention enables the bonding of superconducting ceramics, enables the development of various superconducting application systems, and accelerates the practical application of superconducting ceramic materials.

(f)発明の実施例 以下に実施例をあげて具体的に説明する。接合するため
の焼結体試験片としては、110級の臨界温度を示すB
i+.ePbs.aSr+.aCa22CIJ2.sO
zなる組成を選び、出発原料として通常入手しろる酸化
ビスマス、酸化鉛、炭酸ストロンチウム、炭酸カルシウ
ム及び酸化銅を用いた。
(f) Examples of the Invention The following examples will be specifically explained. As a sintered compact test piece for joining, B which has a critical temperature of 110 class is used.
i+. ePbs. aSr+. aCa22CIJ2. sO
The composition z was selected, and commonly available bismuth oxide, lead oxide, strontium carbonate, calcium carbonate, and copper oxide were used as starting materials.

その調合物を830℃、60時間で固相反応させて超電
導セラミックスの単一相を作り、それを粉砕したものを
ホットプレスH置を用いて830℃、300K8/c1
の条件で2時間高温加圧成形・焼結を行った。
The mixture was subjected to a solid phase reaction at 830°C for 60 hours to produce a single phase of superconducting ceramics, which was then crushed using a hot press at 830°C and 300K8/c1.
High-temperature pressure forming and sintering was performed under the following conditions for 2 hours.

焼結体の密度は6.2kg/cm3で、理論密度の95
%以上であった。X線回折法によって調べると、C軸は
加圧方向に平行に配向し、また、超電導のM.流方向で
あるa軸ないしb軸は加圧方向に垂直に配向した焼結体
ブロックになり、配向度は少なくとも95%以上あった
。このようにして得られた高緻密な焼結体ブロックから
カッターを用いて第1図に示す要領で切断して標準試験
片(供試材寸法18x7x7mm)を、さらに2分割し
て接合用試験片(同9x7x7mm〉を作製した。この
ような同一の焼結体ブロックから切断して得た試験片を
下記の実施例に示すような接合条件で行い、さらに、接
合後の試験片と標準試験片を空気中830℃、40時間
で同時に熱処理し、標準試験片と接合後の試験片の臨界
温度、臨界電流密度、接合強度を測定し、比較検討した
。上記条件で熱処理した標準試験片の臨界温度は108
℃で、77Kでの臨界電流密度は731A/cm2で、
この接合強度な抗折試験によって求めると、実施例1 第1図に示す要領で当接した2つの接合用試験片を大気
中800℃、25Kg/CITl2、30分で一軸性高
温加圧処理して接合し、標準試料片と同様の条件で熱処
理した結果、接合体試験片の臨界温度は108Kで、7
7Kでの臨界電流密度は621A/cm2であった。
The density of the sintered body is 6.2 kg/cm3, which is 95% of the theoretical density.
% or more. When examined by X-ray diffraction, the C axis is oriented parallel to the pressurizing direction, and the M. The a-axis or b-axis, which is the flow direction, was oriented perpendicularly to the pressurizing direction, resulting in a sintered block, and the degree of orientation was at least 95%. The highly dense sintered block thus obtained was cut using a cutter in the manner shown in Figure 1 to obtain a standard test piece (sample material size: 18x7x7mm), which was further divided into two to give a test piece for bonding. (The same 9 x 7 x 7 mm) was prepared. Test pieces obtained by cutting from such the same sintered block were bonded under the conditions shown in the examples below, and the test pieces after bonding and the standard test pieces were bonded. were simultaneously heat-treated in air at 830°C for 40 hours, and the critical temperature, critical current density, and bonding strength of the standard test piece and the test piece after bonding were measured and compared.The critical temperature of the standard test piece heat-treated under the above conditions The temperature is 108
℃, the critical current density at 77K is 731A/cm2,
The bonding strength was determined by a bending test. Example 1 Two bonding test pieces that were brought into contact as shown in Figure 1 were subjected to uniaxial high-temperature pressure treatment at 800°C in the air at 25 kg/CITl2 for 30 minutes. As a result of heat treatment under the same conditions as the standard sample, the critical temperature of the bonded specimen was 108K and 7.
The critical current density at 7K was 621A/cm2.

また、この接合強度を抗折試験によって求めると、約1
3K,gf/mm2で、破壊は接合面の近傍からおこっ
た。
In addition, when this bonding strength is determined by a bending test, it is approximately 1
At 3K, gf/mm2, failure occurred near the joint surface.

実施例2 第1図に示す要領で当接した2つの接合用試験片を大気
中780℃、25Kg/am2、30分で一軸性高温加
圧処理して接合し、標準試料片と同様の条件で熱処理し
た結果、接合体試験片の臨界温度は108Kテ、77K
テノ臨界′rl.流密度Lt 511A/cm2テアッ
タ。
Example 2 Two bonding test pieces that were brought into contact as shown in Figure 1 were bonded by uniaxial high-temperature pressure treatment at 780°C in the atmosphere at 25 kg/am2 for 30 minutes, under the same conditions as the standard sample pieces. As a result of heat treatment at
tenocritical'rl. Flow density Lt 511A/cm2teata.

また、この接合強度を抗折試験によって求めると、約1
0κg,f/…ffl2で、接合面から破壊した。
In addition, when this bonding strength is determined by a bending test, it is approximately 1
At 0κg, f/...ffl2, it broke from the joint surface.

実施例3 第1図に示す要領で当接した2つの接合用試験片を大気
中780℃、50 Kg/cr’、30分で一軸性件て
熱処理した結果、接合体試験片の臨界温度は108Kで
、77Kでの臨界電流密度は585A/cm2であった
Example 3 Two test pieces for bonding that were brought into contact as shown in Figure 1 were heat treated in the atmosphere at 780°C, 50 Kg/cr' for 30 minutes under uniaxial conditions, and the critical temperature of the bonded test piece was found to be At 108K, the critical current density at 77K was 585A/cm2.

また、この接合強度を抗折試験によって求めると、約1
3Kgf/ffllTl2で、破壊は接合面の近傍から
おこった。
In addition, when this bonding strength is determined by a bending test, it is approximately 1
At 3Kgf/ffllTl2, failure occurred near the joint surface.

(g)発明の効果 以上述べたごとく、本発明によれば、臨界温度や臨界電
流密度などの超電導特性を保持して超電導セラミックス
同士を強固に接合することができ、超電導セラミックス
部材を用いて超電導ブロックコイル、超電導磁スシール
ド、超電導キャビティなど複雑形状の超電導応用部品を
作製することが可能となり、本発明の工業的価値は極め
て大きい。
(g) Effects of the Invention As described above, according to the present invention, superconducting ceramics can be firmly bonded to each other while maintaining superconducting properties such as critical temperature and critical current density, and superconducting ceramics can be used to conduct superconducting It becomes possible to produce superconducting application parts with complex shapes such as block coils, superconducting magnetic shields, and superconducting cavities, and the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる超電導セラミックスの接合方法
の実施例における接合要領の説明図である。
FIG. 1 is an explanatory diagram of a joining procedure in an embodiment of the method for joining superconducting ceramics according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] Bi−Pb−Sr−Ca−Cu−O系などの粒子配向性
微組織を有する2つ以上の高温超電導セラミックスに対
して、結晶方向が同じ焼結体表面を当接して、600℃
〜950℃の温度範囲で、また10Kg/cm^2〜1
00Kg/cm^2加圧の範囲で一軸性高温加圧処理す
ることにより、高臨界温度や高臨界電流密度などの超電
導特性を保持しつつ強固に接合することを特徴とする超
電導セラミックスの接合方法。
Two or more high-temperature superconducting ceramics having particle-oriented microstructures such as Bi-Pb-Sr-Ca-Cu-O system are brought into contact with the surfaces of the sintered bodies having the same crystal direction and heated at 600°C.
In the temperature range of ~950℃, also 10Kg/cm^2~1
A method for bonding superconducting ceramics characterized by strongly bonding while maintaining superconducting properties such as high critical temperature and high critical current density by uniaxial high-temperature pressure treatment in the range of 00 kg/cm^2 pressure. .
JP16482689A 1989-06-27 1989-06-27 Method for joining superconducting ceramic Granted JPH0330264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16482689A JPH0330264A (en) 1989-06-27 1989-06-27 Method for joining superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16482689A JPH0330264A (en) 1989-06-27 1989-06-27 Method for joining superconducting ceramic

Publications (2)

Publication Number Publication Date
JPH0330264A true JPH0330264A (en) 1991-02-08
JPH0514383B2 JPH0514383B2 (en) 1993-02-24

Family

ID=15800655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16482689A Granted JPH0330264A (en) 1989-06-27 1989-06-27 Method for joining superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH0330264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
US5439879A (en) * 1992-02-14 1995-08-08 University Of Houston-University Park Method for joining superconductor segments to form a superconducting article
US6194226B1 (en) 1991-02-25 2001-02-27 Sumitomo Electric Industries, Ltd. Junction between wires employing oxide superconductors and joining method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296861A (en) * 1995-04-28 1996-11-12 Shinten Kogyo Kk Floor heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273276A (en) * 1985-05-28 1986-12-03 Toshiba Corp Joining method for superconductive wire
JPS627671A (en) * 1985-07-01 1987-01-14 日本坩堝株式会社 Nozzle for steel continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273276A (en) * 1985-05-28 1986-12-03 Toshiba Corp Joining method for superconductive wire
JPS627671A (en) * 1985-07-01 1987-01-14 日本坩堝株式会社 Nozzle for steel continuous casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194226B1 (en) 1991-02-25 2001-02-27 Sumitomo Electric Industries, Ltd. Junction between wires employing oxide superconductors and joining method therefor
US5439879A (en) * 1992-02-14 1995-08-08 University Of Houston-University Park Method for joining superconductor segments to form a superconducting article
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
EP0634379A4 (en) * 1992-04-03 1995-04-19 Nippon Steel Corp Bonded element of superconductive oxide materials and its manufacture.
US5786304A (en) * 1992-04-03 1998-07-28 Nippon Steel Corporation Joining product of oxide superconducting material and process for producing the same

Also Published As

Publication number Publication date
JPH0514383B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
Schiepers et al. Reactions between α‐silicon carbide ceramic and nickel or iron
JPH02133367A (en) Oriented polycrystalline superconductor
JPH0330265A (en) Method of anisotropic junction of superconducting ceramic
TWI542051B (en) High temperature superconducting films and methods for modifying or creating same
JPH0782049A (en) Junction of y based oxide superconductor
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JPH0330264A (en) Method for joining superconducting ceramic
Namburi et al. A simple, reliable and robust reinforcement method for the fabrication of (RE)–Ba–Cu–O bulk superconductors
JPH06219736A (en) Superconductor
Slagle Deformation mechanisms in polycrystalline graphite
JPH01157460A (en) Superconductive metal oxide and method for its manufacture
Lo et al. Texturing and texture-induced intergranular critical state anisotropy of superconducting (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x ceramics
US6839578B2 (en) Method of forming high temperature superconducting Josephson junction
Li et al. Interface Characterization and Analysis of 4H-SiC Direct Bonding Structure Based on Plasma Processing
Ohmura Galvanomagnetic effect for holes and the valence band in (001) silicon on sapphire
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JPS63259980A (en) Oxide superconductor film
JPH02302379A (en) Cylindrical unit structure of oxide superconductor
JPH02137762A (en) Oriented polycrystalline superconductor
JP3527845B2 (en) Oxide superconductor joint, method of manufacturing the same, and superconducting magnetic shield material
JPH01103965A (en) Method for bonding superconductive materials
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
Testardi Structural Phase Transitions and Superconductivity in A-15 Compounds
JP4092393B2 (en) High temperature superconducting Josephson junction forming method and high temperature superconducting Josephson device comprising Josephson junction formed thereby
Lanagan et al. Production of wires and coils from high-temperature superconducting materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term