JPS6230840A - Working substance for magnetic refrigerator and its production - Google Patents

Working substance for magnetic refrigerator and its production

Info

Publication number
JPS6230840A
JPS6230840A JP60169788A JP16978885A JPS6230840A JP S6230840 A JPS6230840 A JP S6230840A JP 60169788 A JP60169788 A JP 60169788A JP 16978885 A JP16978885 A JP 16978885A JP S6230840 A JPS6230840 A JP S6230840A
Authority
JP
Japan
Prior art keywords
magnetic
elements
alloy
temperature
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60169788A
Other languages
Japanese (ja)
Other versions
JPS6335702B2 (en
Inventor
Hiroshi Maeda
弘 前田
Michinori Sato
佐藤 充典
Hideo Kimura
秀夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP60169788A priority Critical patent/JPS6230840A/en
Publication of JPS6230840A publication Critical patent/JPS6230840A/en
Publication of JPS6335702B2 publication Critical patent/JPS6335702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

PURPOSE:To obtain a working substance for magnetic refrigerators having high magnetic entropy at 20-300K and excellent in magnetic refrigerating performance by providing an amorphous alloy or polyphase microcrystalline aggregate alloy having a composition consisting of, each by specific atom%, 1 or >=2 elements among Gd, Tb, Dy, Ho and Er, 1 or >=2 elements among Zr, Hf, Al, Si and Ge and 1 or >=2 elements among Cu, Ni and Ag. CONSTITUTION:A melt has a composition consisting of, by atomic, 20-80% of 1 or >=2 elements among Gd, Tb, Dy, Ho and Er, 10-40% of 1 or >=2 elements among Zr, Hf, Al, Se and Ge and 10-60% of 1 or >=2 elements among Cu, Ni and Ag. The above melt is subjected to rapid cooling in vacuum or in an inert atmosphere by means of a Cu or Ag cooling body of a temp. between room temp. and 850K.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気冷凍機の磁気冷凍作業物質及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic refrigeration working material for a magnetic refrigerator and a method for producing the same.

従来技術 近年、低温利用の範囲が著しく広がり、効率のよい冷凍
機の開発が要望されている。
BACKGROUND OF THE INVENTION In recent years, the scope of low-temperature utilization has expanded significantly, and there has been a demand for the development of efficient refrigerators.

従来の気体の圧縮−膨張を繰返す冷凍法では、低温にな
るほど効率が低下する。そこで、全く新しい原理に基づ
く磁気冷凍法が注目されるようになった。
In conventional refrigeration methods that repeatedly compress and expand gas, the efficiency decreases as the temperature decreases. Therefore, magnetic refrigeration, which is based on a completely new principle, has attracted attention.

一般に、磁性体を強磁界中に挿入し、磁気スピンを整列
状態にすると発熱が起こる。この熱を外部に取去った後
、強磁界中から磁性体を引出して、磁気スピンを擾乱状
態にすると吸熱が起こり、外部の冷凍対象物から熱を奪
い冷凍する。磁気冷凍法はこの原理を利用するもので、
機構的には磁気冷凍における磁気スピンの整列の擾乱が
、気体冷凍における気体の圧縮−膨張て対応する。20
K(ケルビン)より低い温度では、逆カルノーサイクル
が利用できるが、20に以上では格子比熱が大きくなる
ので、蓄冷器迩− ヲ用いた携エリクソンサイクルなどを4 ’JiFRI
A;i乏ければならない。
Generally, when a magnetic material is inserted into a strong magnetic field and its magnetic spins are aligned, heat is generated. After removing this heat to the outside, the magnetic material is pulled out of the strong magnetic field and the magnetic spin is disturbed, causing heat absorption, which takes heat from the external object to be frozen and freezes it. Magnetic refrigeration uses this principle,
Mechanistically, disturbances in the alignment of magnetic spins in magnetic refrigeration correspond to compression and expansion of gas in gas refrigeration. 20
At temperatures lower than K (Kelvin), the inverse Carnot cycle can be used, but at temperatures above 20, the lattice specific heat becomes large, so the Ericsson cycle using a regenerator can be used.
A;i must be scarce.

これらの磁気冷凍法は、従来の気体14p;を比べて、
高い冷凍効率が得られ、かつ圧縮機が不要となるため振
動や騒音が減り、小型経世化やコンピュータ制御ができ
るなどの多くの優れた特徴をもっている。このような優
れた磁気冷凍法を実用化するためには、高性能の磁気冷
凍作業物質の開発が不可欠である。
These magnetic refrigeration methods, compared to conventional gas 14p;
It has many excellent features such as high refrigeration efficiency, no need for a compressor, less vibration and noise, compact size, and computer control. In order to put such an excellent magnetic refrigeration method into practical use, it is essential to develop high-performance magnetic refrigeration materials.

現在、20により低い温度領域における磁気冷凍作業物
質としては、Gds Gas 01! 、Gd5(Ga
+ −x Al x )s O+sなどのガーネット単
結晶が優れた特性を持つとされ、これを用いた磁気冷凍
試験が行われている。
Currently, as a magnetic refrigeration working material in the lower temperature range than 20, Gds Gas 01! , Gd5(Ga
Garnet single crystals such as + -x Al x )s O+s are said to have excellent properties, and magnetic refrigeration tests are being conducted using them.

前記のガーネット系では、反強磁性−常磁性転移のネー
ル温度がIK近傍にあり、20に干満てはこの転移が利
用できるが、20に以上になると、外部磁界による磁気
エントロピー変化が小さくなり、冷凍能力が著しく低下
する。
In the above-mentioned garnet system, the Neel temperature of the antiferromagnetic-paramagnetic transition is near IK, and this transition can be utilized at a temperature of 20°C or higher, but when the temperature exceeds 20°C, the change in magnetic entropy due to an external magnetic field becomes small. Refrigeration capacity decreases significantly.

20に〜300にの温度領域の磁気冷凍機では、強磁性
−常磁性転移のキュリ一温度近傍の外部磁界による大き
な磁気エントロピー変化を利用するのが有利になる。こ
の磁気冷凍作業物質には、キュリ一温度が作業温度の範
囲にあるものが要求される。
In magnetic refrigerators in the temperature range of 20° to 300° C., it is advantageous to utilize the large magnetic entropy change caused by an external magnetic field near the Curie temperature of the ferromagnetic-paramagnetic transition. This magnetic refrigeration working material is required to have a Curie temperature within the working temperature range.

さらに、磁気モーメントが大きいこと、格子比熱が小さ
いこと、熱伝導率が大きいことなどが要求されるが、こ
の温度領域で優れた特性を持つものは現在得られていな
い。
Furthermore, it is required to have a large magnetic moment, a small lattice specific heat, and a high thermal conductivity, but currently no material with excellent properties in this temperature range has been obtained.

発明の目的 本発明の目的は、20に〜300にの温度領域において
、磁気エントロピーが大きく、優れた磁気冷凍性能を持
つ磁気冷凍機の作業物質及びその製造方法を提供するに
ある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a working material for a magnetic refrigerator that has a large magnetic entropy and excellent magnetic refrigeration performance in a temperature range of 20 to 300 degrees Celsius, and a method for manufacturing the same.

磁気モーメントの大きい希土類元素のCd 1.Tb’
14Dys Has Erの単独または2種以上、非晶
質化元素のZr s Hf s Al、85%Geの単
独または2種以上及び冷却体Cu、Agとの親和力を大
きくする元素のCus Nix Agとからなる融体を
、真空中あるいは不活性ガス雰囲気中で、室温〜850
にの温度に制御したCuまたはAg冷却体で急冷して作
製した非晶質合金、あるいは多相の微結晶集合合金は、
広い温度領域にわたって磁気エントロピーが大きく、磁
気冷凍性能の優れた作業物質が得られることを究明し得
た。この知見に基いて本発明を完成した。
Cd, a rare earth element with a large magnetic moment 1. Tb'
14 Dys Has Er alone or two or more, Zr s Hf s Al as an amorphous element, 85% Ge alone or two or more, and Cu Nix Ag as an element that increases affinity with the cooling body Cu and Ag. The melt is heated at room temperature to 850°C in vacuum or in an inert gas atmosphere.
Amorphous alloys or multi-phase microcrystalline aggregate alloys produced by rapid cooling with a Cu or Ag cooling body controlled at a temperature of
It has been found that a working material with large magnetic entropy over a wide temperature range and excellent magnetic refrigeration performance can be obtained. The present invention was completed based on this knowledge.

本発明の要旨は、 Gdx Tb%Dy% Ho1及びErの元素から選ば
れた単独または2種以′上を20〜80原子%、Zr、
 Hf% Ai、Si及びGeの元素から選ばれた単独
または2種以上を10〜4o原子%5CuNi及びAg
の元素から選ばれた単独または2種以上を10〜60原
子チの組成からなる非晶質合金または多相の微結晶集合
合金の磁気冷凍作業物質。
The gist of the present invention is to combine 20 to 80 atomic % of one or more elements selected from the following elements: Gdx Tb% Dy% Ho1 and Er; Zr;
Hf% Single or two or more selected from the elements Ai, Si and Ge, 10 to 4o atomic%5CuNi and Ag
A magnetic refrigeration working material of an amorphous alloy or a multiphase microcrystalline aggregate alloy consisting of 10 to 60 atoms of one or more elements selected from the following.

また、前記組成の融体を、真空中あるいは不活性ガス雰
囲気中で、室温〜850にのCutたはAg冷却体で急
冷することを特徴とする製造方法にある。
Further, there is a manufacturing method characterized in that the melt having the above composition is rapidly cooled in vacuum or in an inert gas atmosphere with a Cut or Ag cooling body to a temperature of room temperature to 850°C.

Gd、 Tb%Dy、 Ho、Erは磁気モーメントが
大きい希土類元素であり、その成分が80原子チを超え
ると、非晶質合金あるいは多相の微結晶集合合金は得ら
れず、はぼ単相の結晶組織になり、冷凍能力が著しく低
下する。一方その量が20原子チより少ないと、磁気モ
ーメントが小さくなるため磁気エントロピーが急激に小
さくなり、冷凍能力を発揮しなくなる。
Gd, Tb%Dy, Ho, and Er are rare earth elements with a large magnetic moment, and if their components exceed 80 atoms, an amorphous alloy or a multiphase microcrystalline aggregate alloy cannot be obtained, and it becomes almost a single-phase alloy. crystal structure, and the refrigeration capacity is significantly reduced. On the other hand, if the amount is less than 20 atoms, the magnetic moment decreases, so the magnetic entropy decreases rapidly, and the refrigerating ability is no longer exhibited.

Zr % Hf S Al、51nGeは非晶質化元素
であり、その成分が40原子チを超えると、非磁性のZ
rとCus ZrとNiなどの化合物ができて非晶質化
が起こりにくくなる。一方、その量が10原子チ未満で
は非晶質合金が得にくくなる。
Zr % Hf S Al, 51nGe is an amorphous element, and when its component exceeds 40 atoms, non-magnetic Z
Compounds such as r, Cu, Zr, and Ni are formed, making it difficult for amorphization to occur. On the other hand, if the amount is less than 10 atoms, it becomes difficult to obtain an amorphous alloy.

また、高密度で多相の微結晶集合合金を得るためにも、
非晶質化元素を含有することが必要である。
In addition, in order to obtain a high-density, multi-phase microcrystalline aggregate alloy,
It is necessary to contain an amorphous element.

非晶質化元素成分が40原子俤を超えると非磁性のZr
とCu、 ZrとNiなどの化合物ができて微結晶集合
合金が得られなくなる。また、非晶質化元素成分が10
原子俤未満では、結晶粒が粗大化し、微結晶集合合金が
得られ々くなる。
When the amorphous element component exceeds 40 atoms, non-magnetic Zr
Compounds such as Cu, Zr and Ni are formed, making it impossible to obtain a microcrystalline aggregate alloy. In addition, the amorphous element component is 10
If the amount is less than atomic, the crystal grains become coarse and it becomes difficult to obtain a microcrystalline aggregate alloy.

Cu、 Nis Agは冷却体との親和力を大きくする
ものであり、その成分が60原子チを超えると非晶質合
金、あるいは多相の微結晶集合合金が得にりく、かつも
ろくなる。一方、その量が10原子俤未満では、 Cu
、 kgの冷却体の親和力が小さくなり、非晶質化ある
いは微結晶化が困難になる。
Cu and Nis Ag increase the affinity with the cooling body, and when the content exceeds 60 atoms, the amorphous alloy or the multiphase microcrystalline aggregate alloy becomes particularly hard and brittle. On the other hand, if the amount is less than 10 atoms, Cu
, kg, the affinity of the cooling body becomes small, making it difficult to amorphize or microcrystallize.

融体ば、Cu、 Ag冷却体の温度が300〜670に
では非晶質化する。そして670〜850にでは、高密
度で多相の微結晶の集合からiる合金が得られる。しか
し、850Kを超えると1結晶粒が粗大化し、もろくな
るので、850Kを超えないことが必要である。
If the temperature of the molten Cu or Ag cooling body is 300 to 670, it becomes amorphous. 670 to 850, an alloy consisting of a collection of high-density, multiphase microcrystals is obtained. However, if the temperature exceeds 850K, each crystal grain becomes coarse and brittle, so it is necessary not to exceed 850K.

なお、前記の非晶質化合金を熱処理することによっても
多相の微結晶集合合金は得られるが、冷却体の温度制御
によって得たものは熱処理を必要とし々い。この非晶質
合金は、組成によってキュリ一温度を容易に制御するこ
とができ、さらに、キュリ一温度を中心とした広い温度
領域にわたって磁気エントロピーが大きい。また、多相
の微結晶集合合金は、組成によって各相のキュリ一温度
を300〜20Kに分布するように制御でき、この温度
領域で磁気エントロピーが大きく、かつ磁気エントロピ
ーの温度による変化がゆるやかであり、ともに磁気冷凍
性能の優れた作業物質となる。
Although a multiphase microcrystalline aggregate alloy can be obtained by heat treating the amorphous alloy described above, those obtained by controlling the temperature of a cooling body often require heat treatment. The Curie temperature of this amorphous alloy can be easily controlled depending on the composition, and furthermore, the magnetic entropy is large over a wide temperature range centered around the Curie temperature. In addition, in a multiphase microcrystalline aggregate alloy, the Curie temperature of each phase can be controlled to be distributed between 300 and 20 K depending on the composition, and the magnetic entropy is large in this temperature range, and the change in magnetic entropy due to temperature is gradual. Both are working materials with excellent magnetic refrigeration performance.

なお、融体の酸化を防止するために、真空あるいは不活
性ガス雰囲気下で行う。
In addition, in order to prevent oxidation of the melt, the process is carried out in a vacuum or in an inert gas atmosphere.

実施例1゜ あらかじめアーク溶解法で作製した表1に示す組成のイ
ンゴットをレビテーション法で真空中で溶解し、その融
体を細孔ノズルから室温のCu冷却体上に急冷して非晶
質合金を作製した。
Example 1 An ingot with the composition shown in Table 1 prepared in advance by an arc melting method was melted in vacuum by a levitation method, and the melt was rapidly cooled from a fine-hole nozzle onto a Cu cooling body at room temperature to form an amorphous material. An alloy was made.

これらの合金の磁化の温度による変化を7.5T(テス
ラ)までの磁界H中で測定し、主要な磁気冷凍性能であ
る磁気エントロピーΔSMを求めた。得られた磁気エン
トロピーの最大値△SMmaX%ΔSMmaxを示す温
度Tmax1ΔSMmaxに対して68Mが60チ以上
の値を示す温度範囲ΔTooを表1に示す。
Changes in magnetization of these alloys due to temperature were measured in a magnetic field H up to 7.5 T (Tesla), and magnetic entropy ΔSM, which is the main magnetic refrigeration performance, was determined. Table 1 shows the temperature range ΔToo in which 68M has a value of 60 degrees or more with respect to the temperature Tmax1ΔSMmax which indicates the maximum value ΔSMmaX%ΔSMmax of the obtained magnetic entropy.

表1 の関係の1例を示す。この非晶質合金は、すでに知られ
ているD)’A1g結晶体に比較して、ΔSMmaxが
小さいが、その温度による変化はゆるやかで、ΔT9は
70にと非常に広い。また、表1に示したように、ΔS
 Mmax %T max sΔT0は、希土類元素の
種類やその含有量を変化させることによって容易に制御
できる。この非晶質合金磁気冷凍作業物質を用いると、
広い温度領域で高い冷凍能力を発揮する磁気冷凍機が可
能になる。
An example of the relationship in Table 1 is shown. This amorphous alloy has a smaller ΔSMmax than the already known D)'A1g crystal, but its change with temperature is gradual, and ΔT9 is as wide as 70. In addition, as shown in Table 1, ΔS
Mmax%TmaxsΔT0 can be easily controlled by changing the type of rare earth element and its content. Using this amorphous alloy magnetic refrigeration material,
This makes it possible to create a magnetic refrigerator that exhibits high refrigeration capacity over a wide temperature range.

実施例2゜ 表2 表2に示す組成を実施例1と同じ方法で溶解した融体を
750Kに加熱したCu冷却体で急冷して多相からなる
微結晶集合合金を作製した。
Example 2゜Table 2 A melt obtained by melting the composition shown in Table 2 in the same manner as in Example 1 was quenched with a Cu cooling body heated to 750K to produce a multiphase microcrystalline aggregate alloy.

結果の1例を為4に示す。この微結晶集合合金は、キュ
リ一温度Tcの異なるGdCu (Te = 90K)
、GdCuA1(Tc=67K)、GdAlx(−Tc
=168 K) s GdS+ (Tc = 50 K
)および、DyN1(Tc=48K)、DyNiA1 
(Tc =39K)、DVAh(Tc=68K)、D7
Siz(Tc = 17 K)などの微結晶からなるた
め、68Mの温度による変化が非常にゆるやかになり、
ΔT6゜は広い。表2に示し、たように% TmaXt
ΔTooは、希土類元素の種類やその含有量を変化させ
ることによって容易に制御できる。この多相の微結晶集
合合金磁気冷凍作業物質を用いると、広い温度領域で高
い冷凍能力を発揮する磁気冷凍機が可能になる。
An example of the results is shown in Figure 4. This microcrystalline aggregate alloy consists of GdCu (Te = 90K) with different Curie temperatures Tc.
, GdCuA1 (Tc=67K), GdAlx(-Tc
= 168 K) s GdS+ (Tc = 50 K
) and DyN1 (Tc=48K), DyNiA1
(Tc = 39K), DVAh (Tc = 68K), D7
Since it is made of microcrystals such as Siz (Tc = 17 K), the change due to temperature of 68M is very gradual,
ΔT6° is wide. %TmaXt as shown in Table 2
ΔToo can be easily controlled by changing the type of rare earth element and its content. Use of this multiphase microcrystalline aggregated alloy magnetic refrigeration material enables a magnetic refrigerator that exhibits high refrigeration capacity over a wide temperature range.

発明の効果 本発明の非晶質合金および多相の微結晶集合合金は、組
成によってキュリ一温度を容易に制御することができ、
キュリ一温度を中心とした広い温度領域にわたって磁気
エントロピーが大きく、かつ磁気エントロピーの温度に
よる変化がゆるやかで、磁気熱量効果の大きな磁気冷凍
作業物質である。
Effects of the Invention The amorphous alloy and multiphase microcrystalline aggregate alloy of the present invention can easily control the Curie temperature depending on the composition.
It has a large magnetic entropy over a wide temperature range centered around the Curie temperature, and the magnetic entropy changes slowly with temperature, making it a magnetic refrigeration material with a large magnetocaloric effect.

したがって、室温から20にの低温環境発生用磁気冷凍
機が可能になる。この磁気冷凍機は、効率が従来のガス
冷凍機のそれよυ高くなるとともに小形化、軽量化する
ことができる。
Therefore, a magnetic refrigerator for generating a low temperature environment from room temperature to 20 degrees is possible. This magnetic refrigerator has higher efficiency than conventional gas refrigerators, and can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気エントロピー△SMと温度Tの関係図であ
る。 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  −
FIG. 1 is a diagram showing the relationship between magnetic entropy ΔSM and temperature T. Patent applicant: Ryu Kawa, Director, Research Institute for Metals, Science and Technology Agency −

Claims (1)

【特許請求の範囲】 1)Gd、Tb、Dy、Ho及びErの元素から選ばれ
た単独または2種以上を20〜80原子%、Zr、Hf
、Al、Si及びGeの元素から選ばれた単独または2
種以上を10〜40原子%、Cu、Ni及びAgの元素
から選ばれた単独または2種以上を10〜60原子%の
組成からなる非晶質合金または多相の微結晶集合合金の
磁気冷凍作業物質。 2)Gd、Tb、Dy、Ho及びErの元素から選ばれ
た単独または2種以上を20〜80原子%、Zr、Hf
、Al、Si及びGeの元素から選ばれた単独または2
種以上を10〜40原子%、Cu、Ni及びAgの元素
から選ばれた単独または2種以上を10〜60原子%の
組成からなる融体を、真空中あるいは不活性ガス雰囲気
中で、室温〜850KのCuまたはAg冷却体で急冷す
ることを特徴とする磁気冷凍作業物質の製造方法。
[Claims] 1) 20 to 80 atomic % of one or more elements selected from Gd, Tb, Dy, Ho, and Er; Zr, Hf;
, Al, Si and Ge alone or two selected from the elements
Magnetic refrigeration of an amorphous alloy or a multiphase microcrystalline aggregate alloy consisting of 10 to 40 atomic % of one or more species and 10 to 60 atomic % of one or more elements selected from Cu, Ni, and Ag. working substance. 2) 20 to 80 atomic % of one or more elements selected from the elements of Gd, Tb, Dy, Ho and Er, Zr, Hf
, Al, Si and Ge alone or two selected from the elements
A melt consisting of 10 to 40 at. % of one or more elements and 10 to 60 at. A method for producing a magnetically frozen working material, characterized by rapid cooling with a Cu or Ag cooling body at ~850K.
JP60169788A 1985-08-02 1985-08-02 Working substance for magnetic refrigerator and its production Granted JPS6230840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60169788A JPS6230840A (en) 1985-08-02 1985-08-02 Working substance for magnetic refrigerator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169788A JPS6230840A (en) 1985-08-02 1985-08-02 Working substance for magnetic refrigerator and its production

Publications (2)

Publication Number Publication Date
JPS6230840A true JPS6230840A (en) 1987-02-09
JPS6335702B2 JPS6335702B2 (en) 1988-07-15

Family

ID=15892885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169788A Granted JPS6230840A (en) 1985-08-02 1985-08-02 Working substance for magnetic refrigerator and its production

Country Status (1)

Country Link
JP (1) JPS6230840A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074935A (en) * 1989-07-04 1991-12-24 Tsuyoshi Masumoto Amorphous alloys superior in mechanical strength, corrosion resistance and formability
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
US5462610A (en) * 1993-07-08 1995-10-31 Iowa State University Research Foundation, Inc. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
JP2007145426A (en) * 2005-10-28 2007-06-14 Kyodo Printing Co Ltd Package, packaging bag used therefor, and commodity management method
JP2007223625A (en) * 2006-02-22 2007-09-06 Daiwa Gravure Co Ltd Package
CN100366781C (en) * 2005-02-05 2008-02-06 中国科学院物理研究所 Erbium-base lorge-cube non-crystal alloy and making method
CN100368573C (en) * 2005-04-15 2008-02-13 中国科学院金属研究所 Copper-base lump non-crystalline alloy
KR100969862B1 (en) * 2007-12-26 2010-07-13 연세대학교 산학협력단 Gd-BASED PHASE SEPARATING METALLIC AMORPHOUS ALLOY HAVING UNIQUE MAGNETIC PROPERTIES
CN102242301A (en) * 2011-07-05 2011-11-16 华南理工大学 Gd-base room-temperature magnetic cold material and preparation method thereof
CN105296893A (en) * 2014-07-01 2016-02-03 中国科学院宁波材料技术与工程研究所 High-entropy amorphous alloy and preparation method and application thereof
CN105734311A (en) * 2016-03-10 2016-07-06 北京科技大学 Magnetic refrigeration HoxTbyMz high-entropy alloy and preparation method thereof
WO2018129476A1 (en) * 2017-01-09 2018-07-12 General Engineering & Research, L.L.C. Magnetocaloric alloys useful for magnetic refrigeration applications
CN110983207A (en) * 2019-12-17 2020-04-10 中国科学院宁波材料技术与工程研究所 Amorphous composite material without Fe, Co and Ni and preparation method and application thereof
JP2023500975A (en) * 2019-11-28 2023-01-11 麗 劉 Method for producing aluminum-containing alloy powder and its use, and alloy ribbon

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074935A (en) * 1989-07-04 1991-12-24 Tsuyoshi Masumoto Amorphous alloys superior in mechanical strength, corrosion resistance and formability
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
US5462610A (en) * 1993-07-08 1995-10-31 Iowa State University Research Foundation, Inc. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
CN100366781C (en) * 2005-02-05 2008-02-06 中国科学院物理研究所 Erbium-base lorge-cube non-crystal alloy and making method
CN100368573C (en) * 2005-04-15 2008-02-13 中国科学院金属研究所 Copper-base lump non-crystalline alloy
JP2007145426A (en) * 2005-10-28 2007-06-14 Kyodo Printing Co Ltd Package, packaging bag used therefor, and commodity management method
JP2007223625A (en) * 2006-02-22 2007-09-06 Daiwa Gravure Co Ltd Package
KR100969862B1 (en) * 2007-12-26 2010-07-13 연세대학교 산학협력단 Gd-BASED PHASE SEPARATING METALLIC AMORPHOUS ALLOY HAVING UNIQUE MAGNETIC PROPERTIES
CN102242301A (en) * 2011-07-05 2011-11-16 华南理工大学 Gd-base room-temperature magnetic cold material and preparation method thereof
CN105296893A (en) * 2014-07-01 2016-02-03 中国科学院宁波材料技术与工程研究所 High-entropy amorphous alloy and preparation method and application thereof
CN105296893B (en) * 2014-07-01 2017-06-06 宁波中科毕普拉斯新材料科技有限公司 A kind of entropy non-crystaline amorphous metal high, its preparation method and application
CN105734311A (en) * 2016-03-10 2016-07-06 北京科技大学 Magnetic refrigeration HoxTbyMz high-entropy alloy and preparation method thereof
WO2018129476A1 (en) * 2017-01-09 2018-07-12 General Engineering & Research, L.L.C. Magnetocaloric alloys useful for magnetic refrigeration applications
CN110226207A (en) * 2017-01-09 2019-09-10 通用工程与研究有限责任公司 Mangneto thermalloy for magnetic refrigeration application
CN110226207B (en) * 2017-01-09 2020-12-22 通用工程与研究有限责任公司 Magnetocaloric alloys for magnetic refrigeration applications
US11225703B2 (en) 2017-01-09 2022-01-18 General Engineering & Research, L.L.C. Magnetocaloric alloys useful for magnetic refrigeration applications
JP2023500975A (en) * 2019-11-28 2023-01-11 麗 劉 Method for producing aluminum-containing alloy powder and its use, and alloy ribbon
CN110983207A (en) * 2019-12-17 2020-04-10 中国科学院宁波材料技术与工程研究所 Amorphous composite material without Fe, Co and Ni and preparation method and application thereof
CN110983207B (en) * 2019-12-17 2021-04-27 中国科学院宁波材料技术与工程研究所 Amorphous composite material without Fe, Co and Ni and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6335702B2 (en) 1988-07-15

Similar Documents

Publication Publication Date Title
Zhang et al. Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound
Pecharsky et al. The giant magnetocaloric effect in Gd5 (SixGe1-x) 4 materials for magnetic refrigeration
JPS6230840A (en) Working substance for magnetic refrigerator and its production
US11225703B2 (en) Magnetocaloric alloys useful for magnetic refrigeration applications
Sahashi et al. New magnetic material R 3 T system with extremely large heat capacities used as heat regenerators
JP6465884B2 (en) Magneto-caloric material containing B
WO2008122535A1 (en) New intermetallic compounds, their use and a process for preparing the same
JP6480933B2 (en) Magneto-caloric material containing B
Liu Optimizing and fabricating magnetocaloric materials
Gębara et al. Magnetocaloric effect of the LaFe11. 2Co0. 7Si1. 1 modified by partial substitution of La by Pr or Ho
Balli et al. The LaFe11. 2Co0. 7Si1. 1Cx carbides for magnetic refrigeration close to room temperature
Wang et al. Large magnetocaloric effect with a wide working temperature span in the R2CoGa3 (R= Gd, Dy, and Ho) compounds
Tian et al. Unstable antiferromagnetism and large reversible magnetocaloric effect in TmNi2Si2
Fujieda et al. Enhancements of magnetocaloric effects in La (Fe0. 90Si0. 10) 13 and its hydride by partial substitution of Ce for La
JP2022504504A (en) Magnetic heat effect of Mn-Fe-P-Si-B-V alloy and its use
CN103668008B (en) Thulium base metal glass, preparation method and application
JP7245474B2 (en) Magnetocaloric alloys useful for magnetic refrigeration applications
Bin et al. Effect of proportion change of aluminum and silicon on magnetic entropy change and magnetic properties in La0. 8Ce0. 2Fe11. 5Al1. 5-xSix compounds
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
Gschneidner Jr et al. Magnetic refrigeration
JPS6230829A (en) Working substance for magnetic refrigeration and its production
CN103334043B (en) Magnetic alloy serving as magnetic refrigeration material
Fujieda et al. Control of Working Temperature of Large Isothermal Magnetic Entropy Change in La (FexTMySi1− x− y) 13 (TM= Cr, Mn, Ni) and La1− zCez (FexMnySi1− x− y) 13
Cui et al. Effect of Cu doping on the magnetic and magnetocaloric properties in the HoNiAl intermetallic compound
CN110983207B (en) Amorphous composite material without Fe, Co and Ni and preparation method and application thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term