JPS5945994A - Crucible for epitaxial growth of molecular beam - Google Patents

Crucible for epitaxial growth of molecular beam

Info

Publication number
JPS5945994A
JPS5945994A JP15501082A JP15501082A JPS5945994A JP S5945994 A JPS5945994 A JP S5945994A JP 15501082 A JP15501082 A JP 15501082A JP 15501082 A JP15501082 A JP 15501082A JP S5945994 A JPS5945994 A JP S5945994A
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
opening
substrate
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15501082A
Other languages
Japanese (ja)
Inventor
Atsushi Shibukawa
渋川 篤
Hideo Sugiura
杉浦 英雄
Masashi Yamaguchi
真史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15501082A priority Critical patent/JPS5945994A/en
Publication of JPS5945994A publication Critical patent/JPS5945994A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:The titled crucible useful for a substance such as As, etc. havng high vapor pressure, obtained by providing the interior of the main body of a crucible with a bottom with a cover having an opening to adjust an angle of aperture of molecular beam of the substance having high vapor pressure at a given position of the interior. CONSTITUTION:The cover 7 having the opening 7a to adjust an angle of aperture of molecular beam of a substance (e.g., As, etc.) having high vapor pressure is set at a given position of the interior of the main body 6 of a crucible with a bottom. In an exising structure wherein an opening is set at the heat of crucible, making the distribution of the angle of molecular beam constant is incompatible with reduction in the molecular beam wastefully evaporating to parts other than a substrate. On the contrary, since this crucible is provided with the cover 7 having the opening 7a in the interior of the crucible, molecular beam having <=10 deg. angle is not collided to the crucible wall extended on the cover 7 having the opening, reached directly to the substrate, parts having a large angle of aperture are collided to the crucible wall part extended on the cover having the opening, reflected, and sent in the substrate direction, so that >=10 times as much dose of molecular beam as that of the existing molecular beam is reaced to the substrate.

Description

【発明の詳細な説明】 本発明は、化合物半導体薄膜成長法の一つである分子線
エピタキシャル成長(MBE)法に用いられる分子線源
の構成要素であるるつぼに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crucible that is a component of a molecular beam source used in molecular beam epitaxial growth (MBE), which is one of the methods for growing compound semiconductor thin films.

MBE(分子線エピタキシャル成長)法はGaAsなど
の化合物半導体薄膜の作製を中心に用いられている。M
BE法では、超高真空中で薄膜を構成する元素ごとに分
子線源を設け、それらの分子線源の温度を各々制御して
分子を蒸発させ、加熱された基板上に付着して所望の組
成の薄膜を成長させる。分子線源は第1図に断面図を示
すように、蒸発材1を入れた絶縁物からなるるつぽ2.
フィラメント3.熱シールド板4.熱電対5から構成さ
れる。るつほの材料としては一般にPBN(Pyrol
itic Baron N1tride )が用いられ
、また、るつぼの形状は蒸発材料によらず同一のことが
多い。しかし、実際にエピタキシャル成長を行ってみる
と、蒸発材料によって分子線源の構造やるつぼの形状に
対する要求榮件は異っている。
The MBE (molecular beam epitaxial growth) method is mainly used for producing thin films of compound semiconductors such as GaAs. M
In the BE method, a molecular beam source is provided for each element constituting the thin film in an ultra-high vacuum, and the temperature of each molecular beam source is controlled to evaporate the molecules, which adhere to a heated substrate and form the desired shape. Grow a thin film of the composition. As shown in cross-section in FIG. 1, the molecular beam source consists of a crucible 2 made of an insulator containing an evaporator 1.
Filament 3. Heat shield plate 4. It consists of a thermocouple 5. PBN (Pyrol) is generally used as a material for rutsuho.
The shape of the crucible is often the same regardless of the material to be evaporated. However, when epitaxial growth is actually performed, the requirements for the structure of the molecular beam source and the shape of the crucible differ depending on the evaporation material.

たとえば、A7GaAsの作製に用いるAtでは蒸気圧
が低いので高温が必要となり、周辺部からのガス放出を
抑えることが要求される。これに対してAsなどの蒸気
圧の高い元素ではるつぼを高温にする必要はないが、公
知のように、基板上でAsとGaO比を数10以上にす
ることが要求される。このため、たとえばQaAsの成
長の場合、Asの消耗が激しいこと、′また、Asの消
耗に伴ない分子線強度の角度分布が変化しく第4図参照
)、結果としてエピタキシャル膜の特性が場所によシ不
均二になる欠点があった。蒸発材料に合わせたるつぼの
設計例としては、Journatof VacnumS
cience and Technotog)’+ 2
0巻、134P。
For example, At used for manufacturing A7GaAs has a low vapor pressure, so high temperatures are required, and it is required to suppress gas release from the periphery. On the other hand, with an element such as As having a high vapor pressure, it is not necessary to heat the crucible to a high temperature, but as is known, it is required that the ratio of As to GaO on the substrate be several tens of tens or more. For this reason, for example, in the case of growing QaAs, As is consumed rapidly; and the angular distribution of the molecular beam intensity changes as As is consumed (see Figure 4), as a result, the characteristics of the epitaxial film vary depending on the location. It had the disadvantage of being unevenly distributed. An example of a crucible design tailored to the evaporation material is Journatof VacnumS.
science and technology)'+ 2
Volume 0, 134 pages.

1982年に掲載された、cdおよびTe 用のるつば
がある。しかし、CdTeのMBEではCd、Teはほ
ぼ同敞ずつ蒸発すればよ(、QaAa  の場合とは条
件が異っており、そのままAs用等の蒸気圧の高い物質
用のるつばとして適用できない。つまり、分子線強度の
角度分布および消耗量について、As用等の蒸気圧の高
い物質用のものとしては不十分である。
There is a crucible for CD and Te published in 1982. However, in MBE of CdTe, Cd and Te only need to evaporate at almost the same rate (the conditions are different from those for QaAa, and the crucible cannot be used as is for materials with high vapor pressure such as As). In other words, the angular distribution of molecular beam intensity and the amount of consumption are insufficient for materials with high vapor pressure such as As.

本発明はこれらの欠点を除去するため、円筒形等、特に
筒形のるつぼの内部に開口を有する蓋体を設けるように
したものである。以下図面についてGaAs  成長に
おけるAs 用のるつぼを列にとり、一実施例を詳細に
説明するが、後述の説明よりも明かなように、本発明に
よるるつぼはAs用に限定されるものではなく、蒸気圧
の高い物質たとえばP、Cd等用のるつぼとして有効に
用いることができるのは言うまでもない。
In order to eliminate these drawbacks, the present invention provides a cylindrical crucible, particularly a cylindrical crucible, with a lid having an opening inside the crucible. Hereinafter, one embodiment will be described in detail by arranging crucibles for As in GaAs growth with reference to the drawings, but as will be clear from the explanation below, the crucible according to the present invention is not limited to use for As, but Needless to say, it can be effectively used as a crucible for high-pressure substances such as P and Cd.

まず、Asセルに対する要求条件を示すために、GaA
sについての実験データを第2図に示す。第2図の横軸
は基板温度の逆数であり、縦軸は基板上でのAsとGf
Eの到達比である。図中で○印は鏡面の得られた条件、
X印は表面が白濁し鏡面の得られなかった条件である。
First, in order to show the requirements for As cells, GaA
Experimental data for s are shown in FIG. The horizontal axis in Figure 2 is the reciprocal of the substrate temperature, and the vertical axis is As and Gf on the substrate.
This is the arrival ratio of E. In the figure, the ○ marks indicate the conditions under which a mirror surface was obtained.
The mark X indicates a condition in which the surface became cloudy and a mirror surface could not be obtained.

この図から、通常GaAs  の成長の行われる基板温
度550℃ではAs/Gaが20以上必要なことがわか
る。また、AtGaAs は700℃前後の基板温度で
成長されるが、この場合にはAs/Gaが70以上必要
とされる。従来からGaAsを成長させるにはAs/G
aが2.0以上必要とされると財われてきたが、基板温
度の高い場合にはさらにAsの消耗は激しくなる。
From this figure, it can be seen that at a substrate temperature of 550° C., where GaAs is normally grown, As/Ga is required to be 20 or more. Furthermore, AtGaAs is grown at a substrate temperature of around 700° C., but in this case As/Ga is required to be 70 or more. Traditionally, As/G is used to grow GaAs.
It has been said that a is required to be 2.0 or more, but when the substrate temperature is high, the consumption of As becomes even more severe.

このため、As用のるつばとしては大型のものが要求さ
れる。さらに、Asは真空中では溶解せず昇華してし凍
りためるつぼ内での充てん密度を大きくできない点も考
慮する必要がある。
Therefore, a large crucible for As is required. Furthermore, it is necessary to take into account that As does not melt in vacuum but sublimates and freezes, making it impossible to increase the packing density in the crucible.

以上の点を考慮した本発明の一実施例の断面図を@3図
に示す。6はるつぼ本体、7は漏斗状の開ロアaを有す
る蓋体、8は蓋体7を止めるため実線、9は蓋体7を押
えるための円筒形の治具、10は熱電対を収容する凹部
である。
A sectional view of an embodiment of the present invention that takes the above points into consideration is shown in Figure @3. 6 is a crucible body, 7 is a lid body having a funnel-shaped opening lower a, 8 is a solid line for holding the lid body 7, 9 is a cylindrical jig for holding the lid body 7, and 10 is a housing for a thermocouple. It is a recess.

この第3図より明かなように円筒形るつは本体6内部に
蒸気圧の高い物質の分子線開き角度を調整するだめの開
ロアaが形成された蓋体7がるつぼ本体6の内壁に形成
された突起8により係止されている。この蓋体7は円筒
形止め具9によりるつぼ本体6内部に固定されている。
As is clear from FIG. 3, the cylindrical crucible has a lid body 7 on the inner wall of the crucible body 6, in which an opening lower a is formed for adjusting the molecular beam opening angle of a substance with high vapor pressure. It is locked by the formed protrusion 8. This lid body 7 is fixed inside the crucible body 6 by a cylindrical stopper 9.

またるつぼ本体6の底部には熱電対を設けるための凹部
10が形成され、蒸気圧の高い物質を収納するための収
納室Cの前記物質の分子線が発生するようになっている
Further, a recess 10 is formed at the bottom of the crucible body 6 to accommodate a thermocouple, and a molecular beam of the substance in a storage chamber C for storing a substance with high vapor pressure is generated.

るつぼの材質は、Asの蒸発する300℃前後でAsど
反応性のない溶融石英を用いている。るつぼ本体6の直
径を30 mm程度、長さを150 mm程度とすれば
、50g以上のAsを容易に装てんすることができる。
The material used for the crucible is fused silica, which does not react with As at around 300° C., where As evaporates. If the crucible body 6 has a diameter of about 30 mm and a length of about 150 mm, 50 g or more of As can be easily loaded.

Asを多量に装てんする場合に、単純にるっほを大きく
するだけでは不十分で、実施例のごとき特殊な構造が必
要となる理由を述べる。
When loading a large amount of As, it is not sufficient to simply increase the Ruho, and the reason why a special structure as in the embodiment is required will be explained.

W、4図は、Br1an R,Pamplin編”Mb
lecalanBeam El)itaxy″Perg
amonpress+ 1980年、25頁から抜粋し
たものであり、るつぼ中での蒸発材料の表面位置により
、−分子線強度の角度分布がどのようになるかを示しだ
ものである。蒸発材料の減少とともに分子線源のIn上
方向に分子線が絞られることがわかる。
W, Figure 4 is edited by Br1an R, Pamplin “Mb
lecalanBeam El) itaxy″Perg
This is an excerpt from amonpress+, 1980, p. 25, and shows how the angular distribution of -molecular beam intensity changes depending on the surface position of the evaporated material in the crucible. It can be seen that as the amount of evaporated material decreases, the molecular beam is focused upward in the direction of the In of the molecular beam source.

本発明では、るつぼ本体6の収納室σ内で昇華したAs
 分子を漏斗状等、棹々の形状の垂設部7bを有する開
口部7aを]川すことにより、分子線強度の角度分布を
蒸発材料の表面位ITqではなく、蓋体7の開口部7a
の構造で規定するようにしている。このため、るつぼの
収納室C内のAs の多少に依らず一定の角度分布が畏
時間にわたって安定に得られる。MBE装置の構造に(
ぺ存するが、2インチ程度の基板を用いる場合、分子線
の開き角h、roo 以下で十分である。ここで、分子
線の開き角は、分子線源直上から計るものとする。この
点を考えて、実施例では、垂設部7bの長さと開口の半
径の比を4としている。前述のCdおよびTeのるつぼ
の場合には、この比を15程度にしているため分子線が
収束され過ぎるため小さな基板の場合しか使用できない
In the present invention, As sublimated within the storage chamber σ of the crucible body 6
By passing the molecules through the opening 7a having a vertically extending portion 7b in the shape of a funnel or other similar shape, the angular distribution of the molecular beam intensity can be adjusted to the opening 7a of the lid body 7 rather than to the surface ITq of the evaporated material.
The structure is defined as follows. Therefore, a constant angular distribution can be stably obtained over time regardless of the amount of As in the storage chamber C of the crucible. The structure of the MBE device (
However, when using a substrate of about 2 inches, the molecular beam opening angle h,roo or less is sufficient. Here, the opening angle of the molecular beam is measured from directly above the molecular beam source. Considering this point, in the embodiment, the ratio of the length of the vertical portion 7b to the radius of the opening is set to 4. In the case of the above-mentioned Cd and Te crucible, this ratio is set to about 15, so the molecular beam is too converged, so it can only be used for small substrates.

るつほの頭部に開口を設ける構造では、分子線の角度分
布を一定にすることと、基板以外の部分に無駄に蒸発し
て行く分子線を少なくすることとは両立しない。
In a structure in which an opening is provided at the head of the rutsuho, it is incompatible to maintain a constant angular distribution of molecular beams and to reduce the amount of molecular beams that wastefully evaporate to areas other than the substrate.

これに対し、本発明では、開口部7aを有する蓋体7を
るつぼの内部に設けているため、まず、基板にほぼ均一
の強度で到達する開き角、たとえば10°以内の分子線
は、開口蓋体7上に延長したるつぼ壁(この実施例では
円筒形治具9の内壁)には衝突せず直接基板に到達する
。一方、分子線の開き角の大きい部分は、るつぼ本体頭
部に開口のある場合には無駄になるが、本発明の場合に
は開口蓋体上に延長したるつぼの壁部分で衝突、反射さ
れ、かなりの分子線が基板方向に向うようになる。実施
例では、開口蓋体7上に約25 mm延長しており、開
き角が30° 以上の分子線が壁に衝突するようになっ
ている。
On the other hand, in the present invention, since the lid body 7 having the opening 7a is provided inside the crucible, the molecular beam reaching the substrate with substantially uniform intensity, for example, within an angle of 10°, is It does not collide with the crucible wall (in this embodiment, the inner wall of the cylindrical jig 9) extending on the lid 7, but directly reaches the substrate. On the other hand, the part of the molecular beam with a large opening angle is wasted if there is an opening in the head of the crucible body, but in the case of the present invention, the part of the molecular beam that has a large opening angle collides with and is reflected by the wall part of the crucible that extends above the opening lid. , a considerable amount of molecular beams will be directed toward the substrate. In the embodiment, the molecular beam extends about 25 mm above the open lid body 7, and the molecular beam with an opening angle of 30° or more collides with the wall.

本発明のるつばを、垂設部7bを有する開口部7aをる
つぼ本体6内部に設けない従来のるつぼと比べると、同
一分子線源温度において基板に到達するAs分子線酸は
約10倍になり、また、経時変化も少なくその効果はき
わめて顕著であった。
When comparing the crucible of the present invention with a conventional crucible in which the opening 7a having the vertical portion 7b is not provided inside the crucible body 6, the amount of As molecular beam acid that reaches the substrate at the same molecular beam source temperature is approximately 10 times greater. In addition, there was little change over time, and the effect was extremely significant.

さらに、本発明では、蒸気圧の市い物質用のるつぼを対
象としているのでるつぼ材料として溶融石英を用いるこ
とができる。このため、PBNに比べて、きわめて安価
であり製造も容易であると言う利点もある。
Furthermore, since the present invention is directed to a crucible for vapor-pressure materials, fused silica can be used as the crucible material. Therefore, it has the advantage of being extremely cheap and easy to manufacture compared to PBN.

以上説明したように、るっほに蒸気圧の尚い物質たとえ
ばAs を多量に装てんでき、また、蒸発されたAs 
等は鳴動に基板上に到達するため、真空を破ってAs 
等を“装てんする頻度をきわめて少なくでき、MBE装
置の稼動率を大幅に上げることができる。MBE装置の
場合、一度真空を破ると、その後数回のエピタキシャル
成長では高品質膜が育成できないため、この利点はきわ
めて重要な利点である。
As explained above, Ruho can be loaded with a large amount of a substance with low vapor pressure, such as As, and the evaporated As
etc., to reach the substrate due to the ringing, the As
The frequency of loading etc. can be extremely reduced, and the operating rate of the MBE equipment can be greatly increased. The advantage is a very important advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分子線源の断面図、@2図は、GaAs
のMBEにしいて1蛾而の得られる基&温度とAs/G
aの条件を示す実験データ、第3図は本発明のるつばの
断面図、@4図はるつば内の蒸発材料の表面位置(力と
るつぼの半イφ(r)に対する分子線強度依存性を示す
図である。 1・・・蒸発材、2・・・るつば、3・・・フィラメン
ト、4・・・熱シールド板、5・・・熱電対、6・・・
るつぼ本体、7・・・蓋体、7a・・・開口部、7b・
・・垂設部、8・・・矢起部、9・・・押え用治具、1
0・・・熱電対収容用凹部、C・・・収納室。 出願人代理人  雨  宮  正  季第2図 基版蕩度(0C) 1.0            1.1       
     1.21000/T (K”’) 第3図
Figure 1 is a cross-sectional view of a conventional molecular beam source, and Figure 2 is a GaAs
The obtained group & temperature and As/G of one moth in the MBE of
Experimental data showing the conditions of a, Figure 3 is a cross-sectional view of the crucible of the present invention, and Figure 4 shows the surface position of the evaporated material in the crucible (dependence of molecular beam intensity on force and crucible half-i φ(r)). 1... Evaporation material, 2... Crust, 3... Filament, 4... Heat shield plate, 5... Thermocouple, 6...
Crucible body, 7... Lid, 7a... Opening, 7b.
... Perpendicular part, 8... Arrowhead part, 9... Holder jig, 1
0...Recess for accommodating thermocouple, C...Storage chamber. Applicant's agent Masaki Amemiya Second figure basic version indemnity (0C) 1.0 1.1
1.21000/T (K”') Figure 3

Claims (1)

【特許請求の範囲】[Claims] 有底るつぼ本体内部の所望位置に、蒸気−圧の高い物質
の分子線開き角度を調整するための開口を有する蓋体を
設けたことを特徴とする分子線エピタキシャル成長用る
つは。
A crucible for molecular beam epitaxial growth, characterized in that a lid body having an opening for adjusting the molecular beam opening angle of a substance with high vapor pressure is provided at a desired position inside the bottomed crucible body.
JP15501082A 1982-09-06 1982-09-06 Crucible for epitaxial growth of molecular beam Pending JPS5945994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15501082A JPS5945994A (en) 1982-09-06 1982-09-06 Crucible for epitaxial growth of molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15501082A JPS5945994A (en) 1982-09-06 1982-09-06 Crucible for epitaxial growth of molecular beam

Publications (1)

Publication Number Publication Date
JPS5945994A true JPS5945994A (en) 1984-03-15

Family

ID=15596709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15501082A Pending JPS5945994A (en) 1982-09-06 1982-09-06 Crucible for epitaxial growth of molecular beam

Country Status (1)

Country Link
JP (1) JPS5945994A (en)

Similar Documents

Publication Publication Date Title
KR100951493B1 (en) A morecular beam epitaxy effusion cell for use in vacuum thin film deposition and a method therefor
WO2006075998A2 (en) Means and method for a liquid metal evaporation source with integral level sensor and external reservoir
US4646680A (en) Crucible for use in molecular beam epitaxial processing
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP3070021B2 (en) Molecular beam cell and molecular beam epitaxy equipment for Si
JPS5945994A (en) Crucible for epitaxial growth of molecular beam
EP0692556A1 (en) K cell type vapor source and shutter
JP4071355B2 (en) Molecular beam source shutter for molecular beam epitaxy, molecular beam epitaxy apparatus, and epitaxial film manufacturing method using the molecular beam source shutter
JPH079372Y2 (en) Molecular beam cell for high temperature
JPH0558775A (en) Molecular-beam epitaxy device
KR100466825B1 (en) Fabricating Technology for Thin Film Deposition system using pulsed Laser
JP2688365B2 (en) Board holder
JPS6272113A (en) Molecular beam crystal growth device
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPH0680496A (en) Knudsen cell for low temperature
JP2825974B2 (en) Molecular beam source container
JPH05320879A (en) Formation of boron nitride containing film
JPS63282189A (en) Molecular beam epitaxial growth device
JP2024049963A (en) Vapor deposition method and vapor deposition container
JPS63282190A (en) Molecular beam crystal growth device
JPH026385A (en) Method for forming thin film and apparatus therefor
JPS61292314A (en) Molecular beams crystal growth device
JPS61187225A (en) Molecular beam source cell
JPS6120513B2 (en)
JPH0139205B2 (en)