JPS5945750B2 - Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability - Google Patents

Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability

Info

Publication number
JPS5945750B2
JPS5945750B2 JP6538979A JP6538979A JPS5945750B2 JP S5945750 B2 JPS5945750 B2 JP S5945750B2 JP 6538979 A JP6538979 A JP 6538979A JP 6538979 A JP6538979 A JP 6538979A JP S5945750 B2 JPS5945750 B2 JP S5945750B2
Authority
JP
Japan
Prior art keywords
less
steel
carbon dioxide
weldability
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6538979A
Other languages
Japanese (ja)
Other versions
JPS55158255A (en
Inventor
和夫 池田
正明 田中
征一 渡辺
泰夫 大谷
富久長 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6538979A priority Critical patent/JPS5945750B2/en
Publication of JPS55158255A publication Critical patent/JPS55158255A/en
Publication of JPS5945750B2 publication Critical patent/JPS5945750B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 この発明は、湿潤炭酸ガスに対する腐食抵抗が太き(、
溶接性のすぐれたラインパイプ用鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention has high corrosion resistance against wet carbon dioxide gas (
Concerning line pipe steel with excellent weldability.

石油、天然ガス等を輸送するラインパイプ用鋼は、所定
の強度とともにすぐれた溶接性を要求されることば周知
である。
It is well known that steel for line pipes for transporting oil, natural gas, etc. is required to have a certain level of strength and excellent weldability.

これらの性質に加えて、近年石油、天然ガスに含まれる
腐食性物質の影響が重大視されるようになって来た。
In addition to these properties, in recent years, the influence of corrosive substances contained in oil and natural gas has become more important.

炭酸ガスによる腐食もそのひとつであり、炭酸ガスと水
を含む石油や天然ガスに触れる鋼材は、 の反応によって生じるH+の作用により激しい腐食をう
ける。
Corrosion caused by carbon dioxide gas is one of these, and steel materials that come into contact with oil or natural gas containing carbon dioxide gas and water are subject to severe corrosion due to the action of H+ generated by the reaction.

かかる腐食は、炭酸ガス分圧が30Psi以上になれば
発生するといわれ、又、7Psi以下でも生じるという
報告(L、 5peel :Material Per
formance 1976. A8.p46)もあ
る。
Such corrosion is said to occur when the partial pressure of carbon dioxide is 30 Psi or more, and it has also been reported that it occurs even when the partial pressure is 7 Psi or less (L, 5peel: Material Per
1976. A8. p46) is also available.

このようなラインパイプにおける腐食は石油やガスの資
源の多角化とともに益々大きな問題になることが予想さ
れるが、現在の対策はインヒビターの注入と露点管理と
いう煩瑣でコストの嵩む方法に尽きる。
Corrosion in line pipes is expected to become an increasingly serious problem with the diversification of oil and gas resources, but current countermeasures include injection of inhibitors and dew point control, which are cumbersome and costly.

この発明は、゛ラインパイプ用の鋼材自体を改良して、
上記炭酸ガスに起因する腐食を抜本的に除去することを
目的としてなされたものである。
This invention improves the steel material itself for line pipes,
This was done with the aim of completely eliminating corrosion caused by the carbon dioxide gas.

ラインパイプ用鋼に対しては、前述のとおり、耐食性だ
けでな(、機械的性質及び溶接性についてもきびしい要
求がある。
As mentioned above, there are strict requirements for line pipe steel not only in terms of corrosion resistance, but also in terms of mechanical properties and weldability.

従って、その成分決定に当っては、その一つの性質の改
良だけでなく、綜合的にすぐれ、しかも安価な鋼種とな
るように十分な配慮が必要である。
Therefore, when determining its composition, sufficient consideration must be given not only to improving one property but also to creating a steel type that is comprehensively superior and inexpensive.

本発明者は、ラインパイプ用鋼に関するきわめて多数の
実験結果と製造実績に基いて、こΩ発明を完成するに至
ったのである。
The present inventor has completed the invention based on a large number of experimental results and manufacturing results regarding steel for line pipes.

すなわち、この発明は、C0,10%以下、Si0.1
0〜1.00%、Mn 0.10−1.20%、Cr1
.0〜3.0%、NbO,01〜0.08%、AIo、
01〜0.10%、Bo、0002〜0.0050%、
NO,0O10〜0.015%、残部Fe及び不可避的
不純物からなる鋼か、上記成分のほか更にM。
That is, this invention has C0.10% or less, Si0.1
0-1.00%, Mn 0.10-1.20%, Cr1
.. 0-3.0%, NbO, 01-0.08%, AIo,
01~0.10%, Bo, 0002~0.0050%,
A steel consisting of 10 to 0.015% NO, 0O, the balance Fe and unavoidable impurities, or M in addition to the above components.

0.02〜0.20%、Vo、01〜0.10%のうち
1種又は2種を含有するか、又はZr0.005〜0.
10%、Ca O,0005〜0.01%、希土類元素
0.0005〜0.05%のうち1種を含有するか、更
にMo 0.02〜0.20%、Vo、01〜0.10
%のうち1種又は2種とV O,01〜0.10%、Z
rO,005〜0.10%、Ca O,0005〜0.
01%、希土類元素0゜0005〜0.05%のうち1
種を含;有する鋼であって、B/N(BとNの含有量の
比)が0.1〜0.6、不純物中の80.010%以下
、Cu0.04%以下で、かつ溶接割れ感受性指数が0
.23%以下を満足した鋼を要旨とする。
0.02-0.20%, Vo, 0.01-0.10%, or Zr0.005-0.00%.
10%, CaO, 0005-0.01%, rare earth elements 0.0005-0.05%, or further contains Mo 0.02-0.20%, Vo, 01-0.10
% and VO, 01 to 0.10%, Z
rO, 005-0.10%, Ca O, 0005-0.
01%, rare earth elements 1 out of 0゜0005~0.05%
Steel containing seeds, B/N (ratio of B and N content) of 0.1 to 0.6, 80.010% or less of impurities, Cu 0.04% or less, and weldable. Cracking susceptibility index is 0
.. The key point is steel that satisfies 23% or less.

この発明の鋼は、上記各成分の組合せによって、綜合的
にすぐれた性質を持つものであるが、各成分についてそ
の作用効果を述べれば下記のとおりである。
The steel of the present invention has comprehensively excellent properties due to the combination of the above components, and the effects of each component will be described below.

Cは溶接性及び耐炭酸ガス腐食の面からは少ない方が望
ましい。
From the viewpoint of weldability and carbon dioxide corrosion resistance, it is desirable to have a small amount of C.

0.10%は許容上限値である。Cの低減による強度の
低下は、後述する他の成分によって補うことができる。
0.10% is the allowable upper limit. The decrease in strength due to the decrease in C can be compensated for by other components described below.

従って、Cは0.01%以下の極微量としてもよい。Therefore, C may be contained in a very small amount of 0.01% or less.

Siは脱酸剤として0.10%以上必要である。Si is required as a deoxidizing agent in an amount of 0.10% or more.

1.00%をこえると加工性、靭性に悪影響がある。If it exceeds 1.00%, workability and toughness are adversely affected.

Mnは強度及び靭性の改善に0.10%以上が必要であ
る。
0.10% or more of Mn is required to improve strength and toughness.

しかし、1.20%をこえると、炭酸ガスによる腐食の
速度が増大する。
However, when it exceeds 1.20%, the rate of corrosion due to carbon dioxide gas increases.

Crは炭酸ガス腐食に対する抵抗力を向上させる成分で
ある。
Cr is a component that improves resistance to carbon dioxide corrosion.

その効果は1.0%以上で顕著となり、含有量が増すほ
ど効果は大きい。
The effect becomes significant at 1.0% or more, and the higher the content, the greater the effect.

しかし、3.0%をこえると、靭性及び溶接性に悪影響
を及ぼすから、1.0〜3.0%の範囲がよい。
However, if it exceeds 3.0%, it will have a negative effect on toughness and weldability, so a range of 1.0 to 3.0% is preferable.

怖は少量(0,01%以上)の添加で鋼の強度靭性を著
しく向上させるとともに、炭酸ガス腐食に対する抵抗力
の増大にも寄与する。
Addition of a small amount (0.01% or more) of aluminum significantly improves the strength and toughness of steel, and also contributes to increased resistance to carbon dioxide corrosion.

しかし、0.08%をこえると溶接部の靭性を劣化させ
る。
However, if it exceeds 0.08%, the toughness of the weld will deteriorate.

AIは鋼の脱酸の安定化を図るために添加する。AI is added to stabilize the deoxidation of steel.

0.01%以上残留するように添加すればよく、0.1
0%をこえると疵の発生や靭性の低下をまね(。
It should be added so that it remains at least 0.01%, and 0.1% or more remains.
If it exceeds 0%, it may cause flaws or a decrease in toughness (.

B(ボロン)は後述するN(窒素)とともに適当な比率
で含有されれば溶接部ボンド靭性の向上に有効である。
B (boron) is effective in improving weld bond toughness if it is contained in an appropriate ratio together with N (nitrogen), which will be described later.

0.0002%未満ではその効果が小さく、0.005
0%をこえると母材の靭性劣化をまねく。
If it is less than 0.0002%, the effect is small, and 0.005
If it exceeds 0%, it will lead to deterioration of the toughness of the base material.

N(窒素)は溶接後の冷却過程でBと結合してBNを生
成する。
N (nitrogen) combines with B during the cooling process after welding to generate BN.

このBNはフェライト変態の核として働(のでフェライ
ト粒が微細となり、溶接部ボンドの靭性向上に役立つ。
This BN acts as a nucleus for ferrite transformation (thereby making ferrite grains finer and helping to improve the toughness of the weld bond).

Nが0.0010%未満ではこの効果が小さく、0.0
15%をこえると鋼塊割れの原因となるので0.001
0〜0.015%の範囲が適当である。
This effect is small when N is less than 0.0010%, and 0.0
If it exceeds 15%, it will cause cracking of the steel ingot, so 0.001
A range of 0 to 0.015% is suitable.

なお、この範囲内で次のB/N比を適正に保つ必要があ
る。
Note that it is necessary to maintain the following B/N ratio appropriately within this range.

B/Nを0.1〜0.6の範囲としたのは、溶接部ボン
ド靭性を向上させるためである。
The reason why B/N is set in the range of 0.1 to 0.6 is to improve the weld bond toughness.

溶接部にボンド部分1300℃以上に加熱されるので、
BlN及びAIは固溶する。
Since the bond part at the welding part is heated to over 1300℃,
BIN and AI are in solid solution.

溶接後の冷却過程で、B及びNは拡散速度が大きいため
、オーステナイト粒界或いは非金属介在物表面に偏析し
、局部的に濃度が高くなり、温度低下に伴って溶解度績
をこえてBNを析出する。
During the cooling process after welding, B and N have a high diffusion rate, so they segregate at austenite grain boundaries or on the surface of nonmetallic inclusions, locally increasing their concentration, and as the temperature decreases, BN exceeds its solubility. Precipitate.

AIなどの他の窒化物生成傾向の大きい元素は、拡散速
度がB及びNに比べて小さいので、基地に固溶したまま
である。
Other elements that tend to form nitrides, such as AI, have a lower diffusion rate than B and N, so they remain solidly dissolved in the matrix.

上記の機構で、本来靭性に有害な固溶NはBNとして固
溶されるだけでなく、このBNがフェライト生成核とし
て働いてフェライト粒の微細化、靭性の向上に寄与する
In the above mechanism, solid solution N, which is originally harmful to toughness, is not only dissolved as BN, but this BN acts as a ferrite generation nucleus and contributes to refinement of ferrite grains and improvement of toughness.

B/Nが0.1未満であればNが多すぎて固溶N量が増
しボンド靭性が劣化し、又B/Nが0.6をこえるとB
の焼入性向上効果が現れ、ボンド靭性に有害なベイナイ
トを生成するようになる。
If B/N is less than 0.1, there is too much N, which increases the amount of solid solution N and deteriorates bond toughness, and if B/N exceeds 0.6, B
The effect of improving hardenability appears, and bainite, which is harmful to bond toughness, is generated.

この発明の基本鋼は、上記各成分Q外、残部はFe及び
不可避的不純物からなる。
The basic steel of the present invention consists of the above-mentioned components Q and the remainder Fe and unavoidable impurities.

ここで、不純物中のP、S及びCuについては特に留意
する必要がある。
Here, it is necessary to pay particular attention to P, S, and Cu among the impurities.

SはMuSを主体とする非金属介在物を生成させ、靭性
劣化を招(とともに溶接時のラメラティアの原因となる
から、できるだけ少ない方がよい。
S generates nonmetallic inclusions mainly composed of MuS, leading to deterioration of toughness (as well as causing lamellar tear during welding, so it is better to have as little as possible).

0、010%は許容上限値である。0.010% is the allowable upper limit.

Cuは炭酸ガス腐食に対する抵抗力を減少させる好まし
くない成分である。
Cu is an undesirable component that reduces resistance to carbon dioxide corrosion.

不可避的に混入する場合でも0.04%以下、好ましく
は0.02%以下に抑えるべきである。
Even if it is unavoidably mixed, it should be suppressed to 0.04% or less, preferably 0.02% or less.

少いほどよいことはいうまでもない。Needless to say, the less the better.

上記基本鋼の成分のほかに含有する添加元素のうち、M
o、Vは合金成分中に固溶したり、炭化物を析出するこ
とにより、耐食性を劣化させることなく強度と靭性を向
上させるのに有効であるが、Moは0.02%未満、■
は0.01%未満で&’Jその効果が得られず、又Mo
0.20%、■は0.10%をこえると靭性、溶接性に
好ましくない影響を及ぼすので、MOは0.02〜0.
20%、■は0.01〜0.10%とした。
Among the additional elements contained in addition to the above basic steel components, M
o, V are effective in improving strength and toughness without deteriorating corrosion resistance by solid solution in alloy components or precipitating carbides, but Mo is less than 0.02%, ■
If Mo is less than 0.01%, the effect cannot be obtained, and Mo
If MO exceeds 0.20% and 0.10%, it will have an unfavorable effect on toughness and weldability, so MO should be 0.02 to 0.
20%, and 0.01 to 0.10%.

Zr、Ca及び希土類元素は、硫化物系介在物の減少及
び硫化物系介在物の球状化に効果があり、これにより靭
性の向上に有効であり、又不純物軽減により耐食性の向
上に寄与する。
Zr, Ca, and rare earth elements are effective in reducing sulfide inclusions and making sulfide inclusions spheroidal, thereby improving toughness, and contributing to improving corrosion resistance by reducing impurities.

しかし、Zrは0. Q 05%未満ではその効果が得
られず、又0.10%をこえると靭性を劣化させるのて
℃、oo5ネ:〜o、 i o%とじた。
However, Zr is 0. If the content is less than 0.5%, the effect cannot be obtained, and if it exceeds 0.10%, the toughness deteriorates.

Ca及び希土類元素は、特に靭性の向上と共に鋼の異方
性の除去にも有効であるが、いずれも0.0005%未
満ではその効果が得られず、又Caは0.01%、希土
類元素は0.05%をこえると溶接性を劣化させるので
、Ca O,0005〜0.01%、希土類元素0.Q
OO5〜0.05%とした。
Ca and rare earth elements are particularly effective in improving toughness and removing anisotropy of steel, but if both are less than 0.0005%, this effect cannot be obtained; If it exceeds 0.05%, weldability deteriorates, so Ca O, 0005 to 0.01%, and rare earth elements 0.005 to 0.01%. Q
OO was set at 5% to 0.05%.

なお、希土類元素としてはLa、Ceが代表的であるが
、実用上はミンシュメタルとして添加すればよい。
Note that La and Ce are typical rare earth elements, but in practice they may be added as minsh metal.

そして、いずれの場合も、下記PCM値を0.23%以
下にするように配慮しなげればならない。
In either case, care must be taken to keep the following PCM value below 0.23%.

これはP。This is P.

M値が0.23%をこえると溶接部の水素に起因する溶
接割れ感受性が増す一方、硬化により、微量のH2Sに
よる硫化物割れ感受性も増大するためである。
This is because when the M value exceeds 0.23%, the susceptibility to weld cracking due to hydrogen in the weld zone increases, and due to hardening, the susceptibility to sulfide cracking due to trace amounts of H2S also increases.

この発明鋼は熱間加工のまま、或いは焼ならし、焼入れ
一焼もどしの熱処理を施して使用できる。
This invention steel can be used as it is after hot working or after being subjected to heat treatment such as normalizing, quenching and tempering.

熱処理の採否及びその条件は製造されるラインパイプに
要求される性能に応じて決定される。
Whether or not to apply heat treatment and its conditions are determined depending on the performance required of the line pipe to be manufactured.

ラインパイプはとΩ発明鋼を素材とする熱延鋼板から成
形溶接したもの、或いはこの発明鋼のビレットを穿孔・
延伸圧延した継目無鋼管のいずれでもよい。
Line pipes are made by forming and welding hot-rolled steel sheets made from ToΩ invention steel, or by punching and welding billets of this invention steel.
Any elongated seamless steel pipe may be used.

実施例 1 第1表に示す鋼を溶製し、圧延した鋼板(圧延のまま)
について、機械的性質と溶接ボンド靭性を調べた。
Example 1 Steel plate produced by melting the steel shown in Table 1 and rolling it (as rolled)
The mechanical properties and weld bond toughness were investigated.

溶接ボンド靭性試験には、板厚tが181nmの供試片
1に開先角θは30°でサブマージアーク溶接した板か
ら図面に示す位置で切出した試験片2を用いた。
For the weld bond toughness test, a test piece 2 was used, which was cut from a plate obtained by submerged arc welding with a plate thickness t of 181 nm and a groove angle θ of 30° at the position shown in the drawing.

試験結果を第2表に記載する。The test results are listed in Table 2.

実施例 2 第1表に示す鋼を用いて母材の炭酸ガス腐食性能、溶接
部の耐炭酸ガス局部腐食性能、溶接部の耐硫化物割れ性
能を試験した試験方法及び試験結果について次に述べる
Example 2 The test method and results of testing the carbon dioxide corrosion performance of the base metal, the carbon dioxide gas local corrosion resistance of the weld, and the sulfide cracking resistance of the weld using the steel shown in Table 1 are described below. .

(1)母材の炭酸ガス腐食性能 母材部より40中X2tの試験片を切り出し320番エ
メリーにて研摩後、脱脂、乾燥し、密閉式ループ試験装
置を用い炭酸ガスを飽和させた人工海水を流速10m/
s、液温80℃で500時間流した後、腐食生成物を取
り除き、その減量を測定した、評価法として比較鋼(従
来鋼)の鋼1の腐食量を100としたときの腐食率で表
わした結果を第3表に示す。
(1) Carbon dioxide corrosion performance of base material A test piece of 40mm x 2t was cut from the base material, polished with No. 320 emery, degreased, dried, and artificial seawater saturated with carbon dioxide using a closed loop testing device. flow velocity 10m/
s, after flowing for 500 hours at a liquid temperature of 80°C, the corrosion products were removed and the weight loss was measured. As an evaluation method, it is expressed as the corrosion rate when the amount of corrosion of steel 1 of comparison steel (conventional steel) is set as 100. The results are shown in Table 3.

第3表に明らかなとおり、比較鋼と比べて、この発明鋼
は、母材の耐食性、溶接部の耐食比及び耐硫化物割れ性
能の全てにおいてすぐれている。
As is clear from Table 3, compared to the comparative steel, this invention steel is superior in all of the corrosion resistance of the base metal, the corrosion resistance ratio of the welded part, and the sulfide cracking resistance.

この発明鋼は従来のラインパイプ鋼と比べて勿論のこと
Cr鋼を含む比較鋼と比べても耐炭酸ガス腐食性のすぐ
れていることは明白である。
It is clear that this invention steel has superior carbon dioxide corrosion resistance not only when compared with conventional line pipe steel but also when compared with comparative steels including Cr steel.

更に第2表に示した機械的諸性質を加味すれば、この発
明鋼が、特に苛酷な条件で使用されるラインパイプ用鋼
として極めてすぐれたものであることがわかる。
Furthermore, when the mechanical properties shown in Table 2 are taken into consideration, it can be seen that the steel of the present invention is extremely excellent as a steel for line pipes used under particularly severe conditions.

(2)溶接部の耐炭酸ガス局部腐食性能 溶接熱影響部の局部腐食を検討するためにサブマージア
ーク溶接部より切り出した巾70朋X長さ50關×厚さ
18m11Lの試験片を酸洗により脱スケールした後流
速2.5 m / B、液温80℃のCO□飽和人工海
水中で500時間の試験を行なった。
(2) Carbon dioxide local corrosion resistance of welded parts In order to examine the local corrosion of the weld heat-affected zone, a test piece measuring 70 mm wide x 50 mm long x 18 m 11 L thick was cut from a submerged arc weld by pickling. After descaling, a 500-hour test was conducted in CO□-saturated artificial seawater at a flow rate of 2.5 m/B and a liquid temperature of 80°C.

目視により腐食発生の有無を観察し、3段階に評価した
結果を第3表に示す。
Table 3 shows the results of visually observing the presence or absence of corrosion and evaluating it in three stages.

高速流体の流れるラインパイプでは、局部的に腐食され
たところが乱流発生の起点となって腐食が更に加速され
るため、この発明鋼の局部腐食に対する耐食性は重要な
意味をもつ。
In line pipes in which high-speed fluid flows, locally corroded areas serve as starting points for turbulent flow, further accelerating corrosion, so the corrosion resistance of this invention steel against localized corrosion is important.

(3)溶接部耐硫化物割れ性能 母材はrokg7’−以下であり、CO2に共存する微
量のH2Sの存在によっては硫化物割れは発生しない。
(3) Resistance to sulfide cracking in the weld zone The base material has a resistance of rokg7'- or less, and sulfide cracking does not occur due to the presence of a trace amount of H2S coexisting with CO2.

しかし溶接部は熱影響を受けること及び強度上昇がある
ため、硫化物割れ感受性が高くなる。
However, welds are susceptible to sulfide cracking due to thermal effects and increased strength.

このよりなCO2共存下で微量のH2S存在下による硫
化物割れ性能を検討するために流速2.5m/s、40
℃、5%NaclにH2S 50 ppm、 CO21
80ppm を含有する流体中で応力腐食割れ試験を実
施し丸試験片は溶接部を試験片中央に置いた切欠付4点
曲げ試験片であり負荷応力は母材降伏点の1σYである
In order to investigate the sulfide cracking performance in the presence of a small amount of H2S in the coexistence of CO2 with a flow rate of 2.5 m/s, 40
°C, 50 ppm H2S in 5% NaCl, CO21
A stress corrosion cracking test was carried out in a fluid containing 80 ppm.The round test piece was a 4-point bending test piece with a notch with the welded part placed in the center of the test piece, and the applied stress was 1σY of the yield point of the base material.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の溶接ボンド靭性試験用試験片の説明図
である。 図中、1・・・・・供試片、2・・・・・・試験片、θ
・・・・・・開先角、t・・・・・・板厚。
The drawing is an explanatory diagram of a test piece for weld bond toughness testing of the present invention. In the figure, 1... test piece, 2... test piece, θ
...Bevel angle, t...Plate thickness.

Claims (1)

【特許請求の範囲】 I C0,10%以下、Si0.10〜1.00%、
Mn 0.10〜1.20%、Cr 1.0〜3.0%
、Nb0101〜0.08%、AIo、01〜0.10
%、BO,0002〜0.0050%、NO,0010
〜0.015%、残部Fe及び不可避的不純物からなり
、B/Nが0.1〜0.6、不純物中の80.010%
以下、CuO,04%以下で、かつ下記溶接割れ感受性
指数PCM値が0.23%以下である湿潤炭酸ガス腐食
抵抗及び溶接性にすぐれたラインパイプ用鋼。 2C0,10%以下、Si0.10〜1.00%、Mn
0.10−1.20%、Cr 1.0〜3.0%、N
b0101〜0.08%、A10.01〜0.10%、
BO,0002〜0.0050%、NO,0010〜0
.015%、更にMo 0.02〜0.20%、Vo
、01〜0.10%のうち1種又は2種を含有し、残部
Fe及び不可避的不純物からなり、B/Nが0、1〜0
.6 、不純物中のSo、010%以下、CuO004
%以下で、かつ下記溶接割れ感受性指数PCM値が0.
23%以下である湿潤炭酸ガス腐食抵抗及び溶接性にす
ぐれたラインパイプ用鋼。 3C0,10%以下、Si O,10−1,00%、M
n 0.10〜120%、Cr 1.0〜3.0%、怖
0.01〜0.08%、AIo、01〜0.10%、B
o、0002〜0.0050%、NO,0010〜0.
015%、更にZr O,005〜0.005、CaO
,0005〜0.01%、希土類元素0−0005〜0
.05%のうち1種を含有し、残部Fe及び不可避的不
純物からなり、B/Nが0.1〜0.6、不純物中の8
0.010%以下、Cu0.04%以下で、かつ下=V
接割れ感受性指数PCM値が0.23%以下である湿潤
炭酸ガス腐食抵抗及び溶接性にすぐれたラインパイプ用
鋼。 4C0,10%以下、Si0.10〜1.00%、Mn
0.10〜1.20%、Cr 1.0〜3.0%、怖
0.01〜0.08%、AIo、01〜0.10%、B
O,0Q02〜0.0050%、NO,0O10〜0.
015%、更にMo 0.02〜0.20%、Vo、0
1〜0.10%のうち1種又は2種と、Zr0.005
〜0.10%、Ca O,0005〜0.01%、希土
類元素0.0005〜0.05%のうち1種を含有し、
残部Fe及び不可避的不純物からなり、B/Nが0.1
〜0.6、不純物中の80.010%以下、CuO,0
4%以下で、カリ下=i接割れ感受性指数PCM値が0
.23%以下である湿潤炭酸ガス腐食抵抗及び溶接性に
すぐれたラインパイプ用鋼。
[Claims] I C0.10% or less, Si0.10-1.00%,
Mn 0.10-1.20%, Cr 1.0-3.0%
, Nb0101~0.08%, AIo, 01~0.10
%, BO,0002~0.0050%, NO,0010
~0.015%, the balance consists of Fe and unavoidable impurities, B/N is 0.1 to 0.6, 80.010% of impurities
Hereinafter, a steel for line pipes having excellent wet carbon dioxide corrosion resistance and weldability, which has a CuO content of 0.04% or less and a weld crack susceptibility index PCM value of 0.23% or less. 2C0.10% or less, Si0.10-1.00%, Mn
0.10-1.20%, Cr 1.0-3.0%, N
b0101~0.08%, A10.01~0.10%,
BO, 0002~0.0050%, NO, 0010~0
.. 015%, further Mo 0.02-0.20%, Vo
, 01 to 0.10%, the remainder consists of Fe and unavoidable impurities, and the B/N is 0, 1 to 0.
.. 6, So in impurities, 010% or less, CuO004
% or less, and the following weld crack susceptibility index PCM value is 0.
Steel for line pipes with excellent wet carbon dioxide corrosion resistance of 23% or less and weldability. 3C0,10% or less, SiO,10-1,00%, M
n 0.10-120%, Cr 1.0-3.0%, 0.01-0.08%, AIo, 01-0.10%, B
o, 0002-0.0050%, NO, 0010-0.
015%, further ZrO, 005~0.005, CaO
,0005~0.01%, rare earth elements 0-0005~0
.. Contains one type of 05%, the remainder consists of Fe and unavoidable impurities, B/N is 0.1 to 0.6, 8 of the impurities
0.010% or less, Cu 0.04% or less, and lower = V
Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability, with a joint cracking susceptibility index PCM value of 0.23% or less. 4C0.10% or less, Si0.10-1.00%, Mn
0.10-1.20%, Cr 1.0-3.0%, 0.01-0.08%, AIo, 01-0.10%, B
O,0Q02~0.0050%, NO,0O10~0.
015%, further Mo 0.02-0.20%, Vo, 0
One or two of 1 to 0.10% and Zr0.005
Contains one of ~0.10%, CaO,0005~0.01%, and rare earth elements 0.0005~0.05%,
The balance consists of Fe and unavoidable impurities, B/N is 0.1
~0.6, 80.010% or less in impurities, CuO,0
Below 4%, below potash = i-contact cracking susceptibility index PCM value is 0
.. Steel for line pipes with excellent wet carbon dioxide corrosion resistance of 23% or less and weldability.
JP6538979A 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability Expired JPS5945750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6538979A JPS5945750B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6538979A JPS5945750B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12952384A Division JPS6024352A (en) 1984-06-22 1984-06-22 Steel for line pipe with superior corrosion resistance to wet gaseous carbon dioxide and superior weldability

Publications (2)

Publication Number Publication Date
JPS55158255A JPS55158255A (en) 1980-12-09
JPS5945750B2 true JPS5945750B2 (en) 1984-11-08

Family

ID=13285576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6538979A Expired JPS5945750B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability

Country Status (1)

Country Link
JP (1) JPS5945750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167647A (en) * 1986-01-20 1987-07-24 Matsushita Electric Ind Co Ltd Cassette discriminator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199736B (en) * 2010-03-23 2013-03-13 宝山钢铁股份有限公司 High-strength and anti-CO2/H2S corrosion seamless gathering-line pipe
CN104498836B (en) * 2014-12-22 2016-06-08 湖北长江石化设备有限公司 A kind of corrosion-proof rare earth steel alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167647A (en) * 1986-01-20 1987-07-24 Matsushita Electric Ind Co Ltd Cassette discriminator

Also Published As

Publication number Publication date
JPS55158255A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
AU2003289437B2 (en) High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
CN102959113A (en) Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
KR20130025947A (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP5825224B2 (en) High tensile steel sheet with excellent surface arrestability and method for producing the same
US8900380B2 (en) Low-chromium stainless steel excellent in corrosion resistance of weld
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
CN114959468B (en) Nickel-free L360MSX52MS H-resistant thick-specification extreme cold-resistant 2 S-corrosion hot-rolled coil and preparation method thereof
WO2005073419A1 (en) Martensitic stainless steel tube
KR19980703593A (en) Welding coefficient with excellent fatigue strength
GB2131832A (en) Steel material exhibiting superior hydrogen cracking resistance in a wet sour gas environment
JPS6137350B2 (en)
WO1993017143A1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP3555579B2 (en) High corrosion resistance martensitic stainless steel
JPS5945750B2 (en) Steel for line pipes with excellent wet carbon dioxide corrosion resistance and weldability
JPH09327721A (en) Production of martensitic stainless steel welded tube excellent in weldability
JP2681591B2 (en) Manufacturing method of composite steel sheet with excellent corrosion resistance and low temperature toughness
JP2000178697A (en) Martensitic stainless steel excellent in corrosion resistance and weldability
JP2002018593A (en) Welding material for low alloy heat resistant steel and weld metal
JPS5915977B2 (en) Seamless steel for pipes with excellent corrosion resistance
JPH0319285B2 (en)
JPS6116418B2 (en)
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JPS5927376B2 (en) Cr-Mo steel materials used in oil refining equipment, coal liquefaction equipment, coal gasification equipment, and other pressure vessels with a plate thickness of 75 mm or more
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness