JPS5945336A - Synthetic resin molding material for shielding electromagnetic wave - Google Patents

Synthetic resin molding material for shielding electromagnetic wave

Info

Publication number
JPS5945336A
JPS5945336A JP57154627A JP15462782A JPS5945336A JP S5945336 A JPS5945336 A JP S5945336A JP 57154627 A JP57154627 A JP 57154627A JP 15462782 A JP15462782 A JP 15462782A JP S5945336 A JPS5945336 A JP S5945336A
Authority
JP
Japan
Prior art keywords
synthetic resin
electromagnetic wave
molding material
carbon
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57154627A
Other languages
Japanese (ja)
Inventor
Toru Murayama
徹 村山
Yoshinobu Ogura
小椋 慶喜
Hidehiro Iwase
岩瀬 英裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Products Co Ltd
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd, Toshiba Chemical Corp filed Critical Toshiba Chemical Products Co Ltd
Priority to JP57154627A priority Critical patent/JPS5945336A/en
Publication of JPS5945336A publication Critical patent/JPS5945336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:A molding material of a synthetic resin useful as a cabinet for electronic devices, having high shielding effect on electromagnetic wave in a wide frequency band, obtained by blending a synthetic resin with nickel and carbon in a specific ratio. CONSTITUTION:100pts.wt. synthetic resin (e.g., epoxy resin, polyamide resin, etc.) is blended with 5-200pts.wt. fibrous or flaky nickel and 5-100pts.wt. fibrous or flaky carbon, to give the desired synthetic resin molding material for shielding electromagnetic wave.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、マイクロコンピュータのような電子装置のキ
ャビネットの成形月別と1.て好適な電磁波遮蔽効果の
高い合成樹脂成形材オー1に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a cabinet for an electronic device such as a microcomputer; The present invention relates to a synthetic resin molded material O1 which has a high electromagnetic wave shielding effect and is suitable for use.

〔発明の技術的背景1とその問題点〕 近年マイクロコンビ、−夕の普及は目覚ましいものがあ
り、ますます広い分野に用いられつつあるがクロック信
号発生用として高周波発振器を内蔵しており、またパル
ス状波街扱うため高調波成分を多く含むため周辺のテレ
ビや各種通信機器等の他の電子機器へ妨害を与えるとい
う問題があり、各国でも大きく取り上げられつつある。
[Technical background of the invention 1 and its problems] In recent years, microcombiners have become popular, and are being used in an increasingly wide range of fields. Because it handles pulsed waves and contains many harmonic components, there is a problem that it interferes with other electronic devices such as televisions and various communication devices in the vicinity, and this problem is becoming a hot topic in many countries.

一方マイクロコンピュータの多くは可搬式であり、どこ
にでも運搬および設置することができるが設置される条
件によっては周辺の機器等から発生する強いパルス状電
波(例えば火花放電により発生するもの)に直接コンピ
ータの回路が曝され、これによりコンピュータが誤動作
する危険がある。
On the other hand, many microcomputers are portable and can be transported and installed anywhere; however, depending on the installation conditions, the computer may be directly exposed to strong pulsed radio waves (such as those generated by spark discharge) from surrounding equipment. circuits may be exposed, which may cause the computer to malfunction.

これらの問題への対策としては、電気回路的に考慮し、
不要電波のふく射を少なくシ、また外部パルスの影響を
受けにくくするのが一番であるが、これにも限度があり
、やはりマイクロコンビ、1−タを包囲するキャビネッ
トに電磁波遮蔽効果を、持たせることが必要となる。し
かも、このようなギ鴫。
As a countermeasure to these problems, consider electrical circuits,
The best way is to reduce the radiation of unnecessary radio waves and make them less susceptible to external pulses, but there are limits to this, and it is best to have an electromagnetic shielding effect on the cabinet that surrounds the microcombiner or unit. It is necessary to do so. Moreover, such a giraffe.

ビネットとしては、量産性、デザインの自由度、経済性
、軽量などの観点から合成樹脂製のものが多く用いられ
ており、これに電磁波遮蔽性をイマ]馬する為に多くの
方策が行なわれている。
Vignettes are often made of synthetic resin due to their ease of mass production, freedom of design, economy, and light weight, and many measures have been taken to improve their electromagnetic shielding properties. ing.

それらの方策としては、 (1)  メッキ、塗装、溶射、箔接着などの方法で合
成樹脂製キャビネットの内外表面6て導電性の電磁波遮
蔽層を設ける。
These measures include: (1) Provide a conductive electromagnetic shielding layer on the inner and outer surfaces 6 of the synthetic resin cabinet by plating, painting, thermal spraying, foil adhesion, or other methods.

(2)金網や金属箔などの電磁波遮蔽効果を有する物質
を予め成形用金型に装置しておき、以下合成樹脂の成形
操作により一体化して電磁波遮蔽性キャビネットヲ得る
(2) A material having an electromagnetic shielding effect, such as a wire mesh or metal foil, is placed in a molding mold in advance, and then integrated by a synthetic resin molding operation to obtain an electromagnetic shielding cabinet.

(3)金属粉、カーボン粉、金属箔、金属繊維。(3) Metal powder, carbon powder, metal foil, metal fiber.

カーボン難等の導電性物質を混和した合成樹脂により成
形し電磁波遮蔽性ギヤビネットを得る。
An electromagnetic wave shielding gear vignette is obtained by molding a synthetic resin mixed with a conductive substance such as carbon.

こ才りらの方法のうち(1)の方法については落下衝撃
や経時変化、熱シヨ、ツクなどにより表面の電磁波遮蔽
層が剥離し、脱落するおそれがあり、その剥離片がマイ
クロコンビュ、−りの電気回路上に落下した場合は、短
絡や発火などの組人事故につながるという問題がある。
Among the methods of Kotori et al., method (1) has the risk of the electromagnetic wave shielding layer on the surface peeling off and falling off due to drop impact, changes over time, heat shock, scratches, etc. If it falls onto an electric circuit, there is a problem that it may lead to accidents such as short circuit or fire.

また(2)の方法については金網等の層が成形工程の可
塑化した合成樹脂の流動により移動、変形したり、破断
する問題がある。
In addition, with method (2), there is a problem that the layer such as the wire mesh may move, deform, or break due to the flow of the plasticized synthetic resin during the molding process.

この点(3)の方法は致命的な欠点はないが導電性物質
を合成樹脂に均一に混和し、キャビネットとして十分な
電磁波遮蔽効果を持たせることは容易なことではない。
Although method (3) has no fatal drawbacks, it is not easy to uniformly mix the conductive material into the synthetic resin and provide a cabinet with a sufficient electromagnetic shielding effect.

電磁波遮蔽効果を高めるためKは導電率の向上が必要で
あるが、金属粉やカーボン粉を合成樹脂に単純に混和し
た場合は、これらの粉末の周辺を合成樹脂が包み込み絶
縁してし才うために導電率が向上し難;い。このような
粉末は樹脂100千聞部に対し金属粉300重量部も混
入してもなお電磁波遮蔽効果が十分でなく、該効果を上
げようとして粉末の混入量を増大させると成形材料とし
ての成形性が悪化するうえに、成形品としての機械的強
度も低下し、実用的ではない。
In order to enhance the electromagnetic shielding effect, K needs to improve its conductivity, but if metal powder or carbon powder is simply mixed with synthetic resin, the synthetic resin will wrap around these powders and insulate them. Therefore, it is difficult to improve conductivity. Even if 300 parts by weight of metal powder is mixed into 100,000 parts of resin, the electromagnetic wave shielding effect of such powder is still insufficient, and if the amount of powder mixed in is increased in an attempt to improve the effect, it will not be possible to form the molding material. In addition to deteriorating properties, the mechanical strength of the molded product also decreases, making it impractical.

従って最近粉末より少量でも電磁波遮蔽効果を出し易い
繊維やフレーク、中実球、中空球状の導電性物質の研究
が多く行なわれている。これらは材質的[は、銅、アル
ミなどの金属、カーボン。
Therefore, recently, much research has been conducted on conductive materials in the form of fibers, flakes, solid spheres, and hollow spheres, which can easily produce electromagnetic wave shielding effects even in smaller amounts than powders. These materials are metals such as copper and aluminum, and carbon.

金属化ガラス繊維などが多い。しかしながら繊維やフレ
ーク状、中実球、中空球は同様に成形材Flとしての成
形性全低下させる要因となる欠点があるので混和量を少
なく L、なければならない。
Often made of metallized glass fiber. However, fibers, flakes, solid spheres, and hollow spheres have the same drawbacks that cause a total decrease in moldability as a molding material Fl, so the amount of the mixture must be small.

〔発明の目的〕[Purpose of the invention]

本発明の目的幻:、上記欠点を解決し2、広い周波数帯
域で良好な電磁波遮蔽効果を有する合成樹脂成形材料を
提供しJ:うとするものである。
It is an object of the present invention to solve the above-mentioned drawbacks, and to provide a synthetic resin molding material that has a good electromagnetic wave shielding effect over a wide frequency band.

〔発明の概要〕[Summary of the invention]

本発明者らは上記目的を達成するた、めに鋭意研究を行
なった結果ニッケルとカーボンの複合化により、比較的
少混入量で広い周波数帯域で高い電磁波遮蔽効果を有す
る合成樹脂成形材料が得られることを見出した。
In order to achieve the above object, the present inventors conducted intensive research and found that by combining nickel and carbon, a synthetic resin molding material with a relatively small amount mixed in and a high electromagnetic wave shielding effect over a wide frequency band was obtained. I found out that it can be done.

即ち、母相となる合成樹脂と、ニッケルと、カーボンと
から成る成形イ′At1で、前記合成樹脂100重量部
に対して5〜200重量部のニッケルと5〜100重量
部のカーボンを配合することを特徴とする電磁波遮蔽性
合成樹脂成形材料である。
That is, in the molding step At1 consisting of a synthetic resin as a matrix, nickel, and carbon, 5 to 200 parts by weight of nickel and 5 to 100 parts by weight of carbon are blended with 100 parts by weight of the synthetic resin. This is an electromagnetic wave shielding synthetic resin molding material characterized by the following.

本発明で1v利となる合成樹脂はエポキシ樹脂。The synthetic resin that has a 1v advantage in the present invention is epoxy resin.

不飽和ポリエステル樹脂、フェノール樹脂、ボ刀イミド
樹脂のよう々熱硬化性樹脂や、ポリアミド樹脂やポリビ
ニル樹脂、ポリエチレン樹脂、 Al3S樹脂のような
熱可塑性樹脂が使用さrする。
Thermosetting resins such as unsaturated polyester resins, phenolic resins, and botanical imide resins, and thermoplastic resins such as polyamide resins, polyvinyl resins, polyethylene resins, and Al3S resins are used.

本発明に使用されるニッケルは繊維状、中実球状、フレ
ーク状、または中空球状のいずれでもよく、またカーボ
ンの表面にニッケルを被覆したものも使用できる。
The nickel used in the present invention may be in the form of fibers, solid spheres, flakes, or hollow spheres, and carbon whose surface is coated with nickel may also be used.

又本発明に使用さtしるカーボンは繊維状、中実球状、
フレーク状、または中空球状などいずれの性状でも良く
、ニッケルの表面にカーボンtJU覆したものも使用で
きる。合成樹脂とニッケルとカーボンの配合割合は樹脂
100重量部に対して5〜200重量部のニッケルと5
〜100重量部のカーボンが好ましい。ニッケルおよび
カーボンの配合量がそれぞれ5重量部未満では、電磁波
遮蔽効果が著しく低減し、ニッケルの配合量が200重
%部、カーボンの配合量が100重量部を超えると電磁
波遮蔽効果は向」二するが成形材料としての流動性が低
下したり、ニッケルとカーボンが互いに結合して塊状に
なり、加工性や成形性が低下して悪く好ましくない。従
って上記範囲に限定される。
Further, the carbon used in the present invention may be fibrous, solid spherical,
It may have any shape such as flake or hollow sphere shape, and nickel surface coated with carbon TJU can also be used. The mixing ratio of synthetic resin, nickel, and carbon is 5 to 200 parts by weight of nickel and 5 to 100 parts by weight of resin.
~100 parts by weight of carbon is preferred. When the amount of nickel and carbon is less than 5 parts by weight each, the electromagnetic wave shielding effect is significantly reduced, and when the amount of nickel and carbon exceeds 200 parts by weight and 100 parts by weight, the electromagnetic wave shielding effect decreases. However, the fluidity as a molding material decreases, and nickel and carbon combine with each other to form lumps, resulting in a decrease in workability and moldability, which is undesirable. Therefore, it is limited to the above range.

次に電磁波遮蔽効果の測定方法について説明する。電子
機器の内部では絶えずスイッチング(ON−OFF操作
)が行われている。この際電圧が太きい場合は電界波を
多く放出し、電流が大きい場合には磁界波を多く放出す
ることになりこitらがある距離はなれた点で電界成分
と磁界成分とを持ったT電波(電磁波つとなって空気中
を伝播してゆくQそこで妨害電波の発生源に電磁波遮蔽
効果を持たせようとする場合、電界波、磁界波VC対す
る遮蔽効果を測定する必要がある。
Next, a method for measuring the electromagnetic wave shielding effect will be explained. Switching (ON-OFF operations) is constantly performed inside electronic devices. In this case, if the voltage is large, many electric field waves will be emitted, and if the current is large, many magnetic field waves will be emitted. Radio waves (electromagnetic waves that propagate through the air as a single Q) Therefore, when attempting to provide an electromagnetic wave shielding effect to the source of interference radio waves, it is necessary to measure the shielding effect on electric field waves and magnetic field waves VC.

第1図A及びBに示した如く約たて400mmよこ20
0mm高さ200MmのAI製箱状て両端2.2′が開
いており中央壁面に試料6を支えるみそ4,4′を有す
るシールドボックス1がある。ボックス中央に試f−1
ヲ設置し、試料の左右対称位置にIQ71mの間隔に送
信用5と受信用6の1対のアンテナを用意する。送信用
アンテナはシグナルジェネレーターXに接続されており
、他方の受信用アンテナはスペクトラムアナライザーY
に接続されて減衰率を表示するようにしである。電界波
相アンテナは長さ1QWWの細線であるが、磁界波相ア
ンテナはt(1行10騎のループ状アンテナである。
As shown in Figure 1 A and B, the height is approximately 400 mm and the width is 20 mm.
There is a shield box 1 in the shape of an AI box with a height of 0 mm and a height of 200 mm, open at both ends 2.2', and having bottoms 4 and 4' for supporting a sample 6 on the central wall surface. Test f-1 in the center of the box
A pair of antennas, 5 for transmitting and 6 for receiving, are prepared at an interval of IQ 71 m at symmetrical positions on the sample. The transmitting antenna is connected to signal generator X, and the other receiving antenna is connected to spectrum analyzer Y.
is connected to display the attenuation rate. The electric field wave antenna is a thin wire with a length of 1QWW, while the magnetic field wave antenna is a loop-shaped antenna with 10 wires in one row.

ある送信周波数(O〜1000M]iZ)において、試
料がない場合の受信側電界強度Eo(V/IT+ )、
試わがある場合の受信011j電界強度El (V/n
1)1,1測定し減衰率(dB)でシールド効果を測定
する。
At a certain transmission frequency (O ~ 1000M] iZ), the receiving side electric field strength Eo (V/IT+) when there is no sample,
Reception 011j electric field strength El (V/n
1) Measure 1,1 and measure the shielding effect in terms of attenuation rate (dB).

減衰率が大きい程ンールド効果が高いことを示している
It is shown that the larger the attenuation rate, the higher the Nund effect.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

比較例1 カーボン繊維CPAN系長さ3〜5問、アスペクト比1
00 ) 20重量部とABS樹脂〔デンカABSCL
−301:電気化学工業(株) 〕1100重量とを混
練して合成樹脂成形材$−1を得た。この成形月別をノ
J・形射出成形機で板を成形し切断して試験J1ヲ得て
第1図の測定装置で評価した。500M)−1zでの電
磁波遮蔽効果は10.5dB、磁性波遮蔽効果は3dB
であった。この結果全第2図に示した。
Comparative Example 1 Carbon fiber CPAN system length 3-5 questions, aspect ratio 1
00) 20 parts by weight and ABS resin [Denka ABSCL
-301: Denki Kagaku Kogyo Co., Ltd.]1100 weight was kneaded to obtain a synthetic resin molding material $-1. For each molding month, a plate was molded and cut using a J-shaped injection molding machine, and a test J1 was obtained and evaluated using the measuring device shown in FIG. 500M) -1z electromagnetic wave shielding effect is 10.5 dB, magnetic wave shielding effect is 3 dB
Met. The results are shown in Figure 2.

比較例2 ニッケル繊維(長さ4〜5騎、アスペクト比50)50
重量部とABS樹脂〔テン力ABS CL−301:電
気化学工業(株) 〕1100重量とを混練し成形材料
を得た。得られた成形材料全比較例1と同様にして試験
ハを得て500 MHzでの電磁波遮蔽効果および磁界
波遮藪効果はそれぞれ50 dBおよび60dBであっ
た。この結果を第6図に示した。
Comparative Example 2 Nickel fiber (length 4-5 mm, aspect ratio 50) 50
A molding material was obtained by kneading 1,100 parts by weight of ABS resin [Tenryoku ABS CL-301: Denki Kagaku Kogyo Co., Ltd.]. All of the obtained molding materials were tested in the same manner as in Comparative Example 1, and the electromagnetic wave shielding effect and magnetic field wave shielding effect at 500 MHz were 50 dB and 60 dB, respectively. The results are shown in FIG.

実施例1 カーボン繊維(PAN系長さ3〜5 mm 、アスペク
ト比100 ) 20重量部とニッケル繊1ff(長さ
4〜577m 、アスペクト比50 ) 50重量部と
ABS樹脂〔デンカABS CL301 : 電気化学
工業(株)〕とをよく混紳して成形イ珂料を得た。こう
して得た成形月別を使用して小形射出成形機で板を成形
し切断して試験片を得た。500mm7.での電磁波遮
蔽効果は62dB、磁性波遮蔽効果tr168 dBで
あった。この結果を第4図の8曲線に示した。
Example 1 20 parts by weight of carbon fiber (PAN type, length 3 to 5 mm, aspect ratio 100), 50 parts by weight of 1ff nickel fiber (length 4 to 577 m, aspect ratio 50), and ABS resin [Denka ABS CL301: Electrochemical Kogyo Co., Ltd.] was thoroughly mixed to obtain molded silicone material. Using the thus obtained molded sheet, a plate was molded using a small injection molding machine and cut to obtain a test piece. 500mm7. The electromagnetic wave shielding effect was 62 dB, and the magnetic wave shielding effect was 168 dB. The results are shown in curve 8 in FIG.

実施例2 ニッケル被覆カーボン繊維(PAN系長さ3〜5 mm
 、アスペクト比100 ) 70重量部(内訳カーボ
ン20重量部、ニッケル50正損部)とA、BS樹脂〔
デンカABS CL301:電気化学工業(株))10
0?(j。
Example 2 Nickel coated carbon fiber (PAN type length 3-5 mm
, aspect ratio 100) 70 parts by weight (including 20 parts by weight of carbon, 50 parts by weight of nickel) and A, BS resin [
Denka ABS CL301: Denki Kagaku Kogyo Co., Ltd. 10
0? (j.

置部を均一に混線して成形拐料企得た。得られた成形材
料を使用して小形射出成形機で板を成形切断して試験片
金得た。この500 Ml−1zでの電磁波遮蔽効果は
60dB、磁性波遮蔽効果は66dBであった。この結
果を第4図の5曲線に示した。
We attempted to form a molded material by uniformly intermixing the wires in the placement part. Using the obtained molding material, a plate was molded and cut using a small injection molding machine to obtain a test piece. The electromagnetic wave shielding effect at this 500 Ml-1z was 60 dB, and the magnetic wave shielding effect was 66 dB. The results are shown in curve 5 in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば合成樹脂とニッケルとカーボンとを所定
割合で配合することにJ:って広い周波数帯域で優れた
電磁波遮蔽効果を有する合成樹脂成形材料を得ることが
できる。
According to the present invention, a synthetic resin molding material having an excellent electromagnetic wave shielding effect in a wide frequency band can be obtained by blending a synthetic resin, nickel, and carbon in a predetermined ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は電磁波遮蔽効果を測定する装置を示す断
面図、第1図(B)は第1図囚装置の透視間、第2図お
よび第6図は従来の成形材料の電磁波遮蔽効果を表すグ
ラフ、第4図は本発明の成形月別の電磁波遮蔽効果を表
すグラフである。 1・・・シールドボックス、6・・・試料、4.4’・
・・みぞ、5・・・送信用アンテナ、6・・・受信用ア
ンテナ、X・・・シグナルジェネレーター、Y・・・ス
ペクトラムアナライザー。 特許出願人 東芝クミカル株式会社 代理人  弁理士諸田英二 第 1 図 ↓ 旧   1 5  3    6 幀 周シ廣牧(MHzJ 第 周波数(MH2) 第 周波数(Ml−1z) 2図 周J@(MHz) 3図 周ヨ皮数(MHz) 4図 周波数(Mf−1z)
Figure 1 (A) is a cross-sectional view showing a device for measuring the electromagnetic wave shielding effect, Figure 1 (B) is the perspective view of the device shown in Figure 1, and Figures 2 and 6 are the electromagnetic wave shielding of conventional molding materials. FIG. 4 is a graph showing the electromagnetic wave shielding effect according to the month of molding of the present invention. 1... Shield box, 6... Sample, 4.4'.
... Groove, 5... Transmitting antenna, 6... Receiving antenna, X... Signal generator, Y... Spectrum analyzer. Patent Applicant Toshiba Kumical Co., Ltd. Agent Patent Attorney Eiji Morota 1 Figure ↓ Old 1 5 3 6 Hiromaki Hiromaki (MHzJ 2nd frequency (MH2) 2nd frequency (Ml-1z) 2 Figure J @ (MHz) 3 Figure circumference frequency (MHz) Figure 4 frequency (Mf-1z)

Claims (1)

【特許請求の範囲】[Claims] IU材となる合成樹脂と、ニッケルと、カーボンとから
なる成形材料で、前記合成(☆1脂100’l−1部に
対して5〜200重量部のニッケルと5〜100重量部
のカーボンを配合することを特徴とする電磁波遮蔽性合
成樹脂成形材料。
A molding material consisting of a synthetic resin, nickel, and carbon, which becomes the IU material, is used in the above synthesis (☆ 5 to 200 parts by weight of nickel and 5 to 100 parts by weight of carbon per 1 part of 100'l of fat). An electromagnetic wave shielding synthetic resin molding material that is characterized by being formulated with:
JP57154627A 1982-09-07 1982-09-07 Synthetic resin molding material for shielding electromagnetic wave Pending JPS5945336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154627A JPS5945336A (en) 1982-09-07 1982-09-07 Synthetic resin molding material for shielding electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154627A JPS5945336A (en) 1982-09-07 1982-09-07 Synthetic resin molding material for shielding electromagnetic wave

Publications (1)

Publication Number Publication Date
JPS5945336A true JPS5945336A (en) 1984-03-14

Family

ID=15588316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154627A Pending JPS5945336A (en) 1982-09-07 1982-09-07 Synthetic resin molding material for shielding electromagnetic wave

Country Status (1)

Country Link
JP (1) JPS5945336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260651A (en) * 1984-06-06 1985-12-23 Fujikura Ltd Electrically conductive resin composition
JPS6213444A (en) * 1985-07-11 1987-01-22 Dainichi Color & Chem Mfg Co Ltd Electrically conductive resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133442A (en) * 1979-03-28 1980-10-17 Daikin Ind Ltd Fluororesin composition having improved thermal stability
JPS5672049A (en) * 1979-11-15 1981-06-16 Aisin Seiki Co Ltd Electrically conductive reinforced thermoplastic resin
JPS5785994A (en) * 1980-11-17 1982-05-28 Sumitomo Bakelite Co Ltd Resin composition for plating
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition
JPS58127744A (en) * 1982-01-25 1983-07-29 Aron Kasei Co Ltd Thermoplastic resin composition
JPS58129072A (en) * 1982-01-28 1983-08-01 Sutaaraito Kogyo Kk Electrically conductive primer composition
JPS58222144A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133442A (en) * 1979-03-28 1980-10-17 Daikin Ind Ltd Fluororesin composition having improved thermal stability
JPS5672049A (en) * 1979-11-15 1981-06-16 Aisin Seiki Co Ltd Electrically conductive reinforced thermoplastic resin
JPS5785994A (en) * 1980-11-17 1982-05-28 Sumitomo Bakelite Co Ltd Resin composition for plating
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition
JPS58127744A (en) * 1982-01-25 1983-07-29 Aron Kasei Co Ltd Thermoplastic resin composition
JPS58129072A (en) * 1982-01-28 1983-08-01 Sutaaraito Kogyo Kk Electrically conductive primer composition
JPS58222144A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260651A (en) * 1984-06-06 1985-12-23 Fujikura Ltd Electrically conductive resin composition
JPS6213444A (en) * 1985-07-11 1987-01-22 Dainichi Color & Chem Mfg Co Ltd Electrically conductive resin composition

Similar Documents

Publication Publication Date Title
JPS59158016A (en) Electromagnetically shielding material
US4378322A (en) Electromagnetic radiation shielding composites and method of production thereof
EP0131067B1 (en) Conductive synthetic resin molding material
JP2956875B2 (en) Molding material for electromagnetic shielding
JP2007129179A (en) Conductive/magnetic filler, electromagnetic wave interference controlling sheet, flat cable for high frequency signal, flexible printed circuit board and method for manufacturing the sheet
JPS5919480B2 (en) radio wave shielding material
CN100546451C (en) Electromagnetic wave absorb
JPS58127743A (en) Thermoplastic resin composition
JPS5945336A (en) Synthetic resin molding material for shielding electromagnetic wave
JP2007091859A (en) Conductive paint
KR102082810B1 (en) Sheet of complex shielding electromagnetic wave with high performance and manufacturing methods thereof
JP2000068117A (en) Electromagnetic wave absorbent and its manufacture
JPS61155457A (en) Electromagnetic wave shielding composition
JP2005281357A (en) Conductive coating
JPS5938244A (en) Electromagnetic wave-shielding synthetic resin molding material
JPH09241420A (en) Leadless electroconductive resin composition
JPS58127744A (en) Thermoplastic resin composition
KR200341216Y1 (en) Sheet matal pair against electron wave
JPH0730279A (en) Wave absorber and its manufacture
JPS58222124A (en) Thermoplastic resin composition
JPS6262870A (en) Electromagnetic wave shielding coating material
JPH0354431Y2 (en)
JPH1167300A (en) Terminal board
JPS61265803A (en) Manufacture of electromagnetic-wave shielding material
JPS61155453A (en) Electromagnetic wave shielding composition