JPS5944627B2 - Image forming method - Google Patents

Image forming method

Info

Publication number
JPS5944627B2
JPS5944627B2 JP51023600A JP2360076A JPS5944627B2 JP S5944627 B2 JPS5944627 B2 JP S5944627B2 JP 51023600 A JP51023600 A JP 51023600A JP 2360076 A JP2360076 A JP 2360076A JP S5944627 B2 JPS5944627 B2 JP S5944627B2
Authority
JP
Japan
Prior art keywords
toner
potential
image
toner layer
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51023600A
Other languages
Japanese (ja)
Other versions
JPS52106734A (en
Inventor
雄三 大室
仁一 鴨川
茂 植竹
芳男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP51023600A priority Critical patent/JPS5944627B2/en
Publication of JPS52106734A publication Critical patent/JPS52106734A/en
Publication of JPS5944627B2 publication Critical patent/JPS5944627B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は特にトナーのみを主成分とし、キャリア粒子を
含まない絶縁性磁性トナーまたは絶縁性一成分現像剤を
用い、従来公知の方法により作成されたトナー像を静電
転写により普通紙上に転写し最終画像を得る画像形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention uses an insulating magnetic toner or an insulating one-component developer that contains only toner as a main component and does not contain carrier particles, and electrostatically converts a toner image created by a conventionally known method. The present invention relates to an image forming method in which a final image is obtained by transferring onto plain paper.

ここでいう普通紙とは、電気的に絶縁処理のほどこされ
ていない通常紙であり、表層に樹脂が塗工されているよ
うな静電記録紙などを指すものではない。従来電子写真
法または静電記録法を応用した機器において、一般に用
いられて来た静電荷像の現像方法としては、磁気ブラシ
法、カスケード法、あるいは液体現像法などが知られて
いる。
Plain paper here refers to regular paper that has not been electrically insulated, and does not refer to electrostatic recording paper whose surface layer is coated with resin. Conventionally, the magnetic brush method, cascade method, liquid development method, and the like are known as methods for developing electrostatic images that have been generally used in devices applying electrophotography or electrostatic recording methods.

これらの方法はそれぞれ良い画像の得られる優れた方法
であるが、その反面キャリアの疲労、キャリアとトナー
の混合比の変動という二成分系現像剤に共通の欠点を有
する。これに対し、トナーのみを主成分とし、キヤリア
粒子を含まない一成分現像剤は本質的に上記の欠点を免
がれており、例えばタツチダウン法、インプレツシヨン
法、あるいは導電性トナーによる誘導現像法など多くが
知られている。
Each of these methods is an excellent method for obtaining good images, but on the other hand, they have drawbacks common to two-component developers, such as fatigue of the carrier and fluctuations in the mixing ratio of carrier and toner. On the other hand, single-component developers containing only toner as a main component and containing no carrier particles are essentially free from the above-mentioned drawbacks, and can be used, for example, by touch-down method, impression method, or induction development with conductive toner. Much is known about the law.

しかしこれらの方法においてもそれぞれに克服すべき新
らたな間題点があり、実用化されているものは少ない。
誘導現像法の一種であるマグネドライ法は導電性かつ強
磁性のトナーを用いるもので、その詳細は西独公開特許
2313297号公報に開示されている。この方法は同
一トナーで正負いずれの静電荷像をも現像し得るという
利点を有するが、その反面トナーが導電性であるために
、普通紙上に静電的に転写像を作る場合像がはなはだし
く惚ける欠点を有する。転写紙に静電記録紙を用いると
静電転写時の鮮鋭度は向上するが、記録紙のコス卜、イ
ンクでの書き込みの困難性など普通紙にはない欠点を生
ずる。本発明は前述した如き一成分現像剤(以後、絶縁
性磁性トナーと呼称することがある)の本質的な利点に
加えて普通紙上に鮮鋭な転写像を得るものである。
However, each of these methods has new problems to be overcome, and few of them have been put into practical use.
The MagneDry method, which is a type of induction development method, uses a conductive and ferromagnetic toner, and its details are disclosed in German Published Patent Application No. 2313297. This method has the advantage of being able to develop both positive and negative electrostatic charge images with the same toner, but on the other hand, because the toner is conductive, when electrostatically transferring an image onto plain paper, the image becomes extremely blurry. It has its drawbacks. When electrostatic recording paper is used as the transfer paper, the sharpness during electrostatic transfer is improved, but it has drawbacks that plain paper does not have, such as the cost of the recording paper and the difficulty of writing with ink. The present invention provides the essential advantages of the one-component developer (hereinafter sometimes referred to as insulating magnetic toner) as described above, and also provides sharp transferred images on plain paper.

本発明に用いる一成分現像剤は、キヤリア粒子を含まず
トナーのみを主成分とするものであつて、強磁性かつ秀
れた絶縁性を有すると共に、トナー粒子の相互摩擦によ
つて現像に必要な電荷が実質的に得られるものである。
The one-component developer used in the present invention does not contain carrier particles and has only toner as its main component, and has ferromagnetism and excellent insulation properties, and is necessary for development due to the mutual friction of toner particles. This means that a substantial charge can be obtained.

該一成分現像剤に用いられる磁性体としては、マグネタ
イトが諸条件をほゾ満して居り、目的に最も好適なもの
である。
As the magnetic material used in the one-component developer, magnetite satisfies all the conditions and is most suitable for the purpose.

勿論、各種フエライト、鉄、コバルト、ニツケルなどの
微粉も樹脂との組合せによつては用いることができる。
また、用いられる樹脂は、使用する磁性体との摩擦帯電
性、製造方法と条件、磁性体に対する被覆性、熱による
定着の容易さなどを考慮して選択されるが、スチレン樹
脂、アクリル樹脂、ビニル樹脂、エポキシ樹脂、セルロ
ーズ樹脂、ポリウレタン樹脂などの中から一種または二
種以上の混合物乃至共重合体として適当なものを用いる
ことができる。
Of course, fine powders of various ferrites, iron, cobalt, nickel, etc. can also be used depending on the combination with the resin.
In addition, the resin used is selected taking into account the frictional charging properties with the magnetic material used, the manufacturing method and conditions, the coatability for the magnetic material, the ease of fixing with heat, etc., but includes styrene resin, acrylic resin, Suitable resins may be used as a mixture or copolymer of one or more of vinyl resins, epoxy resins, cellulose resins, polyurethane resins, and the like.

また必要とあれば荷電制御剤等の添加や、流動性向上の
ためトナーへのシリカなどの助剤の添加も加能である。
本発明に用いる一成分現像剤は上記の磁性体とフ樹脂の
中から適当な組合せを選んで用い、これを公知のトナー
製造法により作ることができる。
Further, if necessary, a charge control agent or the like may be added, and an auxiliary agent such as silica may be added to the toner to improve fluidity.
The one-component developer used in the present invention can be produced by selecting an appropriate combination from the above-mentioned magnetic materials and resins and using a known toner manufacturing method.

卜ナー製法として従来最も広く用いられているのは樹脂
と顔料を二本ロールなどで加熱混線後粉砕する方法であ
るが、この他にも例えば米国特許第3338991号明
細書に開示されている噴霧乾燥法によつてもよい。本発
明に用いる一成分現像剤は実質的に粒子表面に磁性体微
粒子の顔が出ていることが必須要件とされるので製造に
当つては特にその点に留意することが肝要である。
Conventionally, the most widely used method for producing pigments is a method in which resin and pigment are heated and mixed using two rolls, etc., and then pulverized. A drying method may also be used. Since it is an essential requirement for the one-component developer used in the present invention that the faces of the magnetic fine particles are substantially exposed on the particle surface, it is important to pay particular attention to this point during production.

この条件は主として使用する磁性体と樹脂の種類、およ
び磁性体の含有量により左右されるが、製造条件にも或
る程度影響される。噴霧乾燥法においては分散が良く行
なわれるほど樹脂による磁性体粒子の被覆が良くなり、
噴霧乾燥の際溶媒量が少なく、円盤回転数が大きく、送
風温度が低いほど磁性体粒子の樹脂による被覆が良くな
る。磁性体粒子の表面露出度は過度になるとトナーの比
抵抗が低下しまた個々のトナー粒子の摩擦帯電量も大き
くなり得なくなるので注意を要する。以上述べたトナー
の製造方法については本願出願人と同一出願人による特
開昭51−26046号公報に述べられている。
This condition mainly depends on the type of magnetic material and resin used, and the content of the magnetic material, but is also influenced to some extent by manufacturing conditions. In the spray drying method, the better the dispersion, the better the coating of the magnetic particles with the resin.
During spray drying, the smaller the amount of solvent, the higher the rotational speed of the disk, and the lower the blowing temperature, the better the magnetic particles will be coated with the resin. Care must be taken when exposing the surface of the magnetic particles to an excessive degree, since the resistivity of the toner decreases and the amount of triboelectric charge of each toner particle cannot be increased. The above-mentioned toner manufacturing method is described in Japanese Patent Laid-Open No. 51-26046 by the same applicant as the present applicant.

次に本発明の画像形成法における現像までについて第1
図を基に説明する。
Next, the first part up to development in the image forming method of the present invention.
This will be explained based on the diagram.

前記の方法により作成され、かつ比抵抗が1014Ω−
?以上の一成分現像剤を第1図に示す如くホツパ−1内
に収納し、ホツパー開口下部に設置され、かつ、磁極を
交互に配置した磁石群2を内部に有する非磁性体から成
るスリーブ状の回動部材3を矢印4の方向に回転させ、
磁力により回動部材3上に前記一成分現像剤を保持させ
トナー層5を形成し、トナー層5が回動部材3上を穂立
ちしながら回動する間にトナー粒子相互の摩擦によつて
実質的に現像に必要なトナー電荷を発生せしめ、主磁石
6の位置で矢印7の方向へ進む静電潜像支持部材8に当
接せしめて現像を行なう。
Created by the above method and with a specific resistance of 1014Ω-
? The above-mentioned one-component developer is housed in a hopper 1 as shown in FIG. 1, and the sleeve-shaped sleeve is made of a non-magnetic material and has a group of magnets 2 with alternating magnetic poles placed at the bottom of the hopper opening. Rotate the rotating member 3 in the direction of the arrow 4,
The one-component developer is held on the rotary member 3 by magnetic force to form a toner layer 5, and while the toner layer 5 rotates on the rotary member 3 while standing up, friction between toner particles causes the developer to form a toner layer 5. The toner charge substantially required for development is generated, and the toner is brought into contact with the electrostatic latent image supporting member 8 moving in the direction of arrow 7 at the position of the main magnet 6 to perform development.

もちろん、この構成においてはトナーの帯電量を得るた
めの専用の帯電手段、例えばコロナ放電を印加するなど
の電荷の持ち込みは行なつていない。上記の方法により
酸化亜鉛感光体、Se−ポリビニルカルバゾール複合感
光体、またはセレン感光体に作成された静電潜像を現像
することができた。
Of course, in this configuration, a dedicated charging means for obtaining the amount of charge on the toner, such as applying a corona discharge, is not used to introduce charge. By the above method, an electrostatic latent image formed on a zinc oxide photoreceptor, a Se-polyvinylcarbazole composite photoreceptor, or a selenium photoreceptor could be developed.

勿論、光学的ウエツジの如き階調像の再現も得られた。
本発明にかかわる画像形成法が絶縁性かつ強磁性トナー
粒子自身の相互摩擦によつていることは下記の如き幾つ
かの実,験結果から明らかである。
Of course, reproduction of gradation images such as optical wedges was also obtained.
It is clear from the following several actual and experimental results that the image forming method according to the present invention relies on mutual friction between the insulating and ferromagnetic toner particles themselves.

まず樹脂中に強磁性微粉末を含有せしめ前記した方法で
作成した強磁性、絶縁性のトナーを、磁力によつて現像
装置中を搬送させ、正あるいは負に荷電したセレン板に
当接せしめて現像を行なつたところ、いずれの場合も正
像を得ることができた。また現像されたトナーの極性を
測定によつて確認したところ、それぞれ負および正で潜
像と逆極性の関係にあつた。勿論用いられたトナーは絶
縁性と前記したごとく全て1014Ω一儂以上の高比抵
抗のものであり、以後のトナーについても同様である。
次に酸化亜鉛感光板に負の静電潜像を作成し、現像器の
磁力を少し弱めて現像を行なうと潜像部が現像されるの
みならず、潜像部に沿つた外側のわずかの領域、すなわ
ち潜像部と逆向きの電場が発生している領域にもトナー
が付着するのが認められた。また現像された幾種かのト
ナーの電荷量を測定したところ単位真体積(立方センチ
)あたり2×10−6から1.4×10−5クーロンの
値であつた。この値は二成分現像のキャリヤーとトナー
の摩擦によつて生ずるトナーの電荷量にわずかに不足し
ているか乃至略同値のものである。簡単な実験の結果で
は例えば同一の樹脂粉末を撹拌して得られる帯電量は1
0−0クローン/d以下であつた。また現像条件と同一
状態にてコロナ荷電していない酸化亜鉛感光体と現像器
上のトナー層とを擦過させ、酸化亜鉛感光体との摩擦帯
電ではトナー層が負に帯電するトナーを用い、負電荷の
潜像を有する酸化亜鉛感光体を現像し、光を十分照射せ
しめて過剰な潜像荷電を消滅せしめた後、現像されたト
ナーの帯電極性を測定すると電荷は正であつた。次いで
現像されたトナーを感光体の裏面に磁石を置き移動せし
めて酸化亜鉛感光体と摩擦帯電を行なわせるとトナーは
再び負極を示した。以上の実験例かられれわれはトナー
群中には正極のものと負極のものがあり、それらの荷電
はトナー層の外から持ち込まれたものでなく支配的には
トナーの相互摩擦によつて生じたものと推測される。す
なわち、これらのトナー粒子を電子顕微鏡を用いて10
,000倍に拡大し観察すると、粒子表面に微細な突起
が多数ありその大きさは粒子中に含有せしめた強磁性微
粉末の大きさと一致していることが認められ、これらト
ナー粒子表面に実質的に露出した強磁性微粉末は他のト
ナー粒子表面の樹脂部分と相互に摩擦して強磁性微粉末
部が負に、樹脂部は正に帯電する結果、トナー粒子の表
面は正と負の荷電面が点在するが、それらの総合された
結果として正荷電とみられるトナー粒子と負荷電とみら
れるトナー粒子が存在することになるものと思われる。
以上述べた如く本発明にかかわる現像法は絶縁性強磁性
トナーを用いた相互摩擦法であり導電性トナーを用いた
誘電現像法とも異なり、真電荷を保有し階調像も再現す
ることから分極現像法とも異なることが理解されよう。
First, the ferromagnetic and insulating toner prepared by the above-described method by containing ferromagnetic fine powder in the resin is conveyed through the developing device by magnetic force and brought into contact with a positively or negatively charged selenium plate. When development was carried out, normal images could be obtained in all cases. Furthermore, when the polarity of the developed toner was confirmed by measurement, it was negative and positive, respectively, and had a polarity opposite to that of the latent image. Of course, the toners used were all insulative and had a high specific resistance of 1014 Ω or more as described above, and the same was true for the toners to be used thereafter.
Next, a negative electrostatic latent image is created on the zinc oxide photosensitive plate, and development is performed by slightly weakening the magnetic force of the developing device. Not only the latent image area is developed, but also a small amount of the outside along the latent image area is developed. It was also observed that toner adhered to the area, that is, the area where the electric field was generated in the opposite direction to the latent image area. Further, when the amount of electric charge of several kinds of developed toners was measured, the value was 2.times.10@-6 to 1.4.times.10@-5 coulombs per unit true volume (cubic centimeter). This value is slightly insufficient to or approximately equal to the amount of charge on the toner generated by friction between the carrier and toner in two-component development. As a result of a simple experiment, for example, the amount of charge obtained by stirring the same resin powder is 1.
It was less than 0-0 clones/d. In addition, under the same development conditions, a zinc oxide photoconductor that is not charged with corona is rubbed against the toner layer on the developing device. After developing a zinc oxide photoreceptor having a latent charge image and sufficiently irradiating it with light to eliminate the excess latent image charge, the charge polarity of the developed toner was measured and found that the charge was positive. Next, when the developed toner was moved by placing a magnet on the back side of the photoreceptor and frictionally charged with the zinc oxide photoreceptor, the toner exhibited negative polarity again. From the above experimental examples, we found that there are positive and negative charges in the toner group, and these charges are not brought in from outside the toner layer, but are predominantly caused by mutual friction between the toners. It is assumed that it was That is, these toner particles were analyzed using an electron microscope to
When observed under magnification of 1,000 times, it was found that there were many fine protrusions on the particle surface, the size of which corresponded to the size of the ferromagnetic fine powder contained in the particles. The exposed ferromagnetic fine powder rubs against the resin part on the surface of other toner particles, and the ferromagnetic fine powder part becomes negatively charged and the resin part becomes positively charged. As a result, the surface of the toner particle is charged with positive and negative charges. Although charged surfaces are scattered, it is thought that as a result of combining them, there are toner particles that appear to be positively charged and toner particles that appear to be negatively charged.
As mentioned above, the development method related to the present invention is a mutual friction method using insulating ferromagnetic toner, and is different from the dielectric development method using conductive toner. It will be understood that the development method is also different.

以上示された如く、強磁性、絶縁性のトナーを主成分と
する一成分現像剤を用いて画像を得ることができたが普
通紙上に静電転写して鮮鋭度のよい最終画像を得るには
まだ克服されるべき問題がある。
As shown above, it was possible to obtain an image using a one-component developer mainly composed of ferromagnetic and insulating toner, but it is difficult to obtain a final image with good sharpness by electrostatic transfer onto plain paper. There are still problems to be overcome.

それは、本発明に用いる現像剤の如く強磁性微粉末を含
む絶縁性トナーにおいては、従来の概念における如く比
抵抗で絶縁性を規定し、単に比抵抗の大きいトナーを作
つたからといつて必らずしも転写像が鮮鋭にならないこ
とである。
In insulating toner containing ferromagnetic fine powder, such as the developer used in the present invention, insulation is defined by specific resistance as in the conventional concept, and this is necessary simply because a toner with high specific resistance is produced. Naturally, the transferred image is not sharp.

第1表は試作したトナーの比抵抗と普通紙上に静電転写
された像の鮮鋭度(シヤープネス)との関係を示めした
ものである。鮮鋭度は良い方から◎○Δ×て評価付けを
し△以上を実用上可とした。
Table 1 shows the relationship between the specific resistance of the prototype toner and the sharpness of the image electrostatically transferred onto plain paper. The sharpness was evaluated in descending order of ◎○∆×, and those of △ or better were considered acceptable for practical use.

抵抗が高いという条件のみで鮮鋭度が保障され得ないの
が一見して理解されよう。なお、強磁性微粉末を含む絶
縁性トナーの一成分現像においてみられるトナー同士が
凝集してすでに現像時の像が鮮鋭度を実質的に失なつて
いるものについてははじめから除いてあるのはもち論で
ある。
At first glance, it can be understood that sharpness cannot be guaranteed solely on the condition that the resistance is high. In addition, cases in which the toner particles agglomerate and have already substantially lost the sharpness of the image during development, which is seen in monocomponent development of insulating toner containing ferromagnetic fine powder, are excluded from the beginning. This is a moot point.

上記に係る抵抗の測定は、黄銅材よりなる底面を有し、
アクリル樹脂よりなる側壁板の厚みが5U1の容器を用
い、内壁面をよく清掃した該容器内へ試料を5mmの厚
さに略一様に入れ、容器ごとにタツピングを10回程行
ない、試料の圧縮によつて生じた厚み減少分に更に5m
m厚になるまで略一様に試料を追加しふたたぴタツピン
グを10回行なつた後、黄銅電極を上部にあて圧力1k
g/c!l電圧100Vを印加し、十分吸収電流が減少
して測定電流が実質的に平担になつたところで行なつた
。最終的には試料層の厚みは4u程度で、測定時間は電
圧印加後15分から30分であつた。また該トナーにお
ける実際の現像状態ではトナーに加わる圧縮力は磁力に
よる吸引力が支配的であるから現像時におけるトナーは
前記の測定より接触抵抗の高い状態で用いられていると
みられる。われわれは上記第1表に示される惚け(鮮鋭
度が低くなるもの)の原因はトナー粒子の単純な抵抗値
にあるのではなく、トナー粒子個々の表面における強磁
性微粉末の実質的な露出状態にあると考えた。すなわち
、現像され転写されるトナー像の厚みは平均10μ径く
らいの粒子数で云えばせいぜい平均2〜8層程度である
から、通常の抵抗測定法では高抵抗を示しても、実際の
場合は露出した強磁性微粉末と転写紙、その他との電荷
の授受が行なわれ電荷はトナー粒子内の電気的弱点を伝
つて粒子内へ進入してしまい、結果として惚けを生ずる
ものと考えた。そこで電荷の進入し易さを次の様な測定
法で規定した。以下、下記する測定法により得られる数
値を、絶縁性トナー(現像剤)の電位減衰率もしくはリ
ークと称する。
The resistance measurement according to the above has a bottom made of brass material,
Using a container with a side wall plate made of acrylic resin having a thickness of 5U1, samples were placed approximately uniformly to a thickness of 5 mm into the container whose inner wall had been thoroughly cleaned, and tapping was performed approximately 10 times for each container to compress the sample. An additional 5 m is added to the thickness reduction caused by
After adding the sample almost uniformly to a thickness of m and performing lid-tapping 10 times, a brass electrode was applied to the top and a pressure of 1k was applied.
g/c! A voltage of 100 V was applied, and the measurement was carried out when the absorbed current was sufficiently reduced and the measured current became substantially flat. The final thickness of the sample layer was about 4 μ, and the measurement time was 15 to 30 minutes after voltage application. In addition, in the actual development state of the toner, the compressive force applied to the toner is dominated by the attractive force due to magnetic force, so it appears that the toner during development is used in a state where the contact resistance is higher than in the above measurement. We believe that the cause of the blurring (decreased sharpness) shown in Table 1 above is not due to the simple resistance value of the toner particles, but is due to the substantial exposure state of the ferromagnetic fine powder on the surface of each toner particle. I thought it was in. In other words, the thickness of the toner image that is developed and transferred is at most 2 to 8 layers on average based on the number of particles with an average diameter of about 10 μm, so even if it shows a high resistance in the normal resistance measurement method, in reality it is It was thought that charges were exchanged between the exposed ferromagnetic fine powder, the transfer paper, and others, and the charges entered the particles through electrical weaknesses within the toner particles, resulting in blurring. Therefore, the following measurement method was used to define the ease with which charges can enter. Hereinafter, the numerical value obtained by the measurement method described below will be referred to as the potential decay rate or leakage of the insulating toner (developer).

〔測定法〕[Measurement method]

第2図を基にして説明を行なう。 The explanation will be based on FIG. 2.

1.酸化亜鉛感光体を使用し、通常のコロナ放電により
所定の電位を付与したる後、一定面積の範囲に絶縁性ト
ナーによる現像を行なう。
1. A zinc oxide photoreceptor is used, and after a predetermined potential is applied by ordinary corona discharge, a certain area is developed with an insulating toner.

次いで前記面積内の潜像(電荷)が完全には消去されな
いが、ほぼ消去されてトナー電位が生ずるほどの光照射
を瞬時に与える。例えば螢光灯にて200〜3001u
xの光照射とし現像層の厚みにより照射時間を0.5〜
3秒とする。2.前記光照射を遮断した後、2〜3秒以
内に透光型の電位計を試料上に載せて、暗減衰を少時間
(1分以内)記録し、図における時間t1の時のA点を
求める。
Then, light irradiation is instantaneously applied so that the latent image (charge) within the area is not completely erased, but almost erased and a toner potential is generated. For example, 200~3001u with fluorescent light
x light irradiation, and irradiation time is 0.5~ depending on the thickness of the developing layer.
Let it be 3 seconds. 2. After cutting off the light irradiation, a translucent electrometer was placed on the sample within 2 to 3 seconds to record the dark decay for a short time (within 1 minute), and point A at time t1 in the figure was demand.

3.A点測定後であつて暗減衰状態で1分たつた後のB
点を求める。
3. B after measuring point A and after 1 minute in the dark decay state
Find points.

4.次いで同一光源により照射を行なう。4. Irradiation is then performed using the same light source.

その際その途中における残留潜像が消去されるのに基く
電位上昇点Cを求めると同時にt1から3分後の電位V
2となる点Dを求める。5.上記手法により点A,B,
C,Dなる特性曲線を得た後、前記点Cより前記AB曲
線に沿つて並行な仮想線を引き、前記時間t1からトナ
ー層電位側に向けて伸びる線との交点E(電位V,)を
求める。
At that time, the potential rise point C based on which the residual latent image in the middle is erased is determined, and at the same time, the potential V after 3 minutes from t1 is determined.
Find the point D that is 2. 5. By the above method, points A, B,
After obtaining the characteristic curves C and D, draw a virtual line parallel to the AB curve from the point C, and draw an intersection point E (potential V,) with the line extending from the time t1 toward the toner layer potential side. seek.

6.上記V,,V2の両値を なる式に代入してトナー層内への電荷の侵透のしやすさ
、すなわち電位減衰率(Vリーク)を求める。
6. By substituting the above-mentioned values of V and V2 into the following equation, the ease with which charges penetrate into the toner layer, that is, the potential attenuation rate (V leak) is determined.

上記におけるE点の電位V1は潜像が無い場合であり、
かつ、光照射による電位減衰がほとんど生じないときの
トナー層の初期電位とみなしうる。
The potential V1 at point E in the above is the case where there is no latent image,
Moreover, it can be regarded as the initial potential of the toner layer when almost no potential attenuation occurs due to light irradiation.

さらに測定においては転写紙からの電荷の侵入が問題に
なると思われるけれども、要はCなるピーク値が得られ
ることが大事であり、また0Aの高さに対しBCの高さ
をできるだけ小さくすることが大切である。何故ならば
、光透過型電位計を載せる前の最初の瞬時露光が少なく
あまりにA点が低く電位計を載せた後の電位の上昇すな
わちBC間の距離が長いと、光透過型電位計をのせた状
態の光照射下では光の進入方向が制限されるためか光照
射によつて潜像を消去する働らきとトナー層への侵入が
並行して生じてしまうためかピーク位置であるCの発生
が得られないことがあるからである。
Furthermore, although charge intrusion from the transfer paper may be a problem during measurement, it is important to obtain a peak value of C, and also to make the height of BC as small as possible relative to the height of 0A. is important. This is because the initial instantaneous exposure before placing the light transmission type electrometer is too low, and if the potential rises after the electrometer is placed, that is, the distance between BC is long, it is difficult to place the light transmission type electrometer. Under light irradiation in such a state, the direction in which the light enters is restricted, or the light irradiation causes the function of erasing the latent image and the penetration into the toner layer to occur at the same time. This is because generation may not be obtained.

勿論電位減衰か零であるようなトナーについては別であ
る。ここで注意を要する点は最初の瞬間照射は散乱光で
あることが重要で、われわれは室内照明用の螢光灯を用
いた。
Of course, this is different for toner whose potential is attenuated or zero. It is important to note here that the first instantaneous irradiation is scattered light, so we used a fluorescent lamp for indoor lighting.

ただし光強度の影響はそれほど大きくはなかつた。また
酸化亜鉛感光体上にトナー層を厚くのせれば電位の減衰
率も多少減少するため、のせる厚さを規定する必要があ
る。厚さの測定は電位減衰の測定に用いられたトナー層
の単位面積あたりの重量を測定し、比重で割ればよい。
この計算結果は空隙率零のトナーの板状の厚さとなるが
、厚さの実測は多少曖昧さを伴なうことから、また厚さ
だけではなく酸化亜鉛面に対してどの程度トナーが均一
に付着しているかというトナーのばらつき程度も電位の
測定に寄与するため、それらの要因が計算に入つてくる
前記の「計算上の厚み」を便宜的に定めた。次に実測例
をあげれば、実体顕微鏡で4〜5層に観察された平均1
0μ径の処方Aのトナー粒子が計算上の厚みでは8.0
4μとなり、また2〜3層に観察された処方Bのものが
5.87μ処方Cの2層のものが3.11μとトナー粒
子1個の径より小さく算出されるのには注意を要しよう
However, the influence of light intensity was not so large. Furthermore, if the toner layer is placed thickly on the zinc oxide photoreceptor, the attenuation rate of the potential decreases to some extent, so it is necessary to specify the thickness of the toner layer. The thickness can be measured by measuring the weight per unit area of the toner layer used for measuring the potential attenuation, and dividing it by the specific gravity.
The result of this calculation is the plate-like thickness of the toner with zero porosity, but since the actual measurement of the thickness is somewhat ambiguous, it is also important to know not only the thickness but also how uniform the toner is on the zinc oxide surface. Since the degree of variation in toner adhesion to the toner also contributes to the measurement of the potential, the above-mentioned "calculated thickness", which incorporates these factors into the calculation, was determined for convenience. Next, to give an actual measurement example, an average of 1
The calculated thickness of toner particles of prescription A with a diameter of 0 μ is 8.0
It should be noted that the diameter of Formulation B observed in the 2nd and 3rd layers is 5.87μ, and that of the 2nd layer of Formulation C is 3.11μ, which is smaller than the diameter of one toner particle. .

り−クの測定に必要な厚さは実際に利用されるトナー層
の厚さであり計算上の厚さでは3μ〜11μ内のもので
ある。第一表に示めした試料の電位減衰率を測定し、転
写時における惚けすなわち鮮鋭度との対比をとると第二
表の如くなつた。
The thickness required for measuring the leakage is the thickness of the toner layer actually used, and the calculated thickness is within 3 μm to 11 μm. The potential decay rate of the samples shown in Table 1 was measured and compared with the blurring, or sharpness, during transfer, and the results were as shown in Table 2.

上記の表から比抵抗では対応のつかなかつた鮮鋭度が電
位減衰率の測定とではかなり良い対応を示めすことがわ
かる。
From the above table, it can be seen that the sharpness, which could not be matched by specific resistance, shows a fairly good correspondence with the measurement of the potential decay rate.

電位減衰率と比抵抗がなぜ比例しないのかは不明である
が抵抗測定電極内へトナーをパツキングする場合のトナ
ーの粒度分布形状、流動性なども問題となつているとみ
られる。
It is unclear why the potential attenuation rate and specific resistance are not proportional, but it appears that the particle size distribution shape and fluidity of the toner when packing the toner into the resistance measuring electrode are also problems.

また100kg/Cdの圧力を加え、試料をタブレツト
状にして抵抗を測定したが、これもまた鮮鋭度とは良い
対応を示めさなかつた。従つて転写時の惚けと直接の対
応をみるためには転写時に生ずる電荷の侵入に近い形を
測定しているこの電位減衰率測定法が必要である。
Furthermore, the resistance was measured by applying a pressure of 100 kg/Cd and making the sample into a tablet shape, but this also did not show a good correlation with the sharpness. Therefore, in order to see a direct correlation with the blurring during transfer, it is necessary to use this potential attenuation rate measurement method, which measures a form similar to the intrusion of charges that occurs during transfer.

これらのことから普通紙上に静電転写をする強磁性微粉
末を含む一成分トナーにおいては単に比抵抗で制限した
だけでは不十分で、電位減衰率をも規定するのが好まし
く、該電位減衰率は第2表から50%より少ないことが
要求される。
For these reasons, in the case of a one-component toner containing ferromagnetic fine powder that is electrostatically transferred onto plain paper, it is insufficient to simply limit the specific resistance, and it is preferable to also specify the potential attenuation rate. is required to be less than 50% from Table 2.

絶縁性にして強磁性であり、相互摩擦によつて現像を行
なうトナー粒子における電位減衰率の少ない作成法はま
ず強磁性微粉末の含有量を少なくすることである。
A method for producing toner particles which are insulating and ferromagnetic and develop by mutual friction with a low potential attenuation rate is first to reduce the content of ferromagnetic fine powder.

しかしかかる絶縁性一成分現像ではバイアス電圧の印加
が困難であるためにそれに代わつて磁力によるバイアス
を印加しているため、すなわち電荷に働らく静電潜像の
力に対向してトナー粒子内の強磁性粉末に磁場を働らか
せているため、必要量以下に強磁性微粉末を減少させる
ことはできないことには注意を要しよう。また樹脂40
重量部に対して強磁性微粉末の量を同じ60重量部とし
ても樹脂の選び方、溶剤の選定によつて電位減衰率を少
なくすることができる。すなわち強磁性微粉末との関係
において被覆度に富んだものを選べばよい。また荷電制
御剤を用いる場合においても、染料を用いるよい高分子
荷電制御剤を用いた方が良好である。また製法によつて
も電位減衰率の少ないものを作成することができる。
However, in such insulating one-component development, it is difficult to apply a bias voltage, so a magnetic bias is applied instead. It should be noted that since a magnetic field is applied to the ferromagnetic powder, it is not possible to reduce the amount of ferromagnetic fine powder below the required amount. Also resin 40
Even if the amount of ferromagnetic fine powder is the same 60 parts by weight, the potential attenuation rate can be reduced by selecting the resin and solvent. That is, it is sufficient to select a material that has a high degree of coverage in relation to the ferromagnetic fine powder. Further, even when a charge control agent is used, it is better to use a good polymeric charge control agent using a dye. Also, depending on the manufacturing method, it is possible to create a product with a low potential decay rate.

これらのことがらについては実施例をもつて後記する。
当初われわれが試作したトナーは、相互摩擦による現像
は良好であつたが、転写時に惚けるものが多かつた。
These matters will be described later with examples.
The toner we initially produced as a prototype showed good development due to mutual friction, but there were many problems during transfer.

まずそれらの例を若干示めす。をトルエン70部、アセ
トン30部の混合溶剤中に溶解分散させ、固形分量60
%にして磁性ボールミル中で32時間分散後、上記混合
溶剤を更に添加して固型分量20%に調製し、回転円板
型の3噴霧乾燥法により造粒した。かくして得られた平
均粒径約10μの黒色トナー粒子を、実施例1で後記す
る装置にて現像、および転写を行なつたところ感光板上
に現像された像はきわめて良好な階調像であつたものの
転写像では大きな惚けを生じた。このトナーの電位減衰
率は75.6%であつた。例2を例1と同様の製法にて
作製し平均10μのトナーを得た。
First, I will show some examples of them. was dissolved and dispersed in a mixed solvent of 70 parts of toluene and 30 parts of acetone, and the solid content was 60 parts.
After dispersing in a magnetic ball mill for 32 hours, the above mixed solvent was further added to adjust the solid content to 20%, and the mixture was granulated by a rotating disk type 3 spray drying method. The thus obtained black toner particles having an average particle diameter of about 10 μm were developed and transferred using the apparatus described later in Example 1, and the image developed on the photosensitive plate was an extremely good gradation image. However, there was a big disappointment in the transferred image. The potential decay rate of this toner was 75.6%. Example 2 was produced using the same manufacturing method as Example 1, and a toner having an average size of 10 μm was obtained.

現像は良好な階調像であつたものの転写像には惚けを生
じた。このトナーの電位減衰率は52%であつた。以下
第1図および転写工程までをも含む本発明に係る画像形
成装置が示される第3図を基として実施例を述べる。
Although the developed image had good gradation, the transferred image was not good. The potential decay rate of this toner was 52%. Embodiments will be described below with reference to FIG. 1 and FIG. 3, which shows an image forming apparatus according to the present invention including a transfer process.

実施例 1 を例1,2同様、トルエン70部、アセトン30部の混
合溶剤中に溶解、分散させ固形分量60重量?にして磁
性ボールミル中で32時間分散後、上記混合溶剤を更に
添加して、固形分量20重量%にし、回転円板型の噴霧
乾燥法で造粒した。
Similar to Examples 1 and 2, Example 1 was dissolved and dispersed in a mixed solvent of 70 parts of toluene and 30 parts of acetone, and the solid content was 60 parts by weight. After dispersing in a magnetic ball mill for 32 hours, the above mixed solvent was further added to make the solid content 20% by weight, and the mixture was granulated by a rotating disk spray drying method.

得られた平均粒径約10μ、最大最小巾3μ〜30μの
トナー粒子に流動性向上のため助剤としてシリカ(アエ
ロジル200日本アエロジル社)を0.3重量%添加し
て第1図のホツパ一1内に装着し、黄銅製のスリーブ3
を回転させて、固定磁石2の磁力でトナーをスリーブ3
上に保持しつつホツパ一1から引き出した。スリーブ上
のトナー5の厚みは1mmとした。スリーブ3とホツパ
一1の下端9との間隙を定めることでトナー厚は決めら
れる。現像用固定磁石6のスリーブ3上における磁束密
度を900ガウスとし、現像部における感光体8とスリ
ーブ3の間隙を1.4關に定めた。第3図においてこの
現像器は記号10で示めされている。第3図の装置にお
いてはドラム11,12上にベルト13が張設されてお
り、ベルト上に酸化亜鉛感光体14が設置されている。
帯電器15と光学スリツト15′を矢印16の方向に移
動して最高電位350Vの静電潜像を作成したのち、ド
ラム11を矢印16aの方向に、スリーブ3を矢印4の
方向に回転させて現像を行なつた。一方転写紙受皿17
上に普通紙18を装着し酸化亜鉛感光体14の運動にタ
イミングを合わせて給紙ローラ19,20を回転させ、
給紙案内板21に沿わせて普通紙18を給送し、転写電
極22上でコロナ放電によつて感光体14との密着を計
りトナーの転写を行なつた。その後普通紙18を分離ヘ
ツド23で分離し、定着器24で熱定着して最終像を得
た。得られた像は階調像にしてかつ惚けのないものであ
つた。上記トナーの電位減衰率は5.2%である。
To the obtained toner particles having an average particle size of about 10 μm and a maximum and minimum width of 3 μm to 30 μm, 0.3% by weight of silica (Aerosil 200 Nippon Aerosil Co., Ltd.) was added as an auxiliary agent to improve fluidity, and the hopper shown in FIG. 1 and a brass sleeve 3
Rotate the toner to the sleeve 3 using the magnetic force of the fixed magnet 2.
While holding it on top, I pulled it out of the hopper. The thickness of the toner 5 on the sleeve was 1 mm. The toner thickness is determined by determining the gap between the sleeve 3 and the lower end 9 of the hopper 1. The magnetic flux density of the fixed developing magnet 6 on the sleeve 3 was set to 900 Gauss, and the gap between the photoreceptor 8 and the sleeve 3 in the developing section was set to 1.4 degrees. This developing device is designated by the symbol 10 in FIG. In the apparatus shown in FIG. 3, a belt 13 is stretched over drums 11 and 12, and a zinc oxide photoreceptor 14 is placed on the belt.
After moving the charger 15 and the optical slit 15' in the direction of arrow 16 to create an electrostatic latent image with a maximum potential of 350 V, the drum 11 is rotated in the direction of arrow 16a and the sleeve 3 is rotated in the direction of arrow 4. I developed it. On the other hand, transfer paper tray 17
Plain paper 18 is placed on top, and paper feed rollers 19 and 20 are rotated in synchronization with the movement of the zinc oxide photoreceptor 14.
Plain paper 18 was fed along the paper feed guide plate 21, and toner was transferred on the transfer electrode 22 by corona discharge to ensure close contact with the photoreceptor 14. Thereafter, the plain paper 18 was separated by a separating head 23 and thermally fixed by a fixing device 24 to obtain a final image. The image obtained was a gradation image with no imperfections. The potential decay rate of the above toner is 5.2%.

尚本実施例において転写器を静電転写ローラに変換する
ことは可能である。実施例 2 は実施例1と同様にして溶剤を変更した。
In this embodiment, it is possible to convert the transfer device to an electrostatic transfer roller. Example 2 was the same as Example 1 except that the solvent was changed.

1エチルアルコール10部/ジクロロエタン90部と2
メチルセルソルブ10部/酢酸エチル90部の二種の混
合溶剤についてそれぞれ行なつた。
1 10 parts ethyl alcohol/90 parts dichloroethane and 2
The test was carried out using two mixed solvents of 10 parts of methylcellosolve/90 parts of ethyl acetate.

製造条件は、実施例1と同様である。得られた平均10
μ径のトナーにシリカ0.3重量%(アニロジル200
日本アエロジル社製)添加し電位減衰率を測定したとこ
ろ、前者の溶剤の場合が1.0?、後者では19.6%
であつた。これらトナーを用い前記実施例1の装置にて
作像したところ鮮鋭な転写像を得られた。
The manufacturing conditions are the same as in Example 1. Obtained average 10
0.3% by weight of silica (anilosil 200
(manufactured by Nippon Aerosil Co., Ltd.) and measured the potential decay rate, it was 1.0 in the case of the former solvent. , 19.6% for the latter
It was hot. When images were formed using these toners using the apparatus of Example 1, sharp transferred images were obtained.

実施例 3 (−ノNl4lこr1よ七【N; 溶剤はトルエン70部/アセトン30部の混合溶剤を用
いて実施例1と同様に造粒した。
Example 3 (-NONl4lCor1yo7 [N; Particles were granulated in the same manner as in Example 1 using a mixed solvent of 70 parts of toluene/30 parts of acetone as the solvent.

これは例2において荷電制御剤として染料であるニグロ
シンSSB2部を用いていたのに代えて、高分子荷電制
御剤として上記共重合体を用いたものに他ならない。本
実施例の電位減衰率は4.4%であつた。勿論現像では
良好な階調像が得られ、普通紙上の転写像も鮮鋭であつ
た。尚本実施例においては染料を高分子荷電制御剤に変
更したことから期待される単純な効果にとどまらず、ス
チレン(90モル%)/ジメチルアミノエチルメタクリ
レート(10モル%)共重合体が工ホン1004との関
係において磁性粉末の被覆度を向上させる働らきをもつ
様子がうかがわれた。実施例4に一例を挙げる他は特に
例記はしないが少しづつ条件を変えて行なつたどの実施
例においても電位減衰率は少ない結果を示めした。実施
例 4 前記実施例3にカーボンブラツク(MA−100)を2
部加えた。
This is nothing but a case in which the above-mentioned copolymer was used as a polymer charge control agent in place of 2 parts of nigrosine SSB, which is a dye, as the charge control agent in Example 2. The potential attenuation rate in this example was 4.4%. Of course, a good gradation image was obtained during development, and the transferred image on plain paper was also sharp. In addition, in this example, the dye was changed to a polymeric charge control agent, and in addition to the simple effects expected, the styrene (90 mol%)/dimethylaminoethyl methacrylate (10 mol%) copolymer was used as a polymeric charge control agent. In relation to 1004, it was seen that it had the effect of improving the degree of coverage of the magnetic powder. Although no particular example will be given except for one example in Example 4, all of the Examples in which the conditions were changed little by little showed results in which the potential attenuation rate was small. Example 4 Two carbon blacks (MA-100) were added to Example 3.
Added part.

その他は実施例3と全く同様である。得られたトナーは
黒色が増したが、電位減衰率は17.4%にとどまり、
カーボンを加えた割には電位減衰率の増加は少なかつた
。実施例 5 :工; ′IJ▲′● V@ ↓
u卜1J
を加圧二ーダ一で充分に混融練肉した。
The rest is exactly the same as in Example 3. Although the obtained toner had an increased black color, the potential decay rate remained at 17.4%.
Despite the addition of carbon, the increase in potential decay rate was small. Example 5: Engineering; 'IJ▲'● V@↓
u 1J
The mixture was thoroughly kneaded in a pressurized kneader.

これを冷却後粗粉砕し、さらにジニットミルにより微粉
砕した。次にスプレードライヤー中へ、エアージエツト
ノズルを用いて前記粉砕トナーを吹き込み、250℃の
熱風で瞬間的に処理し、トナーを作成した。
After cooling, this was coarsely pulverized and further finely pulverized using a dinit mill. Next, the pulverized toner was blown into a spray dryer using an air jet nozzle and instantaneously treated with hot air at 250° C. to produce a toner.

これらのトナーをジグザグ分級機にて平均10μに分級
した。これに流動性助剤としてシリカ(R−972日本
アエロジル社製)を0.2%重量部添加して実施例1の
装置にて現像転写したところ惚けのない階調像を得た。
このトナーの電位減衰率は36%であつた。実施例 6 製法は実施例5と同様に行なつた。
These toners were classified into particles of 10 μm on average using a zigzag classifier. To this was added 0.2% by weight of silica (R-972 manufactured by Nippon Aerosil Co., Ltd.) as a fluidity aid, and when the image was developed and transferred using the apparatus of Example 1, a uniform gradation image was obtained.
The potential decay rate of this toner was 36%. Example 6 The manufacturing method was the same as in Example 5.

得られた平均粒径10μのトナーにシリカ(R972日
本アエロジル社製)を0.2重量%添加して実施例1の
装置にて現像転写したところ、鮮鋭な階調像を得た。電
位減衰率は23%であつた。実施例 7 をペンシルミキサーで粉砕、分散を行ない加熱された二
本のロール上で充分に混融練肉した。
When 0.2% by weight of silica (R972 manufactured by Nippon Aerosil Co., Ltd.) was added to the obtained toner having an average particle size of 10 μm and the toner was developed and transferred using the apparatus of Example 1, a sharp gradation image was obtained. The potential decay rate was 23%. Example 7 was pulverized and dispersed using a pencil mixer, and thoroughly kneaded on two heated rolls.

これを冷却後粗粉砕しさらにハンマーミルにより微粉砕
した。次にスプレードライヤー内にエアージエツトノズ
ルを用いて前記トナーを呼き込み270℃の温度の熱風
で瞬間時に処理した。さらにジグザグ分級機を用いて平
均粒径約10μのトナーを得た。またシリカ(R−97
2日本アエロジル社製)を0.1重量%添加して前記実
施例同様に普通紙上に転写像を得ることが出来た。
After cooling, this was coarsely pulverized and further finely pulverized using a hammer mill. Next, the toner was introduced into a spray dryer using an air jet nozzle and instantly treated with hot air at a temperature of 270°C. Further, a zigzag classifier was used to obtain a toner having an average particle size of about 10 μm. Also, silica (R-97
2 (manufactured by Nippon Aerosil Co., Ltd.) in an amount of 0.1% by weight, it was possible to obtain a transferred image on plain paper in the same manner as in the above example.

画像は鮮鋭な階調像であり、電位減衰率は4%であつた
。実施例 8 を予備混合することなく、直接加圧二ーダ一を用いて混
融練肉した。
The image was a sharp gradation image, and the potential attenuation rate was 4%. Example 8 was directly mixed and kneaded using a pressurized kneader without premixing.

次いでこれを冷却粉砕し、スプレードライヤー内へエア
ージエツトノズルで呼き込み250℃の熱風で球形化し
た。さらにジグザグ分級機によつて平均粒径10μのト
ナーを得たのち、流動性助剤としてシリカ(R−972
日本アエロジル社製)を0.2重量%添加して、前記実
施例と同様に現像と転写を行なつたところ鮮鋭な階調像
を得た。電位減衰率を測定したところほぼ零であつた。
付言するならば、電位減衰率を零にしたのは電位減衰率
の測定法による電位の減衰が零の意味であり、強磁性粉
が完全に被覆されきつたこととは異なる。本実施例のト
ナーにおいても当初述べた相互摩擦の確認実験法によつ
て相互摩擦が確認された。実施例 9 を直接加甲二ーダ一で混練し、粉砕後スプレードライヤ
ー内へエアージエツトノズルで吹き込み、180℃の熱
風で加熱球形化した。
Next, this was cooled and pulverized, introduced into a spray dryer through an air jet nozzle, and spheroidized with hot air at 250°C. Furthermore, after obtaining a toner with an average particle size of 10μ using a zigzag classifier, silica (R-972) was used as a fluidity aid.
When 0.2% by weight of Nippon Aerosil (manufactured by Nippon Aerosil Co., Ltd.) was added and development and transfer were performed in the same manner as in the above example, a sharp gradation image was obtained. When the potential decay rate was measured, it was found to be almost zero.
In addition, setting the potential attenuation rate to zero means that the potential attenuation is zero according to the method of measuring the potential attenuation rate, and is different from the fact that the ferromagnetic powder is completely covered. Mutual friction was also confirmed in the toner of this example by the experimental method for confirming mutual friction described above. Example 9 was kneaded directly in a kneader, pulverized, blown into a spray dryer with an air jet nozzle, and heated with hot air at 180°C to form spheres.

次いでシリカ(M−5ギアポット社製)を0.7%添加
し、ジグザグ分級機にて最小最大4μ〜30μ平均10
μのトナーを得た。次いで第3図の装置にて現像、転写
を行なつた。
Next, 0.7% of silica (manufactured by M-5 Gear Pot Co., Ltd.) was added, and a zigzag classifier was used to obtain a particle size of 4μ to 30μ on average.
A toner of μ was obtained. Next, development and transfer were performed using the apparatus shown in FIG.

ただし感光体14は酸化亜鋭感光体に代えてSVPVK
複合感光体を用いた。また帯電器15はグリツドを張設
したスコロトロンを用い、感光体の帯電々位を調整した
。また、現像器のスリーブ3とドラム16に沿つて通過
するSe//PVK感光体との間隙を1.25龍に変更
し、かつ主磁石の位置を酸化亜鉛感光体の場合に比し、
スリーブ3の回転方向へ少し傾むけて設定した。他は酸
化亜鉛感光体の場合の実施例と同様である。これらの条
件下で得られた現像像は相互摩擦の特徴が強く発揮され
て潜像面積外部周縁の逆電場発生部にもトナーが少し付
着し秀れぬ像であつた。Se/PVK層にはマイナス帯
電を行なつた故潜像部に付着したトナーは正極性であり
、外部周縁に付着したトナーは負極性である。次いでこ
の像は転写器22(マイナス放電)によつて普通紙上に
転写されたが、転写においては正像の正極トナーのみ転
写されたため、秀れた階調像が得られた。また転写惚け
に対する鮮鋭度はきわめて良好であつた。このトナーの
電位減衰率は1.9であつた。以上述べて来た如く本発
明の画像形成法は相互摩擦現像を行ない得る強磁性微粉
末を含む絶縁性にして電位減衰率が50%以下のトナー
を用いて相互摩擦による一成分現像および普通紙上への
静電転写を行なうため、一成分現像の利点を有しながら
かつ普通紙上へ鮮鋭な像を作成するものである。
However, the photoreceptor 14 is SVPVK instead of an oxidized sub-sharp photoreceptor.
A composite photoreceptor was used. A scorotron equipped with a grid was used as the charger 15 to adjust the charging level of the photoreceptor. In addition, the gap between the sleeve 3 of the developing device and the Se//PVK photoreceptor passing along the drum 16 was changed to 1.25 mm, and the position of the main magnet was compared to that of the zinc oxide photoreceptor.
The sleeve 3 is set to be slightly tilted in the direction of rotation. The rest is the same as the example for the zinc oxide photoreceptor. The developed image obtained under these conditions exhibited strong characteristics of mutual friction, and a small amount of toner adhered to the reverse electric field generation area at the outer periphery of the latent image area, resulting in an unsatisfactory image. Since the Se/PVK layer is negatively charged, the toner adhering to the latent image area has positive polarity, and the toner adhering to the outer periphery has negative polarity. This image was then transferred onto plain paper by the transfer device 22 (minus discharge), but since only the positive toner of the positive image was transferred during the transfer, an excellent gradation image was obtained. Furthermore, the sharpness against transfer blur was extremely good. The potential decay rate of this toner was 1.9. As described above, the image forming method of the present invention uses an insulating toner containing ferromagnetic fine powder capable of mutual friction development and a potential attenuation rate of 50% or less. Because it performs electrostatic transfer onto plain paper, it has the advantages of one-component development and creates sharp images on plain paper.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は現像装
置の正面図、第2図はトナー層電位と時間の関係を示す
曲線図、第3図は複写装置の正面図である。 1はホツパ一、2は固定磁石、3はスリーブ、5はトナ
ー、6は現像用固定磁石、8は感光体、10は現像装置
、11,12はドラム、14は酸化亜鉛感光体、15は
帯電器、15′は光学スリツト、18は転写紙、19,
20は給紙ローラ、22は転写電極、23は分離ヘツド
、24は定着器。
The drawings show one embodiment of the present invention; FIG. 1 is a front view of a developing device, FIG. 2 is a curve diagram showing the relationship between toner layer potential and time, and FIG. 3 is a front view of a copying device. . 1 is a hopper, 2 is a fixed magnet, 3 is a sleeve, 5 is a toner, 6 is a fixed developing magnet, 8 is a photoreceptor, 10 is a developing device, 11 and 12 are drums, 14 is a zinc oxide photoreceptor, and 15 is Charger, 15' optical slit, 18 transfer paper, 19,
20 is a paper feed roller, 22 is a transfer electrode, 23 is a separation head, and 24 is a fixing device.

Claims (1)

【特許請求の範囲】 1 トナー粒子相互の摩擦によつて支配的に荷電し得、
正・負両極性のトナー粒子を形成しうるように、強磁性
微粉末を含有するトナーを主要成分とする比抵抗10^
1^4Ω・cm以上の絶縁性一成分現像剤であり、かつ
下記測定法a、酸化亜鉛感光体上にトナー層を形成した
後、該トナー層を形成するために使用された前記感光体
上の潜像をほぼ消去しうる第1の光照射を与えるととも
に、b、該光遮断に伴う暗減衰状態直後(t_1)およ
びそれから1分後の暗減衰の終了時における前記トナー
層の電位AおよびBと、引き続く第2の光照射による明
減衰の初期に得られるトナー層のピーク電位Cとから、
前記トナー層の初期電位値V_1を求め、c、前記暗減
衰状態直後の測定開始時(t_1)から3分後であつて
、第2の光照射による明減衰状態でのトナー層の電位値
V_2を得、d、関連式 (V_1−V_2/V_1)×100% に代入したとき、その値が50%以下となる電位減衰率
を有する現像剤を、磁石を利用して搬送部材上に吸着せ
しめるとともに、該磁石と搬送部材との相対的回転を介
して現像部に導き、静電潜像支持部材上の静電潜像を現
像してトナー像を形成し、その後、前記トナー像を静電
転写手段により順次記録紙上に転写することを特徴とす
る画像形成方法。
[Claims] 1. Toner particles can be charged predominantly by friction between them,
Toner particles containing ferromagnetic fine powder as the main component have a specific resistance of 10^ so that toner particles with both positive and negative polarities can be formed.
It is an insulating one-component developer with a resistance of 1^4 Ω・cm or more, and is measured using the following measurement method a, after forming a toner layer on a zinc oxide photoreceptor, on the photoreceptor used to form the toner layer. while applying a first light irradiation capable of substantially erasing the latent image of the toner layer, b) the potential A of the toner layer immediately after the dark decay state (t_1) due to the light interruption and at the end of the dark decay one minute later; From B and the peak potential C of the toner layer obtained at the initial stage of bright decay due to the subsequent second light irradiation,
The initial potential value V_1 of the toner layer is determined, c, the potential value V_2 of the toner layer in the light decay state due to the second light irradiation, which is 3 minutes after the start of measurement (t_1) immediately after the dark decay state. , d, and the related formula (V_1-V_2/V_1) x 100% A developer having a potential decay rate whose value is 50% or less is attracted onto the conveying member using a magnet. At the same time, the magnet is guided to the developing section through relative rotation between the magnet and the conveying member, and the electrostatic latent image on the electrostatic latent image support member is developed to form a toner image, and then the toner image is electrostatically An image forming method characterized by sequentially transferring onto recording paper by a transfer means.
JP51023600A 1976-03-03 1976-03-03 Image forming method Expired JPS5944627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51023600A JPS5944627B2 (en) 1976-03-03 1976-03-03 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51023600A JPS5944627B2 (en) 1976-03-03 1976-03-03 Image forming method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP16419980A Division JPS56158341A (en) 1980-11-21 1980-11-21 Developer
JP60176533A Division JPS6143756A (en) 1985-08-09 1985-08-09 Electrostatic latent image developer

Publications (2)

Publication Number Publication Date
JPS52106734A JPS52106734A (en) 1977-09-07
JPS5944627B2 true JPS5944627B2 (en) 1984-10-31

Family

ID=12115082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51023600A Expired JPS5944627B2 (en) 1976-03-03 1976-03-03 Image forming method

Country Status (1)

Country Link
JP (1) JPS5944627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619142U (en) * 1984-06-19 1986-01-20 三住商事株式会社 Side pin stopper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570850A (en) * 1978-11-22 1980-05-28 Konishiroku Photo Ind Co Ltd One-component developer for electrophotography and image forming method by using said developer
JPS56125776A (en) * 1980-03-08 1981-10-02 Mita Ind Co Ltd Developing device of electrostatic latent image
JPS5792341A (en) * 1980-11-29 1982-06-08 Toshiba Corp Fur brush developing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619142U (en) * 1984-06-19 1986-01-20 三住商事株式会社 Side pin stopper

Also Published As

Publication number Publication date
JPS52106734A (en) 1977-09-07

Similar Documents

Publication Publication Date Title
US4540646A (en) Method of developing an electrostatic latent image
US4606990A (en) Method for forming a thin layer of developer
JPS6342257B2 (en)
US4336318A (en) Electrostatic image developing method
KR900005259B1 (en) Particles developing magneto brush in electrography
JPS5944627B2 (en) Image forming method
JP2858005B2 (en) Development method
JP4016440B2 (en) Electrophotographic equipment
US4335196A (en) Electrostatic image developing and transfer method uses single component magnetic developer
GB2149322A (en) Developing electrostatic latent images
US3518969A (en) Development apparatus
US4259427A (en) Image-forming developer
US4599292A (en) Method and device of developing an electrostatic latent image
JPH0257302B2 (en)
JP2510156B2 (en) Reverse development method
JPH0827555B2 (en) Development method
JPS6199158A (en) Electrophotographic binary developer and method of development using it
JP2000056498A (en) Electrostatic developer and full-color electrostatic developing method
JP2862013B2 (en) Two-component magnetic brush development method
JPH02151884A (en) Developing device
JPS6045271A (en) Nonmagnetic one component developing device
JPS6087347A (en) Developing method
JPH0473788B2 (en)
JP2825223B2 (en) Non-magnetic one-component toner and developing method
JPS60113248A (en) Development method