JPS5944395B2 - Electrodeposition processing method - Google Patents

Electrodeposition processing method

Info

Publication number
JPS5944395B2
JPS5944395B2 JP56003236A JP323681A JPS5944395B2 JP S5944395 B2 JPS5944395 B2 JP S5944395B2 JP 56003236 A JP56003236 A JP 56003236A JP 323681 A JP323681 A JP 323681A JP S5944395 B2 JPS5944395 B2 JP S5944395B2
Authority
JP
Japan
Prior art keywords
model
electrode
anode electrode
deep hole
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56003236A
Other languages
Japanese (ja)
Other versions
JPS57116796A (en
Inventor
潔 井上
誠 尾上
徳義 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP56003236A priority Critical patent/JPS5944395B2/en
Priority to IT47557/82A priority patent/IT1154260B/en
Priority to FR8200467A priority patent/FR2497835B1/en
Priority to DE19823200948 priority patent/DE3200948A1/en
Priority to GB8201022A priority patent/GB2094345B/en
Publication of JPS57116796A publication Critical patent/JPS57116796A/en
Publication of JPS5944395B2 publication Critical patent/JPS5944395B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes

Description

【発明の詳細な説明】 電気メッキや電鋳加工によつて電着被膜を形成させる場
合、金属被膜を各部均一になるべく同じ厚さに形成させ
ることが必要である。
DETAILED DESCRIPTION OF THE INVENTION When forming an electrodeposited film by electroplating or electroforming, it is necessary to form the metal film uniformly to the same thickness as possible in each part.

しかし、電着させるモデル表面(通常は陰極表面)の形
状によつては電位分布を均等にすることが困難であるた
め、電着しやすい部位と電着しにくい部位とが生じ、電
着しやすい部位に金属被膜が形成されると電位分布の不
均等が更に増大され、電着被膜が集中的に形成される部
分と、ほとんど形成されない部分とが存在するようにな
る。この問題を解決するために、従来から、モデル(陰
極母型)表面形状に応じて複数の陽極電極を形状毎に分
散配置したり、補助電極を設けたりする他、加工液(電
解液)の供給方法を工夫したり遮蔽板を設けたりするこ
とによつて、電位分布の均等化を図つたり電気二重層の
厚みに変化をもたせるようにするなどの技術的な改善が
行なわれてきた。しかしながら、モデルの表面形状によ
つては、未だ各部均一な電着被膜を形成させることは困
難であり、特に、モデル表面に入口が狭く奥行が深いよ
うな深溝あるいは深孔形状が存在する場合、該深溝ある
いは深孔最深底部の角部、特に900前後以下の鋭角角
部には電着被膜を形成させにくい問題点があつた。
However, because it is difficult to make the potential distribution uniform depending on the shape of the model surface to be electrodeposited (usually the cathode surface), there are areas that are easy to electrodeposit and areas that are difficult to electrodeposit. If a metal film is formed in a region where it is easy to form, the unevenness of the potential distribution will further increase, and there will be parts where the electrodeposited film is intensively formed and other parts where it is hardly formed. In order to solve this problem, conventional methods have been to distribute multiple anode electrodes according to the surface shape of the model (cathode matrix), to provide auxiliary electrodes, and to reduce the amount of processing fluid (electrolyte). Technological improvements have been made such as equalizing the potential distribution and varying the thickness of the electric double layer by devising supply methods and installing shielding plates. However, depending on the surface shape of the model, it is still difficult to form a uniform electrodeposited film on each part, especially when there are deep grooves or holes with narrow entrances and deep holes on the model surface. There was a problem in that it was difficult to form an electrodeposited film on the corners of the deepest bottoms of the deep grooves or deep holes, especially on the acute angles of about 900 mm or less.

本発明は、このようなモデル表面の形状に起因する電着
被膜不形成の問題(形状効果)を解決し、モデル表面に
各部均一な電着被膜を形成させることを目的として提案
されるものであり、電着被膜を形成させるモデル表面の
所望部分に対応する形状からなると共に少なくとも表面
部位に砥粒を有する電極をモデル表面の前記所望部分に
間歇的に接触させながら電着加工することを特徴とする
ものである。
The present invention is proposed with the aim of solving the problem of non-formation of electrodeposited film (shape effect) caused by the shape of the model surface, and forming a uniform electrodeposited film on each part of the model surface. The method is characterized in that the electrodeposition process is performed while an electrode having a shape corresponding to a desired part of the model surface on which the electrodeposited film is to be formed and having abrasive grains on at least the surface part is intermittently brought into contact with the desired part of the model surface. That is.

本発明方法に於て使用される陽極電極は、例えが、モデ
ル面を型として合成樹脂と砥粒との混合物を該型に充填
し、同時に電極棒又は板状体を、その先端部を前記角部
や角隅部等の電着被膜の形成が困難な部位に近接、かつ
好ましくは指向させた状態に前記混合物中に挿入して、
加熱状態または室温にて一体化した後、型より取り出し
て作製される。
The anode electrode used in the method of the present invention can be prepared by, for example, using a model surface as a mold and filling the mold with a mixture of synthetic resin and abrasive grains, and at the same time inserting an electrode rod or a plate-shaped body with its tip end above the surface. Inserting into the mixture close to and preferably oriented to areas where it is difficult to form an electrodeposited film such as corners and corners,
After being integrated in a heated state or at room temperature, it is produced by being removed from the mold.

第1図は、陽極電極作製の具体的な例として、V字形状
の深孔に対応する陽極の作製状態を示す断面図であり、
1は型で通常モデルが用いられ、2は該型1の深孔形状
部分を示し、3は合成樹脂、4は砥粒で、両者の混合物
が深孔形状部分2に充填され、更に電極棒又は板状体5
を電着被膜の形成が最も困難な表面部位zに近接させか
つ好ましくは該部位zに指向させて前記混合物中に挿入
した状態で該混合物を固化した後、深孔形状部分2から
取り出して陽極電極6が作製される。この場合、電極棒
または板状体5は前述の如くその先端が電着被膜の形成
されにくい深孔底部の角部zに対向すると共に、直接モ
デル(型)1に接触しないように、モデル1表面からい
くらか離隔した位置に配置されるように電極6中に固定
される。従つて、型から取り出された陽極電極6の電極
棒または板状体5の先端部は樹脂や砥粒で覆われている
可能があり、その場合は樹脂や砥粒を除去し電極棒5の
先端部を露出させて通電可能とする。電極棒5としては
、直径0.1〜1mm程度の金属棒や同一程度の厚さで
所望幅の金属板の他、グラフアイト等の非金属物質を用
いることもでき、金属電極の場合は銅やチタンに白金メ
ツキをしたものや、フエライト系金属のように電解によ
つて溶解しない不溶性電極の他に、電着さすべき物質か
らなる可溶性電極を使用しても良い。
FIG. 1 is a cross-sectional view showing a state of manufacturing an anode corresponding to a V-shaped deep hole as a specific example of manufacturing an anode electrode.
1 is a mold and a normal model is used, 2 is a deep hole shaped part of the mold 1, 3 is a synthetic resin, 4 is abrasive grains, a mixture of both is filled in the deep hole shaped part 2, and an electrode rod Or plate-shaped body 5
is inserted into the mixture in close proximity to and preferably oriented towards the surface region z where it is most difficult to form an electrodeposited film, and after the mixture has solidified, it is removed from the deep hole-shaped portion 2 and inserted into the anode. Electrode 6 is produced. In this case, as described above, the tip of the electrode rod or plate-shaped body 5 faces the corner z of the bottom of the deep hole where an electrodeposited film is difficult to form, and the electrode rod or plate-like body 5 is placed in the model 1 so as not to directly contact the model (mold) 1. It is fixed in the electrode 6 so that it is located at some distance from the surface. Therefore, the tip of the electrode rod or plate-shaped body 5 of the anode electrode 6 taken out from the mold may be covered with resin or abrasive grains, in which case the resin or abrasive grains are removed and the electrode rod 5 is The tip is exposed so that electricity can be applied. As the electrode rod 5, in addition to a metal rod with a diameter of about 0.1 to 1 mm, a metal plate with the same thickness and a desired width, non-metallic substances such as graphite can also be used, and in the case of metal electrodes, copper In addition to insoluble electrodes that do not dissolve by electrolysis, such as titanium plated with platinum or ferrite metals, soluble electrodes made of a material to be electrodeposited may also be used.

混入砥粒としては、絶縁性のものが望ましく、SlC,
B4C,AbO3等の直径0,01〜0.3露m程度の
砥粒が用いられ、中でも直径0.1mU程度のものが好
ましい。結合成形樹脂としては、エポキシ系やフエノー
ル系のものが用いられ、電解液に対して化学的に安定で
あることが必要である。砥粒と樹脂との混合比は、砥粒
に対して重量比で5〜4001)程度の樹脂を混合する
のが好ましく、5%より少ないと機械的強度が不充分と
なり、40%より多いと砥粒の分散密度が不充分となる
。1例として、直径0.1WLm程度のSiCの砥粒に
対してフエノール系樹脂を重量比で20%混合し、12
00にて熱固化したものが良好な試験結果をもたらして
おり、0.1A/Cflt以上の平均電流密度で加工す
ることが可能である。
The mixed abrasive grains are preferably insulating ones, such as SlC,
Abrasive grains such as B4C and AbO3 with a diameter of about 0.01 to 0.3 mU are used, and among them, those with a diameter of about 0.1 mU are preferred. Epoxy or phenol resins are used as the bonding molding resin, and must be chemically stable to the electrolyte. As for the mixing ratio of abrasive grains and resin, it is preferable to mix the resin in a weight ratio of about 5 to 4001) to the abrasive grains.If it is less than 5%, the mechanical strength will be insufficient, and if it is more than 40%, the resin will be mixed. The dispersion density of abrasive grains becomes insufficient. As an example, 20% by weight of phenolic resin is mixed with SiC abrasive grains with a diameter of about 0.1 WLm, and 12
Those thermally solidified at 0.00% yielded good test results and can be processed at an average current density of 0.1 A/Cflt or higher.

フエノール系樹脂は約5000℃にて分散するので、S
iC等の砥粒や挿入電極を再利用することができる。陽
極電極を構成する砥粒と樹脂との混合体からなる砥石は
、該砥石表面の砥粒による研削効果を向上させるために
多孔質とすることが望ましく、多孔質に作製すれば、砥
石内部の液の流通が可能となり、深孔形状の最深部にま
で加工液(電解液)を容易に供給することができる。モ
デル最深部への加工液の供給手段としては、砥石全体を
多孔質とする他、砥石内に、最深部に開口する液供給管
を挿入しても良く、この場合、挿入電極棒5を管状とす
ることによつて該電極棒5を液供給管として兼用するよ
うにしても良い。しかし、本発明は、陽極電極をモデル
表面の深孔形状部分に間歇的に接触させながら電着加工
するものであり、陽極電極はレジプロ、振動、又は回転
等の運動をしながら加工面に対して接触と離隔を繰返す
ものであるから、この繰返される接触と離隔運動の際に
最深部への新たな加工液の供給作用が行なわれるため、
砥石内部を流通させることによる最深部への加工液の供
給手段は必ずしも必要としない。次に、以上述べた如き
陽極電極を用いた本発明方法の1実施例を図面の第2図
に基いて説明する。
Since phenolic resin is dispersed at about 5000℃, S
Abrasive grains such as iC and inserted electrodes can be reused. The grindstone made of a mixture of abrasive grains and resin that constitutes the anode electrode is preferably porous in order to improve the grinding effect of the abrasive grains on the surface of the grindstone. Liquid circulation is enabled, and the machining liquid (electrolyte) can be easily supplied to the deepest part of the deep hole shape. As a means of supplying machining liquid to the deepest part of the model, in addition to making the entire grinding wheel porous, a liquid supply pipe that opens at the deepest part may be inserted into the grinding wheel. In this case, the inserted electrode rod 5 may be made into a tubular shape. By doing so, the electrode rod 5 may also be used as a liquid supply pipe. However, in the present invention, electrodeposition is performed while the anode electrode is intermittently in contact with the deep hole-shaped portion of the model surface. Since contact and separation are repeated, new machining fluid is supplied to the deepest part during this repeated contact and separation movement.
A means for supplying machining fluid to the deepest part by circulating it inside the grindstone is not necessarily required. Next, one embodiment of the method of the present invention using the above-described anode electrode will be described with reference to FIG. 2 of the drawings.

第2図に於て、7は、電鋳やメツキ加工をすべきモデル
(被加工体)であり、8はモデル7の深孔もしくは深溝
形状部分を示す。9は加工槽であり、内部にモデル7が
固定して収納されている。
In FIG. 2, 7 is a model (workpiece) to be electroformed or plated, and 8 is a deep hole or deep groove shaped portion of the model 7. 9 is a processing tank in which the model 7 is fixedly stored.

10は、加工槽9内に満たされた加工液(電解(代)で
あり、図示しないが必要に応じて加工液の加工槽への循
環供給装置を有する。
Reference numeral 10 denotes a machining fluid (electrolytic fluid) filled in the machining tank 9, and has a circulating supply device for machining fluid to the machining tank as needed, although not shown.

6は、モデル7の深孔形状部分8に対応する形状に作製
された陽極電極で、前記深孔形状部分8に対句する位置
に配置されている。
Reference numeral 6 denotes an anode electrode manufactured in a shape corresponding to the deep hole-shaped portion 8 of the model 7, and is arranged at a position opposite to the deep hole-shaped portion 8.

11は、陽極電極6を固着して支持するシヤンク、12
はカム13の回転によつてレジプロ駆動される軸であり
、シヤンク11と軸12は共に、シリンダ14によつて
その軸方向の移動が自在に構成されている。
11 is a shank that firmly supports the anode electrode 6; 12;
is a shaft driven by the registration process by the rotation of the cam 13, and both the shank 11 and the shaft 12 are configured to be freely movable in the axial direction by a cylinder 14.

15,16はバネであり、バネ15は、シヤンク11を
上方に押上げるように作用し、バネ16は、シヤンク1
1と軸12の間に介在してシヤンク11を下方に押下げ
るように作用する。
15 and 16 are springs, the spring 15 acts to push the shank 11 upward, and the spring 16 acts to push the shank 1 upward.
1 and the shaft 12, and acts to push down the shank 11.

17は、カム13の駆動モータである。17 is a drive motor for the cam 13.

18は、電着加工を行なう電源接続端子であり、一般に
モデル側を陰極、挿入電極5側を陽極に接続するが、陽
極に析出する金属の場合は接続極性を逆にする。
Reference numeral 18 denotes a power supply connection terminal for electrodeposition, and generally the model side is connected to the cathode and the insertion electrode 5 side is connected to the anode, but in the case of metal deposited on the anode, the connection polarity is reversed.

加工電源としては、直流電源の他、パルス電源が利用さ
れる。19は、接続端子18と挿入電極5の接続回路に
直列に介在させて設けた開閉器であり、シヤンク11に
固定して設けられた導電片20によつて接点の開閉動作
が行なわれる。
As a processing power source, a pulse power source is used in addition to a DC power source. Reference numeral 19 denotes a switch interposed in series in the connection circuit between the connection terminal 18 and the insertion electrode 5, and the conductive piece 20 fixed to the shank 11 performs the opening/closing operation of the contact.

以上の構成により、モータ17を駆動してカム13を図
示した位置から右廻りに回転させると、軸12はカム1
3によつて下方に押圧移動され、該押圧力はバネ16を
介してシヤンク11に伝達されることになる。
With the above configuration, when the motor 17 is driven to rotate the cam 13 clockwise from the illustrated position, the shaft 12
3, and the pressing force is transmitted to the shank 11 via the spring 16.

そして、カム13の回転に伴いバネ16による押圧力が
バネ15の力よりも大きくなるとシヤンク11が下方に
押圧移動され、陽極電極6は深孔形状部分8の表面に接
触し更に圧接する。この圧接力は、カム13が図示した
位置から900右回転して軸12が最低位置に移動する
まで増し加わり、カム13が更に回転して軸12がバネ
16に押圧されて上方に移動するのに伴つて減少する。
更にカム13が回転してシヤンク11に対するバネ16
による下方への押圧力よりもバネ15による上方への押
圧力が大きくなると、陽極電極6は上方に移動してモデ
ル表面から離隔する。カム13の回転により、このよう
にして陽極電極6はモデル7の深孔形状部分への接触と
離隔を繰返すことになる。そして、陽極電極6の圧接力
は、バネ15,16の定数を適宜選択することにより任
意に調整され、また砥粒混入樹脂含浸陽極電極6を多孔
質の弾性を有するスポンジ状とすることによつて、圧接
力並びに圧接状態を調整するようにしても良い。但し、
陽極電極6の圧接力が大きすぎると、モデルあるいは被
加工体の表面が研削されてしまうので、そのようなこと
がない程度に圧接力を調整することが必要である。本発
明による電着加工は、このような陽極電極によるモデル
7表面への間歇的な接触圧接を繰返しながら、モデル(
陰極)7と陽極電極6間に加工電流を通電して行なわれ
ることになるが、この実施例では、加工電流の通電は開
閉器19によつて制御されており、陽極電極6が下方に
移動した時、導電片20が開閉器19の接点を閉じて加
工領域への通電が行なわれ、陽極電極6がモデル7表面
から離隔して上方に移動すると導電片20は接点から離
れ、開閉器19は開状態となつて加工領域への通電は行
なわれないことになる。即ち、加工電流の通電は陽極電
極6のレジプロ運動に同期して行なわれ、陽極電極6が
丁方に位置する時のみ通電が行なわれるものである。加
工領域(深孔形状最深部)への加工液(電解液)10の
供給は、陽極電極6のレジプロ運動によるポンプ作用に
よつて行なわれ、深孔最深部には常に新らしい加工液1
0が供給されるが、レジプロ運動によるポンプ作用だけ
では加工液の供給が充分でない場合は、別に加工液噴出
ノズルを設けて加工液を加圧噴射供給するようにしても
良い。そしてこの場合、ノズルからの加工液噴出を陽極
電極6のレジプロ運動と同期させて、陽極電極6が上方
に移動した時、モデル7と電極6との離隔間隙に加工液
を噴出供給するようにしても良い。
Then, as the cam 13 rotates, when the pressing force by the spring 16 becomes greater than the force of the spring 15, the shank 11 is pushed downward, and the anode electrode 6 comes into contact with the surface of the deep hole-shaped portion 8 and is further pressed against it. This pressure contact force increases until the cam 13 rotates 900 degrees clockwise from the illustrated position and the shaft 12 moves to the lowest position.The cam 13 rotates further and the shaft 12 is pressed by the spring 16 and moves upward. decreases with
Further, the cam 13 rotates and the spring 16 against the shank 11
When the upward pressing force by the spring 15 becomes greater than the downward pressing force by the spring 15, the anode electrode 6 moves upward and is separated from the model surface. As the cam 13 rotates, the anode electrode 6 repeatedly comes into contact with and separates from the deep hole-shaped portion of the model 7 in this manner. The pressure contact force of the anode electrode 6 can be arbitrarily adjusted by appropriately selecting the constants of the springs 15 and 16, and by making the abrasive-containing resin-impregnated anode electrode 6 into a porous elastic sponge shape. Accordingly, the pressing force and the pressing state may be adjusted. however,
If the pressing force of the anode electrode 6 is too large, the surface of the model or workpiece will be ground, so it is necessary to adjust the pressing force to such an extent that this will not occur. In the electrodeposition process according to the present invention, the model (
The processing is carried out by passing a machining current between the cathode 7 and the anode 6. In this embodiment, the application of the machining current is controlled by a switch 19, and the anode 6 moves downward. When this occurs, the conductive piece 20 closes the contact of the switch 19 and the processing area is energized, and when the anode electrode 6 moves upward away from the surface of the model 7, the conductive piece 20 separates from the contact and closes the switch 19. is in an open state and no current is applied to the processing area. That is, the machining current is applied in synchronization with the registration motion of the anode electrode 6, and the current is applied only when the anode electrode 6 is positioned on the right side. The machining fluid (electrolyte) 10 is supplied to the machining area (the deepest part of the deep hole shape) by a pumping action caused by the registration motion of the anode electrode 6, and fresh machining fluid 1 is always supplied to the deepest part of the deep hole.
0 is supplied, but if the pumping action by the registering motion is not enough to supply the machining fluid, a machining fluid jetting nozzle may be separately provided to supply the machining fluid by pressurized jetting. In this case, the machining fluid jetted from the nozzle is synchronized with the registration movement of the anode electrode 6, so that when the anode electrode 6 moves upward, the machining fluid is jetted and supplied to the gap between the model 7 and the electrode 6. It's okay.

このような状態に於て電着加工が行なわれると、加工電
流が挿入電極5の先端部と深孔最深底部の角度との間に
集中的に通電されると共に、通常は電着被膜の形成され
やすい深孔側壁面が陽極電極6表面の砥粒の圧接によつ
て常に軽研摩されるため、深孔側壁面への電着による被
膜形成が阻害され、電着しにくい深孔最底部の角部gに
先ず電着被膜が形成されることになる。そして、深孔最
深底部の角部ぎに被膜が形成されると、前記角部はしだ
いに丸みをおびるようになり、凹形状の角部gには電着
しにくいという形状効果もしだいに減少する。前記角部
Wへの被膜形成が進行し、形状効果が充分に除去された
ら、本発明方法による電着加工を中止し、次に、従来か
ら行なわれている方法でモデル表面全面に対して電着加
工を行なうようにする。陽極電極6のレジプロ運動は0
.01〜100サイクル程度が好ましく、振幅は0.1
〜100mm程度とする。
When electrodeposition processing is performed in such a state, the processing current is concentrated between the tip of the insertion electrode 5 and the angle of the deepest bottom of the deep hole, and usually the formation of the electrodeposition film is interrupted. Since the side wall surface of the deep hole, which is easily etched, is constantly lightly polished by the pressure contact of the abrasive grains on the surface of the anode electrode 6, the formation of a film by electrodeposition on the side wall surface of the deep hole is inhibited, and the bottom part of the deep hole, which is difficult to electrodeposit, is An electrodeposited film is first formed on the corner g. When a coating is formed at the corner of the deepest bottom of the deep hole, the corner gradually becomes rounded, and the shape effect that makes electrodeposition difficult to form on the concave corner g gradually decreases. do. When the film formation on the corner W has progressed and the shape effect has been sufficiently removed, the electrodeposition process using the method of the present invention is stopped, and then the entire surface of the model is electrolyzed using a conventional method. Make sure to carry out the dressing process. The registration motion of the anode electrode 6 is 0
.. Approximately 01 to 100 cycles are preferable, and the amplitude is 0.1
~100mm.

実験例によれば、陽極電極6を2.5サイクル、振幅1
0m′ILでレジプロ運動させながら、平均電流密度0
.1A/Crltで電着加工を行ない、0.16W!l
/hの被膜厚形成速度が得られた。陽極電極として多孔
質で通液性のものを使用する場合は、電着被膜の形成を
防止したい部分に対する絶縁処理が必要であり、その場
合挿入電極5表面の先端部を除いた部分を絶縁するか、
あるいは陽極電極6の先端部を除いた側壁面を絶縁する
か、またはモデルの凹形状角部を除いた表面(電着被膜
の形成されやすい部分)を絶縁するようにする。しかし
、砥石に通液性が無く砥粒として絶縁性のものを用いた
場合は、砥石全体が絶縁体となるので、上記した絶縁処
理は必ずしも必要としない。また、陽極電極6は砥石全
体を導電性にするよりも、所望部位に局部集中的に加工
電流を流すために、実施例のように、電極棒をその先端
がモデルの凹形状角部に対向するように挿入配置するの
が好ましい。陽極電極の運動は、大振幅、大周期のレジ
プロ運動に小振幅、小周期の振動を重畳させるようにし
ても良く、また、上下動の他に、回転や前後左右への運
動を行なわせるようにしても良い。
According to the experimental example, the anode electrode 6 was applied for 2.5 cycles with an amplitude of 1.
While performing registration exercise at 0 m'IL, the average current density is 0.
.. Perform electrodeposition processing at 1A/Crlt, 0.16W! l
A coating thickness formation rate of /h was obtained. When using a porous and liquid-permeable anode electrode, it is necessary to insulate the part where it is desired to prevent the formation of an electrodeposited film, and in that case, insulate the surface of the insertion electrode 5 except for the tip. mosquito,
Alternatively, the side wall surface of the anode electrode 6 except for the tip thereof is insulated, or the surface of the model except for the concave corners (portions where electrodeposited films are likely to be formed) is insulated. However, if the grindstone does not have liquid permeability and insulating abrasive grains are used, the entire grindstone becomes an insulator, so the above-mentioned insulation treatment is not necessarily required. In addition, in order to locally concentrate the machining current to the desired area, rather than making the entire grinding wheel conductive, the anode electrode 6 is arranged so that the tip of the electrode rod faces the concave corner of the model, as in the embodiment. It is preferable to insert and arrange it so that it does. The motion of the anode electrode may be such that a small amplitude, small period vibration is superimposed on a large amplitude, large period registration motion, and in addition to vertical movement, rotation or forward/backward/left/right movement may be made. You can also do it.

また、モデル表面に複数の凹形状角部が存在する場合、
各凹形状に対して別個の陽極電極を作製し、各陽極電極
による加工部位の電流密度が概ね等しくなるように制御
すれば、複数の凹形状角部に対して同時に均等な電着加
工を行なうことができる。このように、本発明によれば
、電着被膜の形成されやすい部位に於る被膜形成が阻害
され、該部位に於る被膜の形成あるいは異常な成長を防
止しながら、先ず、電着しにくい凹形状の底部角部に対
して被膜を形成させて該角部の有する前記形状効果を除
去することができるから、深孔や深溝形状を有するモデ
ルにあつても、該モデルの全表面に対して均一な電着被
膜を形成させることができる。
Also, if there are multiple concave corners on the model surface,
If a separate anode electrode is made for each concave shape and the current density of each anode electrode is controlled to be approximately equal in the processed area, uniform electrodeposition processing can be performed simultaneously on multiple concave corners. be able to. As described above, according to the present invention, film formation in areas where electrodeposited films are likely to be formed is inhibited, and while preventing the formation or abnormal growth of films in those areas, it is possible to prevent film formation in areas where electrodeposition films are likely to occur. By forming a coating on the bottom corner of the concave shape, it is possible to remove the shape effect of the corner, so even if the model has a deep hole or deep groove shape, the coating can be applied to the entire surface of the model. It is possible to form a uniform electrodeposited film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に於て使用される電極の製作過程を説明
する断面図、第2図は本発明の1実施例を説明する断面
図である。 1は型、2は深孔形状、3は合成樹脂、4は砥粒、5は
電極棒、6は電極、7はモデル(被加工体)、8は深孔
形状、9は加工槽、10は加工液、11はシヤンク、1
2は軸、13はカム、14はシリンダ、15,16はバ
ネ、17はモータ、18は電源接続端子、19は開閉器
、20は導電片。
FIG. 1 is a sectional view illustrating the manufacturing process of an electrode used in the present invention, and FIG. 2 is a sectional view illustrating one embodiment of the present invention. 1 is a mold, 2 is a deep hole shape, 3 is a synthetic resin, 4 is an abrasive grain, 5 is an electrode rod, 6 is an electrode, 7 is a model (workpiece), 8 is a deep hole shape, 9 is a processing tank, 10 is processing fluid, 11 is shank, 1
2 is a shaft, 13 is a cam, 14 is a cylinder, 15 and 16 are springs, 17 is a motor, 18 is a power supply connection terminal, 19 is a switch, and 20 is a conductive piece.

Claims (1)

【特許請求の範囲】[Claims] 1 電着被膜を形成させるモデル表面の所望部分に対応
する形状から成ると共に少くとも表面部位に砥粒を有す
る電極をモデル表面の前記所望部分に間歇的に接触させ
ながら電着加工することを特徴とする電着加工方法。
1. Electrodeposition processing is performed while intermittently contacting the desired portions of the model surface with an electrode having a shape corresponding to the desired portion of the model surface on which the electrodeposited film is to be formed and having abrasive grains on at least the surface portion. Electrodeposition processing method.
JP56003236A 1981-01-14 1981-01-14 Electrodeposition processing method Expired JPS5944395B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56003236A JPS5944395B2 (en) 1981-01-14 1981-01-14 Electrodeposition processing method
IT47557/82A IT1154260B (en) 1981-01-14 1982-01-13 PROCEDURE AND ELECTRODIC DEVICE FOR ELECTRODEPOSITION IN CAVITIES
FR8200467A FR2497835B1 (en) 1981-01-14 1982-01-13 METHOD, ELECTRODE ASSEMBLY AND DEVICE FOR ELECTROLYTIC DEPOSITION IN CAVITIES
DE19823200948 DE3200948A1 (en) 1981-01-14 1982-01-14 METHOD AND DEVICE FOR ELECTROLYTICALLY CUTTING OFF A METAL LAYER
GB8201022A GB2094345B (en) 1981-01-14 1982-01-14 Electrodeposition of metal in a recess

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56003236A JPS5944395B2 (en) 1981-01-14 1981-01-14 Electrodeposition processing method

Publications (2)

Publication Number Publication Date
JPS57116796A JPS57116796A (en) 1982-07-20
JPS5944395B2 true JPS5944395B2 (en) 1984-10-29

Family

ID=11551812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56003236A Expired JPS5944395B2 (en) 1981-01-14 1981-01-14 Electrodeposition processing method

Country Status (5)

Country Link
JP (1) JPS5944395B2 (en)
DE (1) DE3200948A1 (en)
FR (1) FR2497835B1 (en)
GB (1) GB2094345B (en)
IT (1) IT1154260B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532170C2 (en) * 1995-08-31 1997-09-18 Ppv Verwaltungs Ag Process for forming a platinum-containing coating on a substrate and use of the process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH353469A (en) * 1958-03-27 1961-04-15 Charmilles Sa Ateliers Tool for electrolytic machining and method of manufacturing this tool
DE1217171B (en) * 1958-08-21 1966-05-18 Caterpillar Tractor Co Method and device for the dimensionally accurate processing of the outer and / or inner surface of tubular bodies
US3619401A (en) * 1968-04-03 1971-11-09 Norton Co Apparatus for electrodeposition
AT305719B (en) * 1969-11-24 1973-03-12 Norton Co Method and device for the electrolytic deposition of metal
US3706650A (en) * 1971-03-26 1972-12-19 Norton Co Contour activating device
US3751346A (en) * 1971-08-16 1973-08-07 Micromatic Ind Inc Combined plating and honing method and apparatus
GB1364182A (en) * 1971-08-16 1974-08-21 Micromatic Ind Inc Electroplating and hining apparatus

Also Published As

Publication number Publication date
GB2094345A (en) 1982-09-15
JPS57116796A (en) 1982-07-20
GB2094345B (en) 1984-09-12
IT8247557A0 (en) 1982-01-13
FR2497835B1 (en) 1987-05-22
DE3200948A1 (en) 1982-09-16
IT1154260B (en) 1987-01-21
FR2497835A1 (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US4405411A (en) Recess electrodepositing method, electrode assembly and apparatus
US4452684A (en) Apparatus for selective electrolytic plating
US2385198A (en) Method for forming drawing holes in carbide die nibs
US3491740A (en) Rotary diamond dressing tool
JP2002093761A5 (en)
US3326785A (en) Electrolytic polishing apparatus and method
JP4312465B2 (en) Plating method and plating apparatus
JPS5944395B2 (en) Electrodeposition processing method
US3616289A (en) Electroplate honing method
US2575712A (en) Electroplating
US4826580A (en) Method and apparatus for finishing cut surface of work produced by wire cut discharge process
US20070181441A1 (en) Method and apparatus for electropolishing
GB2127851A (en) Producing electroformed articles
JP2023512924A (en) Electropolishing equipment for multiple free-moving items with solid electrolyte
US4430167A (en) Method of and apparatus for electrodepositing a metal on a substrate
US3637469A (en) Electroplate honing method
US4247303A (en) Method of forming an electrically conductive abrasive wheel
US3619401A (en) Apparatus for electrodeposition
US5000826A (en) Method of joining metal member to resin member
JP3150814B2 (en) Electrolytic metal foil manufacturing equipment
JP2716324B2 (en) Method for manufacturing porous mold by electroforming
EP0297659A1 (en) Piston rings
RU3938U1 (en) ELECTRODE FOR APPLICATION OF A GALVANIC COATING BY THE METHOD OF ELECTROCHEMICAL GRATING
KR101698531B1 (en) anodizing apparatus
JPS59197592A (en) Electrodeposition of tool instrument