JPS594433A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS594433A
JPS594433A JP11297882A JP11297882A JPS594433A JP S594433 A JPS594433 A JP S594433A JP 11297882 A JP11297882 A JP 11297882A JP 11297882 A JP11297882 A JP 11297882A JP S594433 A JPS594433 A JP S594433A
Authority
JP
Japan
Prior art keywords
substrate
electrode
thin film
recess
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11297882A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nozaki
野崎 秀俊
Tadashi Utagawa
忠 歌川
Takaaki Kamimura
孝明 上村
Tamotsu Hatayama
畑山 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11297882A priority Critical patent/JPS594433A/en
Publication of JPS594433A publication Critical patent/JPS594433A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor

Abstract

PURPOSE:To remarkably enhance uniformity of film thickness, by forming a recess having a depth similar to the thickness of a base on the surface of an electrode on which the base is to be placed, fitting the base to the recess, and leveling both surfaces of the base and the electrode to the same height. CONSTITUTION:The recess 7 is formed on the surface of a lower electrode 2, the base 5 is fitted to the recess 7, and both faces of the electrode, and the base are leveled equally. The use of such a device raises the uniformity of film thickness and film quality, and enhances film quality.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、薄膜形成装置に係シ、特に、非晶質別薄膜の
膜厚及び膜質の均一性向上を図シ、加えて非晶質81太
陽電池特性の向上を可能とする薄膜形成装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film forming apparatus, and in particular, aims to improve the uniformity of the film thickness and film quality of amorphous thin film. The present invention relates to a thin film forming apparatus that makes it possible to improve solar cell characteristics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

プラズマCVD法を用いて薄膜を形成する技岬は、絶縁
膜や非晶質シリコン膜形成技術として実用化されている
。第1図に従来装置の概略構成を示した3ノは真空容器
であシ、内部に相対向する電極2,3を配置してこの間
1に例えば高周波電源4から高周波電力を印加し、真空
容器1内に供給された原料ガスをグロー放電分解させて
、電極2上に置かれた基板5上に薄膜を形成するもので
ある。
Techniques for forming thin films using plasma CVD have been put to practical use as a technology for forming insulating films and amorphous silicon films. The schematic structure of the conventional device is shown in FIG. A thin film is formed on a substrate 5 placed on an electrode 2 by glow discharge decomposition of the raw material gas supplied into the electrode 1 .

ところで従来装置では、電極2上の基板5の配置をみる
と第2図(、)のように基板5は電極2の面上に突出し
た状態で置かれている。形成する薄膜のピンホール軽減
を目的として基板5を上部の電極3の面上に置く′こと
があるが、この場合には例えば第2図伽)のようにホル
ダ6を用いるため、よシ一層電極30面上に突出部が形
成されることになる。
By the way, in the conventional device, when looking at the arrangement of the substrate 5 on the electrode 2, the substrate 5 is placed so as to protrude above the surface of the electrode 2, as shown in FIG. In order to reduce pinholes in the thin film being formed, the substrate 5 is sometimes placed on the surface of the upper electrode 3. In this case, for example, a holder 6 is used as shown in Fig. A protrusion is formed on the surface of the electrode 30.

一般に、プラズマ中に突起物が存在すると、原料ガスの
流れが層流から乱流に転じゃすくなシ、またプラズマ中
の電位分布に重大な変化を与える結果になるので、基板
表面に形成される薄膜において膜厚の不拘−及び膜質の
不均一、劣化が発生するという問題が起こってくる。
In general, the presence of protrusions in the plasma prevents the flow of the raw material gas from changing from laminar to turbulent, and also causes a significant change in the potential distribution in the plasma. Problems arise in thin films, such as inconsistency in film thickness, non-uniformity in film quality, and deterioration.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来装置の欠点を改良したもので、プ
ラズマCVD法によって形成される薄膜の膜厚の均−性
及び膜質の均一性を大幅に向上させ、かつ膜質の劣化を
防ぐことができる薄膜形成装置を提供することを目的と
する。
The present invention improves the above-mentioned drawbacks of the conventional apparatus, and can significantly improve the uniformity of the film thickness and film quality of thin films formed by plasma CVD, and can prevent deterioration of the film quality. The purpose of the present invention is to provide a thin film forming apparatus.

〔発明の概閥〕[Summary of the invention]

本発明は、基板が置かれる電極の表面に基板厚みと同程
度の深さを有する凹部を設けておき、この凹部に基板を
装着して、基板面と電極面を面位置を揃えるようにした
ことを特徴とする。
In the present invention, a concave portion having a depth comparable to the thickness of the substrate is provided on the surface of the electrode on which the substrate is placed, and the substrate is mounted in this concave portion so that the surface positions of the substrate surface and the electrode surface are aligned. It is characterized by

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板自体または基板ホルダがプラズマ
中に突出部を形成することがなくなる結果、原料ガスの
流れを基板表面全域において均一化することができ、か
つプラズマ中の電位分布も上述の突出部に乱されないの
で、基板表面全域のグラズマ電位も均一化される。原料
ガスをグロー放゛邂分解すると、多種のイオン。
According to the present invention, since the substrate itself or the substrate holder does not form protrusions in the plasma, the flow of source gas can be made uniform over the entire surface of the substrate, and the potential distribution in the plasma can also be maintained as described above. Since it is not disturbed by the protrusions, the glazma potential over the entire surface of the substrate is also made uniform. When the raw material gas is decomposed by glow radiation, various types of ions are produced.

ラジカルが生成し、それらが化学的に連鎖反応を起こし
、基板表面に薄膜を堆積させるが、上述の効果によって
原料ガスの分解が基板表面全域において均一に進行する
のでN膜の膜厚、膜質の均一性が大幅に向上する。また
同時に膜質の劣化を防ぐこともできる。
Radicals are generated and they cause a chemical chain reaction, depositing a thin film on the substrate surface. Due to the above-mentioned effect, the decomposition of the source gas proceeds uniformly over the entire substrate surface, so the thickness and quality of the N film are Uniformity is greatly improved. At the same time, it is also possible to prevent deterioration of film quality.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例での基板配置を第2図に対応させて第3
図に示す。第3図(、)は下部電極2の表面に四部7を
設けて、この凹部7に基板5を装着して、電極面と基板
面を揃えた例である。
The substrate arrangement in the embodiment of the present invention is shown in Figure 3, corresponding to Figure 2.
As shown in the figure. FIG. 3(,) shows an example in which four parts 7 are provided on the surface of the lower electrode 2, a substrate 5 is mounted in this recess 7, and the electrode surface and the substrate surface are aligned.

また第3図(b) # (e)は上部電極3に凹部7を
設けてこの四部7に基板5を装着した例である。この場
合、基板5を保持するために、第3図(b)では凹部7
内に板バネ8を設け、第3図(e)では電極3に真空チ
ャック用の孔9を設けている。
Further, FIGS. 3(b) and 3(e) show an example in which a recess 7 is provided in the upper electrode 3 and a substrate 5 is attached to the four parts 7. In this case, in order to hold the substrate 5, a recess 7 is shown in FIG. 3(b).
A leaf spring 8 is provided inside, and in FIG. 3(e), a hole 9 for a vacuum chuck is provided in the electrode 3.

以下に、非晶質Si膜の形成を例にとって、具体的な実
験データによシ本発明の効果を明らかにする。基本的な
装置構成は第1図と同じであシ、シランガスをグロー放
電分解させてノンドーグ非晶質Si層を1OcrPの基
板(ガラス、ステンレス、有機フィルムなど任意の基板
)に形成した場合の薄膜の膜厚、光伝導度分布を測定し
た。
In the following, the effects of the present invention will be clarified using specific experimental data, taking the formation of an amorphous Si film as an example. The basic equipment configuration is the same as that shown in Figure 1, and a thin film is formed when a non-doped amorphous Si layer is formed on a 1OcrP substrate (any substrate such as glass, stainless steel, or organic film) by glow discharge decomposition of silane gas. The film thickness and photoconductivity distribution were measured.

第4図は、第2図(b)のように電極面上に基板が突出
した従来構成の場合であ)、第5図は基板配置を第3図
(b)の状態とした本実施例の場合である。第4図のデ
ータより、基板などの突出部が存在すると、基板ホルダ
ーと基板との接触部近傍でガスの乱流が生じ、また電界
の均一性が乱されるので、膜厚が厚くなり、膜質(光伝
導度)の劣化が発生することがわかる。
FIG. 4 shows the conventional configuration in which the substrate protrudes above the electrode surface as shown in FIG. 2(b)), and FIG. 5 shows this embodiment with the substrate arrangement as shown in FIG. 3(b). This is the case. From the data in Figure 4, it can be seen that when a protrusion such as a substrate exists, gas turbulence occurs near the contact area between the substrate holder and the substrate, and the uniformity of the electric field is disturbed, resulting in a thicker film. It can be seen that the film quality (photoconductivity) deteriorates.

一方、第5図のデータよシ、本実施例の構成を用いれば
、膜厚及び膜質の均一性が増大し、膜質が向上すること
が判明した。なお、ドーピングがスとしてゾデラン、ホ
スフィンガスをシランガスと混合してグロー放電分解し
、p型層。
On the other hand, according to the data in FIG. 5, it was found that by using the configuration of this example, the uniformity of the film thickness and film quality was increased, and the film quality was improved. Note that the doping is performed by mixing zoderane and phosphine gas with silane gas and decomposing the mixture by glow discharge to form a p-type layer.

n型層を形成する場合においても、上述のアンドーグ層
と場合し同様な傾向が得られた。
In the case of forming an n-type layer, the same tendency as in the case of the above-mentioned undog layer was obtained.

非晶質S1形成装置を用いて、p型層、ノンドーグ層(
in層)、n凰層をp−1−n構造で樵積させ沼と、非
晶質SI太陽電池を形成できる。
Using an amorphous S1 forming apparatus, a p-type layer, a non-doped layer (
(in layer) and n layer in a p-1-n structure to form an amorphous SI solar cell.

上記p層は膜厚100〜1oooX、ノンドーグ層は膜
厚05〜2μm、 n型層は膜厚Zoo 〜100OX
The p-layer has a thickness of 100 to 100X, the non-doped layer has a thickness of 05 to 2 μm, and the n-type layer has a thickness of Zoo to 100X.
.

ドーグ量0.1〜3%である。非晶質重太陽電池の場合
、素子特性は各層の膜厚に大きく依存し特に光の入射側
の非晶質Si@(p型層あるいはn型層)の膜厚に対し
て依存性が強い。本実施例の構成を用いて、非晶質S1
太陽電池を形成した結果、各層の最適膜厚を設定通シ均
一に形成でき、大面積太陽電池(10tyP以上)の場
合においても、膜厚の不均一によって生ずる素子特性の
劣化を防ぐことが可能であった。実験によると、10J
太陽電池で、変換効率を10〜20%程度改善可能であ
ることが判明した。
The amount of Dogue is 0.1 to 3%. In the case of an amorphous heavy solar cell, the device characteristics largely depend on the thickness of each layer, especially the thickness of the amorphous Si@(p-type layer or n-type layer) on the light incident side. . Using the configuration of this example, amorphous S1
As a result of forming the solar cell, the optimal film thickness of each layer can be formed uniformly throughout the setting, and even in the case of large area solar cells (10 tyP or more), it is possible to prevent deterioration of device characteristics caused by uneven film thickness. Met. According to experiments, 10J
It has been found that the conversion efficiency of solar cells can be improved by about 10 to 20%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜形成装置の概略構成図、第2図(−
) (b)は従来の電極と基板の配置図、第3図(a)
 (b) (e)は本発明の実施例における電極と基板
との配置状態を示した図、第4図は、従来装置によるノ
ンドーグ非晶質Si層の膜厚と光伝導度の基板上分布を
示した図、第5図は実施例の装置によるノンドーグ非晶
質Si層の膜厚と光伝導度の基板上分布を示した図であ
る。 1・・・真空容器、2,3・・・電極、4・・・高周波
電源、5・・・基板、7・・・凹部。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 第4図 115 図 基板カ荘創cm)
Figure 1 is a schematic configuration diagram of a conventional thin film forming apparatus, and Figure 2 (-
) (b) is a layout diagram of the conventional electrode and substrate, Figure 3 (a)
(b) and (e) are diagrams showing the arrangement of the electrodes and the substrate in the embodiment of the present invention, and Figure 4 is the distribution of the film thickness and photoconductivity of the non-doped amorphous Si layer on the substrate using the conventional device. FIG. 5 is a diagram showing the distribution of the film thickness and photoconductivity of the non-doped amorphous Si layer on the substrate using the apparatus of the example. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2, 3... Electrode, 4... High frequency power supply, 5... Substrate, 7... Recessed part. Applicant's representative Patent attorney Takehiko Suzue (Figure 1, Figure 2, Figure 3, Figure 4)

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に原料ガスを供給し、対向電極間に高電界を
印加してこの原料ガスをグロー放電分解させて対向電極
の一方の面に置かれた基板上に薄膜を形成する装置にお
いて、基板が置かれる電極の表面に基板厚みと同程度の
深さを有する凹部を設けておき、この凹部に基□板を装
着するように構成したことを特徴とする薄膜形成装置。
In an apparatus that supplies a raw material gas into a vacuum container and applies a high electric field between opposing electrodes to decompose the raw material gas by glow discharge to form a thin film on a substrate placed on one surface of the opposing electrode. 1. A thin film forming apparatus characterized in that a recess having a depth comparable to the thickness of a substrate is provided on the surface of an electrode on which a substrate is placed, and a substrate is mounted in the recess.
JP11297882A 1982-06-30 1982-06-30 Thin film forming device Pending JPS594433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11297882A JPS594433A (en) 1982-06-30 1982-06-30 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11297882A JPS594433A (en) 1982-06-30 1982-06-30 Thin film forming device

Publications (1)

Publication Number Publication Date
JPS594433A true JPS594433A (en) 1984-01-11

Family

ID=14600327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11297882A Pending JPS594433A (en) 1982-06-30 1982-06-30 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS594433A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447576A (en) * 1977-09-22 1979-04-14 Hitachi Ltd Plasma cvd apparatus
JPS5590438A (en) * 1978-12-27 1980-07-09 Hitachi Ltd Plasma surface treatment device
JPS5773176A (en) * 1980-08-21 1982-05-07 Nat Res Dev Coating adhesion
JPS592132B2 (en) * 1979-07-04 1984-01-17 株式会社東芝 Vacuum switch operating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447576A (en) * 1977-09-22 1979-04-14 Hitachi Ltd Plasma cvd apparatus
JPS5590438A (en) * 1978-12-27 1980-07-09 Hitachi Ltd Plasma surface treatment device
JPS592132B2 (en) * 1979-07-04 1984-01-17 株式会社東芝 Vacuum switch operating device
JPS5773176A (en) * 1980-08-21 1982-05-07 Nat Res Dev Coating adhesion

Similar Documents

Publication Publication Date Title
CN101208457B (en) Method for manufacturing flat substrates
US4446168A (en) Method of forming amorphous silicon
JP3960792B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon thin film
JP2000138384A (en) Amorphous semiconductor device and its manufacture
KR101447162B1 (en) Plasma processing apparatus for film deposition and deposition method of micro crystalline silicon layer using the same
JPS594433A (en) Thin film forming device
JPH0142125B2 (en)
JPS6331110A (en) Manufacture of semiconductor device
EP0140130B1 (en) Process and apparatus for preparing semiconductor layer
JPS6316914B2 (en)
JPS6037118A (en) Plasma vapor phase reaction method
KR930010092B1 (en) Forming method of semiconductor thin film
JPS6317221B2 (en)
JP2602881B2 (en) Film forming equipment
JP2001026878A (en) Thin film forming device and formation of semiconductor thin film
JPS58102569A (en) Manufacture of amorphous silicon solar battery
JPH01226148A (en) Film forming apparatus
JPH01216523A (en) Manufacture of plasma cvd thin film
JP2637143B2 (en) Film forming equipment
JPS6281021A (en) Apparatus for manufacturing thin film semiconductor
JPS58102568A (en) Manufacture of amorphous silicon solar battery
JPH0199213A (en) Device for formation of film
JPS5685877A (en) Treatment of amorphous semiconductor film
JPH08204218A (en) Production system for thin film of amorphous semiconductor
Ganguly et al. Comparison of a-Si/a-SiGe tandem cell performance using silane or disilane for deposition of the amorphous silicon germanium intrinsic layer