JPS5944118B2 - How to treat geothermal water - Google Patents

How to treat geothermal water

Info

Publication number
JPS5944118B2
JPS5944118B2 JP4195080A JP4195080A JPS5944118B2 JP S5944118 B2 JPS5944118 B2 JP S5944118B2 JP 4195080 A JP4195080 A JP 4195080A JP 4195080 A JP4195080 A JP 4195080A JP S5944118 B2 JPS5944118 B2 JP S5944118B2
Authority
JP
Japan
Prior art keywords
hot water
steam
geothermal
amount
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4195080A
Other languages
Japanese (ja)
Other versions
JPS56139194A (en
Inventor
肇 川崎
稔 大内
晴雄 山田
利寛 明野
正博 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP4195080A priority Critical patent/JPS5944118B2/en
Publication of JPS56139194A publication Critical patent/JPS56139194A/en
Publication of JPS5944118B2 publication Critical patent/JPS5944118B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、地熱発電用蒸気の採取に伴う地熱々水の処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating geothermal hot water accompanying the extraction of steam for geothermal power generation.

近年石油エネルギーの代替エネルギーの1つとして地熱
エネルギーが注目されるようになり、各地で地熱発電の
開発が行なわれているが、地熱資源を有する地下にポー
リングをして地熱蒸気を取り出す際、一般に蒸気のみを
噴出するよりも蒸気と共に多量の熱水を噴出する事が多
い。
In recent years, geothermal energy has attracted attention as an alternative energy to oil energy, and geothermal power generation is being developed in various places. However, when extracting geothermal steam by polling underground that has geothermal resources, Rather than spouting only steam, a large amount of hot water is often spewed out along with the steam.

この場合蒸気と熱水とから成る地熱流体を、気水分離器
で蒸気と熱水とに分離し、この蒸気で発電を行なってい
る。
In this case, geothermal fluid consisting of steam and hot water is separated into steam and hot water by a steam separator, and this steam is used to generate electricity.

一方、上記気水分離器で分離された熱水は、膨大なエネ
ルギーを有しているにもかかわらず高温のまま地下に還
元されているのが現状であり、この有効利用が切望され
ている。
On the other hand, the hot water separated by the above-mentioned steam-water separator has a huge amount of energy, but at present it is returned underground at a high temperature, and there is a strong need for its effective use. .

この大きな原因の1つとして、地熱水中には1〜10
ppmと環境基準の0.05 ppmを上まわるヒ素が
含まれている為、熱を有効に利用した後の熱水をそのま
ま放流できない事が挙げられる。
One of the major reasons for this is that geothermal water contains 1 to 10
Because the water contains arsenic at levels exceeding the environmental standard of 0.05 ppm, hot water cannot be discharged as is after the heat has been used effectively.

熱水中のヒ素を除去する方法はこれまでにいくつか報告
がなされているが、その中でも鉄化合物および次亜塩素
酸等の酸化剤を添加し、次いでpH調整して水酸化鉄と
し、生成した水酸化鉄とヒ素を共沈させて脱ヒ素処理す
る方法が最も良く知られている効果的な方法であり、こ
の方法によると環境基準の0.05 ppm以下にヒ素
を除去できる事が報告されている。
Several methods have been reported to date for removing arsenic from hot water, but among them, iron compounds and oxidizing agents such as hypochlorous acid are added, and then the pH is adjusted to form iron hydroxide. The most well-known and effective method is to co-precipitate iron hydroxide and arsenic, and it has been reported that this method can remove arsenic to below the environmental standard of 0.05 ppm. has been done.

しかしながら、周知の通り熱水中には多量のシリカが含
まれており、上記水酸化鉄との共沈による脱ヒ素処理を
行う場合、シリカも同時に吸着、共沈される為、脱ヒ素
処理によるスラッジ量が多量になり、このスラッジの処
理に困難をきたす。
However, as is well known, hot water contains a large amount of silica, and when performing arsenic removal treatment by co-precipitation with iron hydroxide, silica is also adsorbed and co-precipitated at the same time. The amount of sludge becomes large, making it difficult to dispose of this sludge.

又、脱ヒ素処理の為にのみ添加した鉄分がシリカにも消
費される為、有効成分が減少し、環境基準の0.05
ppm以下にヒ素を除去するには多量の鉄化合物が必要
であった。
In addition, since the iron added only for arsenic removal treatment is also consumed by silica, the effective ingredients decrease and the environmental standard is 0.05.
A large amount of iron compound was required to remove arsenic to below ppm.

脱ヒ素スラッジ量を極力少なくする事は、生成した脱ヒ
素スラッジの処理費用を低減させるという点で重要な事
であり、一方脱ヒ素処理に使用する鉄化合物等の薬品添
加量を少な(する事も、脱ヒ素処理費用を低減させると
いう観点から必要である事はいうまでもない。
It is important to reduce the amount of arsenic removal sludge as much as possible in terms of reducing the processing cost of the generated arsenic removal sludge.On the other hand, it is important to reduce the amount of chemicals such as iron compounds used for arsenic removal treatment. Needless to say, this is necessary from the viewpoint of reducing arsenic removal treatment costs.

本発明者等は、種々研究の結果、蒸気と熱水が2相流で
噴出する地熱流体を気水分離器で蒸気と熱水に分離した
直後の熱水にpHが4〜6になるように酸を添加して熱
水中のモノケイ酸を安定化させた後、さらにこの熱水を
フラッシャ−に導入して再度蒸気と熱水とに分離し、こ
の熱水に上記鉄化合物を添加して脱ヒ素処理を行なう事
により、脱ヒ素スラッジ中のシリカ量を少なくし、脱ヒ
素スラッジ量を低減させるとともに、添加する鉄化合物
量を低減することに成功した。
As a result of various studies, the present inventors have determined that the geothermal fluid, in which steam and hot water are spouted in a two-phase flow, is separated into steam and hot water using a steam-water separator, and the pH of the hot water is adjusted to between 4 and 6. After adding acid to stabilize the monosilicic acid in the hot water, this hot water is further introduced into a flasher to separate it into steam and hot water again, and the above iron compound is added to this hot water. By carrying out arsenic removal treatment, we succeeded in reducing the amount of silica in the arsenic-free sludge, reducing the amount of arsenic-free sludge, and reducing the amount of iron compounds added.

一般に、熱水中に溶解しているシリカは、温度降下と時
間経過により、各温度における溶解度以上の過飽和にな
ったシリカが重合しコロイドシリカとなる事は知られて
いる。
It is generally known that silica dissolved in hot water becomes colloidal silica as the silica becomes supersaturated, exceeding its solubility at each temperature, as the temperature drops and the passage of time polymerizes.

本発明者等は、水酸化鉄による脱ヒ素処理を行なう場合
、このコロイドシリカが多く存在する程、水酸化鉄によ
るシリカの吸着・共沈が起り脱ヒ素スラッジ量が多(な
る事を見い出した。
The present inventors have discovered that when performing arsenic removal treatment using iron hydroxide, the more colloidal silica is present, the more adsorption and coprecipitation of silica by iron hydroxide occur, resulting in a larger amount of dearsenic sludge. .

このとき熱水のpHを6以下とすると、シリカのコロイ
ド化する速度は小さくなり、数時間程度の時間では実質
的なコロイド化が認められないことを知見した。
At this time, it has been found that when the pH of the hot water is set to 6 or less, the speed at which silica colloids is formed is reduced, and substantial colloid formation is not observed within several hours.

しかしながら、pHを4以下とすると熱水を輸送するパ
イプ、バルブ等の設備の腐食が激しくなるので、pHを
4以下とすることは適切でない。
However, if the pH is set to 4 or less, equipment such as pipes and valves for transporting hot water will be severely corroded, so it is not appropriate to set the pH to 4 or less.

なお、熱水のpHを10以上とすることによってもコロ
イドシリカの生成を防止しうるが、後の脱ヒ素の工程に
おいてはpHを2〜3とするのであるから、pH調整に
要する酸の使用量を考慮すると経済的でない。
The formation of colloidal silica can also be prevented by adjusting the pH of the hot water to 10 or higher, but since the pH will be adjusted to 2 to 3 in the subsequent arsenic removal process, the use of acid required for pH adjustment is It is not economical considering the quantity.

それ故、熱水中のシリカのコロイド化を抑止するには、
熱水のpHを4〜6に調整することが好適である。
Therefore, to suppress the colloidalization of silica in hot water,
It is suitable to adjust the pH of the hot water to 4-6.

本発明方法にあっては、上述熱水のpHを4〜6に調整
するために、第1工程の気水分離器から第2工程のフラ
ッシャ−の間の熱水配管途中にある熱水中に酸を注入す
るが、これの理由は次のようである。
In the method of the present invention, in order to adjust the pH of the hot water to 4 to 6, the hot water in the hot water pipe between the steam separator in the first step and the flasher in the second step is used. The reason for this is as follows.

即ち、気水分離器以前の熱水は、蒸気と熱水の混合され
た気液2相流の形態を取っているため酸の注入混合が困
難であり、又、フラッシャ−内では熱水が突沸して蒸気
とより低温の熱水とに分離されるが、このとき大量のシ
リカがコロイド化する事実より、フラッシャ−に導入さ
れる以前の熱水のpHを4〜6に調整しなければ効果が
認められないからである。
That is, the hot water before the steam separator is in the form of a gas-liquid two-phase flow, which is a mixture of steam and hot water, making it difficult to inject and mix acid. Bumping occurs and separates into steam and hot water at a lower temperature, but due to the fact that a large amount of silica turns into colloid at this time, the pH of the hot water must be adjusted to 4 to 6 before being introduced into the flasher. This is because no effect has been observed.

ここで用いる酸の量は、後の脱ヒ素工程において熱水の
pHを2〜3に調整するのに必要とする酸の一部を予め
前工程で添加するのであるから、全体的には酸の消費量
増大とならない。
The amount of acid used here is because part of the acid required to adjust the pH of the hot water to 2 to 3 in the subsequent arsenic removal step is added in advance in the previous step, so the overall amount of acid is consumption will not increase.

第1表は、フラッシャ−に導入する熱水のpHと、フラ
ッシャ−で分離された後の熱水中の全シリカ、溶解シリ
カ及びコロイドシリカの量との関係を求めた実験結果で
ある。
Table 1 shows the results of experiments to determine the relationship between the pH of hot water introduced into the flasher and the amounts of total silica, dissolved silica, and colloidal silica in the hot water after separation in the flasher.

第1表より明らかな如く、熱水のpHを6以下にすると
コロイドシリカの生成が極端に低下することがわかる。
As is clear from Table 1, it can be seen that when the pH of the hot water is lowered to 6 or less, the production of colloidal silica is extremely reduced.

即ち、2相流からなる地熱流体な気水分離器で分離した
熱水に酸を注入してpHを4〜6に調整する事により、
コロイドシリカの生成を抑制し、強いては少量の水酸化
鉄による脱ヒ素処理スラッジ中のシリカ量を少なくする
とともに脱ヒ素スラッジ量を低減することができる。
That is, by injecting acid into hot water separated by a two-phase geothermal fluid steam-water separator to adjust the pH to 4 to 6,
By suppressing the production of colloidal silica, it is possible to reduce the amount of silica in the arsenic-removed sludge using a small amount of iron hydroxide, and to reduce the amount of arsenic-removed sludge.

なお、本発明の主旨は脱ヒ素処理の際のスラッジ量を少
なくし、かつ使用する薬品量を低減せしめる所にある事
はいうまでもないが、上記の如く2相流かもなる地熱流
体な気水分離器で蒸気と熱水に分離した熱水のpHを4
〜6に調整する事により、従来配管、バルブ等に付着し
ていたシリカスケールも全(観察されず、シリカスケー
ルの付着防止にも大きな効果のある事が認められた。
It goes without saying that the gist of the present invention is to reduce the amount of sludge during arsenic removal treatment and to reduce the amount of chemicals used. The pH of the hot water separated into steam and hot water by the water separator is 4.
By adjusting the temperature to ~6, all of the silica scale that had conventionally adhered to piping, valves, etc. was not observed, and it was recognized that it was highly effective in preventing the adhesion of silica scale.

又pH4〜6の熱水であれば配管等の腐食はほとんど認
められなかった。
In addition, when using hot water with a pH of 4 to 6, almost no corrosion of piping, etc. was observed.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

実施例 1 第2表の組成を有する150℃5.5 kg/(11i
の熱水に0.INの硫酸をH2SO4として40ppm
圧大した後、大気圧までにフラッシュして95℃の熱水
を得た。
Example 1 5.5 kg/(11i
0.0 in hot water. 40ppm of IN sulfuric acid as H2SO4
After increasing the pressure, the pressure was flushed down to atmospheric pressure to obtain hot water at 95°C.

この時のpHは5.3であった。この熱水1tにFe2
+が40ppm又pHが2.8となるように硫酸第1鉄
と硫酸を添加し、次いで酸化剤として次亜塩素酸ソーダ
を有効塩素が40ppmとなる様添加し充分攪拌を行な
った。
The pH at this time was 5.3. Fe2 in 1 ton of this hot water
Ferrous sulfate and sulfuric acid were added so that + was 40 ppm and pH was 2.8, and then sodium hypochlorite was added as an oxidizing agent so that available chlorine was 40 ppm, and the mixture was thoroughly stirred.

その後熱水のpHが38となるまで炭酸カルシウムを添
加し、水酸化第2鉄の沈殿を生成させた。
Thereafter, calcium carbonate was added until the pH of the hot water reached 38 to form a precipitate of ferric hydroxide.

この時の処理後の熱水組成は第3表に示すものであった
The hot water composition after treatment at this time was as shown in Table 3.

又、この際の沈殿生成量と沈殿物組成を第4表に、あら
かじめpH調整をせずに同様に脱ヒ素処理を行った場合
と比較して示した。
Table 4 shows the amount of precipitate produced and the composition of the precipitate in comparison with the case where the arsenic removal treatment was performed in the same manner without adjusting the pH in advance.

実施例 2 実施例1と同様に150℃の熱水に0. I N硫酸を
H2SO4として40ppm添加して熱水のpHを4.
8に調整した熱水1tに、Fe2+が20ppm又pH
が2.8となるように硫酸第1鉄と硫酸を添加し、次い
で次亜塩素酸ソーダを有効塩素として40ppm添加し
て充分攪拌を行なった後、熱水のpHが3.8となるま
で炭酸カルシウムを添加して水酸化第2鉄の沈澱を生成
せしめた。
Example 2 As in Example 1, 0.0% was added to 150°C hot water. 40 ppm of IN sulfuric acid as H2SO4 was added to adjust the pH of the hot water to 4.
1 ton of hot water adjusted to pH 8 contains 20 ppm of Fe2+ and pH
Ferrous sulfate and sulfuric acid were added so that the pH of the hot water was 2.8, then 40 ppm of sodium hypochlorite was added as available chlorine, and after thorough stirring, the hot water was heated until the pH of the hot water reached 3.8. Calcium carbonate was added to form a ferric hydroxide precipitate.

なお、この際沈澱の沈降性を早める為、約4ppmの高
分子凝集剤を添加した。
At this time, about 4 ppm of a polymer flocculant was added to accelerate the sedimentation of the precipitate.

この時の処理後の熱水組成を第5表に示した。Table 5 shows the composition of the hot water after this treatment.

又、この時得られた沈澱生成量と沈殿物組成を第6表に
、pH調整をせずに同様に脱ヒ素処理を行なった場合と
比較して示した。
Further, the amount of precipitate produced and the composition of the precipitate obtained at this time are shown in Table 6 in comparison with the case where the arsenic removal treatment was performed in the same manner without pH adjustment.

以上記載してきた如(、蒸気と熱水が2相流で噴出する
地熱流体を気水分離器で蒸気と熱水に分離した直後の熱
水に酸を圧入してpHを4〜6に調整する事により脱ヒ
素スラッジ量を低減せしめることができると共に、鉄化
合物の添加量を少なくしても熱水中のヒ素を除去するこ
とができ、脱ヒ素処理に要する鉄化合物の添加量を低減
せしめる事が可能となった。
As described above, the geothermal fluid in which steam and hot water spout in a two-phase flow is separated into steam and hot water by a steam-water separator, and immediately after that, acid is injected into the hot water to adjust the pH to 4 to 6. By doing so, the amount of arsenic removal sludge can be reduced, and arsenic can be removed from hot water even if the amount of iron compounds added is reduced, reducing the amount of iron compounds required for arsenic removal treatment. things became possible.

又、このpH調整によりシリカスケールの付着も認めら
れず、シリカスケールの防止にも効果的である事が分っ
た。
Furthermore, it was found that this pH adjustment was effective in preventing silica scale, as no silica scale was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 地熱蒸気採取坑井より自噴する実質的に蒸気と熱水
とよりなる地熱流体を気水分離器中に導入して蒸気と熱
水とに分離する第1工程と、前記第1工程で分離された
熱水をフラッシャ−に導入して再度蒸気と熱水とに分離
する第2工程と、前記第2工程で分離された熱水に酸、
鉄塩及び酸化剤を添加して前記熱水中に含有されるヒ素
を水酸化鉄とともに共沈分離する第3工程とからなる地
熱熱水の処理方法において、前記第3工程で熱水に添加
する酸の一部を、前記第1工程で分離されて前記第2工
程のフラッシャ−に導入される間の熱水中に添加して該
熱水のp)Iを4〜6に調整することを特徴とする地熱
々水の処理方法。
1. A first step in which a geothermal fluid consisting essentially of steam and hot water that is gushing out from a geothermal steam extraction well is introduced into a steam water separator and separated into steam and hot water; A second step in which the hot water is introduced into a flasher and separated into steam and hot water again, and the hot water separated in the second step is treated with an acid,
A method for treating geothermal hot water comprising a third step of adding an iron salt and an oxidizing agent to separate the arsenic contained in the hot water by coprecipitation with iron hydroxide, the method comprising: adding an iron salt and an oxidizing agent to the hot water in the third step; Adding a part of the acid to the hot water separated in the first step and introduced into the flasher in the second step to adjust the p)I of the hot water to 4 to 6. A method for treating hot geothermal water characterized by:
JP4195080A 1980-04-02 1980-04-02 How to treat geothermal water Expired JPS5944118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195080A JPS5944118B2 (en) 1980-04-02 1980-04-02 How to treat geothermal water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195080A JPS5944118B2 (en) 1980-04-02 1980-04-02 How to treat geothermal water

Publications (2)

Publication Number Publication Date
JPS56139194A JPS56139194A (en) 1981-10-30
JPS5944118B2 true JPS5944118B2 (en) 1984-10-26

Family

ID=12622475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195080A Expired JPS5944118B2 (en) 1980-04-02 1980-04-02 How to treat geothermal water

Country Status (1)

Country Link
JP (1) JPS5944118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64547Y2 (en) * 1985-12-27 1989-01-09
JP2015052577A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Geothermal power generation steam property monitoring device, geothermal power generation steam property monitoring method, geothermal power generation system, and geothermal power generation system control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007076A (en) * 2016-07-04 2016-10-12 赣州有色冶金研究所 Treatment method of arsenic-containing wastewater in tungsten smelting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64547Y2 (en) * 1985-12-27 1989-01-09
JP2015052577A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Geothermal power generation steam property monitoring device, geothermal power generation steam property monitoring method, geothermal power generation system, and geothermal power generation system control method

Also Published As

Publication number Publication date
JPS56139194A (en) 1981-10-30

Similar Documents

Publication Publication Date Title
US4728438A (en) Process for reducing the concentration of suspended solids in clarified geothermal brine
US4016075A (en) Process for removal of silica from geothermal brine
US4765913A (en) Process for removing silica from silica-rich geothermal brine
CN102583819B (en) Method for processing waste water generated by extracting copper oxide from acidic corrosion waste fluid
US4710367A (en) Process for reducing the concentration of heavy metals in geothermal brine sludge
US4615808A (en) Acidification of steam condensate for incompatibility control during mixing with geothermal brine
WO1995002745A1 (en) Control of scale deposition in geothermal operations
JP2007175673A (en) Treatment method of ammonia-containing drain
JPS5944118B2 (en) How to treat geothermal water
JPS5549191A (en) Purifying treatment method of waste water
US2000197A (en) Method of treating water
US2214689A (en) Process for softening waters of temporary hardness
US5413718A (en) Use of added water to achieve 100% injection weight in geothermal operations
JPS59196796A (en) Treatment of liquid waste
CN110563166A (en) Method and device for softening and removing calcium from desulfurization wastewater
JP2000334472A (en) Treatment of waste water
JPS59196797A (en) Treatment of liquid waste
CN112188997B (en) Facility and method for treating industrial effluents loaded with calcium and/or magnesium
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water
Dalvi et al. Effect of various forms of iron in recycle brine on performance of scale control additives in MSF desalination plants
CN113249104B (en) Scale inhibition and scale removal agent and preparation method thereof
JP2003104728A (en) Method for treating iron-containing sulfuric acid solution
JPS60119B2 (en) Processing method for chemical cleaning waste liquid
US1872262A (en) Process of treating liquids
SU1820901A3 (en) Sl-acidic coagulant for sewage treatment