JPS5943859A - Surface hardened cu alloy member with superior wear resistance at high temperature - Google Patents

Surface hardened cu alloy member with superior wear resistance at high temperature

Info

Publication number
JPS5943859A
JPS5943859A JP15278682A JP15278682A JPS5943859A JP S5943859 A JPS5943859 A JP S5943859A JP 15278682 A JP15278682 A JP 15278682A JP 15278682 A JP15278682 A JP 15278682A JP S5943859 A JPS5943859 A JP S5943859A
Authority
JP
Japan
Prior art keywords
alloy
alloy member
hardened
wear resistance
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15278682A
Other languages
Japanese (ja)
Inventor
Fukuhisa Matsuda
松田 福久
Masaki Morikawa
正樹 森川
Takuro Iwamura
岩村 卓郎
Hideaki Yoshida
秀昭 吉田
Kunio Kishida
岸田 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15278682A priority Critical patent/JPS5943859A/en
Publication of JPS5943859A publication Critical patent/JPS5943859A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a surface hardened Cu alloy member with improved wear resistance at high temp. by boriding the surface of a Cu alloy member contg. a specified amount of Fe and having a structure contg. dispersed relatively coarse primary crystal Fe and fine precipitated Fe. CONSTITUTION:A Cu alloy consisting of 5-50wt% Fe and the balance Cu with inevitable impurities or further contg. 0.02-1.5% Zr and 0.005-0.25% P is refined. The alloy is rolled or forged and heat treated to form a structure contg. relatively coarse primary crystal Fe and fine precipitated Fe dispersed in the matrix. The surface of the resulting Cu alloy member is borided to form a hardened surface layer. This alloy member has superior wear resistance at high temp. and superior heat conductivity, so it is suitable for use in the manufacture of a casting mold, a rolling roll, etc.

Description

【発明の詳細な説明】 この発明は、すぐれた耐熱性と耐摩耗性を有し、特に高
温において耐摩耗性が要求される鉄鋼などの連続鋳造装
置の鋳型部材、金属溶湯から直接条材を製造する装置に
おける直接溶湯を受ける圧延ロール部材、電縫溶接装置
のリング部材、さらにプリント配線用ハンダ付は電極部
材などの製造に用いるのに適したほう化処理による表面
硬化層を有するCU合金部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention has excellent heat resistance and abrasion resistance, and can be used to cast mold members for continuous casting equipment such as steel, which require wear resistance especially at high temperatures, and to cast strips directly from molten metal. CU alloy members with a surface hardening layer by boriding suitable for use in the production of rolling roll members that directly receive molten metal in manufacturing equipment, ring members of electric resistance welding equipment, and electrode members for printed wiring soldering. It is related to.

従来、一般に、この種の部材には、熱伝導性。Conventionally, this type of member generally has thermal conductivity.

耐熱性、および耐摩耗性が要求されることから、CUに
合金成分として少量のCr、 Ti 、 Be、 Zr
などを含有させ、熱処理を施して析出硬化させた析出硬
化型Cu合金製のものや、CuまたはCu合金部材の表
面に硬質Crメッキを施したものなどが知られているが
、前者の析出硬化型CU合金部材においては、最も硬さ
のあるCu−Be合金でも高々ビッカース硬さくHv)
 : 300種度を示すにずきず1.j、た後者の硬質
Crメッキ部材においては、熱応力や外部応力によって
Crメッキ層に割れが生じたり、これが剥離したりし、
満足な性能を長期に頁って発揮し得ないのが現状である
Since heat resistance and wear resistance are required, small amounts of Cr, Ti, Be, and Zr are added to CU as alloy components.
There are also known ones made of precipitation-hardened Cu alloys, which are heat-treated and precipitation-hardened, and those made of hard Cr plating on the surface of Cu or Cu alloy members. For type CU alloy members, even the hardest Cu-Be alloy has a Vickers hardness (Hv).
: Izukizu with a degree of 300 seeds 1. j. In the latter hard Cr plated parts, the Cr plating layer may crack or peel off due to thermal stress or external stress.
The current situation is that satisfactory performance cannot be achieved over a long period of time.

そこで、本発明者等は、上記のような分野においてすぐ
れた耐熱性と耐摩耗性(以下高温耐摩耗性という)を示
す部材を得べく、特に熱伝導性の面からCu合金の適用
は不可欠であることをふまえて研究を行なった結果、こ
れらの部材を、重量%で、Fe:5〜50%を含有し、
さらに必要に応じてZr: 0.02〜1.5%および
P : 0.005〜0.25悌のうちの1種または2
種を含有し、残りがCuと不可避不純物からなる組成で
構成すると共に、これに熱処理を施して、相対的に粗大
な初晶Fe(凝固過程で晶出)と微細な析出Fe(熱処
理後形成)とが素地中に均一に分散した組織をもつもの
とし、この場合、初晶Feはビッカース硬さくl1v)
:220を有するが、素地の強1ヒにはあまり関与せず
、一方析出FeはHv:1301.か示さないが、素地
の強化に著しく役立つものであり、このような組成およ
び組織を有するCU合金部材の表面にほう化処理を施す
と、表面より拡散したBが主として初晶Feと反応して
ほう化Feを形成するようになり、この場合析出Feが
ほう化Feとなった素地部分はさほど硬さが上らず、H
v:200種度を示すにすぎないが、初晶Feがほう化
Feとなった部分は■(v: 500〜1100の著し
く高い硬さを示すようになり、この結果の表面硬化CU
合金部材は、Feの高い含有量と相まってすぐれた高温
耐摩耗性をもつようになるという知見を得たのである。
Therefore, in order to obtain a member that exhibits excellent heat resistance and wear resistance (hereinafter referred to as high-temperature wear resistance) in the above-mentioned fields, the present inventors have determined that the application of Cu alloy is essential, especially from the aspect of thermal conductivity. As a result of conducting research based on this fact, it was found that these members contained Fe: 5 to 50% by weight%,
Furthermore, if necessary, one or two of Zr: 0.02 to 1.5% and P: 0.005 to 0.25%.
The composition contains seeds, and the rest is Cu and unavoidable impurities, and is heat-treated to form relatively coarse primary Fe (crystallized during the solidification process) and fine precipitated Fe (formed after heat treatment). ) is uniformly dispersed in the matrix, and in this case, the primary Fe has a Vickers hardness l1v)
:220, but it does not contribute much to the strength of the substrate, while the precipitated Fe has a Hv:1301. Although it is not shown, it is extremely useful for strengthening the base material, and when boriding is applied to the surface of a CU alloy member having such a composition and structure, B diffused from the surface mainly reacts with primary crystal Fe. In this case, the hardness of the base part where the precipitated Fe becomes borated Fe does not increase much, and H
Although it only shows a hardness of v: 200, the part where the primary crystal Fe becomes borated Fe shows extremely high hardness (v: 500 to 1100), and the resulting surface hardening CU
It was discovered that alloy members have excellent high-temperature wear resistance when combined with a high Fe content.

この発明は、」−記知見にもとづいて々されたものであ
って、重量%で、Fe:5〜50受を含有し、必要に応
じてZr:002〜1.5%およびP :0.005〜
025%のうちの1種または2種を含有し、残りがCu
と不可避不純物からなる組成、並びに素地中に相対的に
粗大な初晶Feと微細な析出)・′eとが分散した組織
を有するCu合金部材の表面に、はう化処理による表面
硬化層を形成して々る高温耐摩耗性にすぐれた表面硬化
Cu合金部材に特徴を有するものである。
This invention was developed based on the above findings, and contains Fe: 5 to 50% by weight, Zr: 002 to 1.5% and P: 0.0% as necessary. 005~
025%, and the rest is Cu.
A surface hardening layer is formed by a fertilization treatment on the surface of a Cu alloy member, which has a composition consisting of 100% and unavoidable impurities, and a structure in which relatively coarse primary Fe crystals and fine precipitates) and 'e are dispersed in the matrix. It is characterized by a surface-hardened Cu alloy member that is formed with excellent high-temperature wear resistance.

つぎに、この発明の表面硬化Cu合金部材において、成
分組成範囲を」1記の通りに限定した理由を説明する。
Next, the reason why the composition range of the surface-hardened Cu alloy member of the present invention is limited to the range described in 1 will be explained.

(a)  Fe FeD3E分には、その一部が、上記の通り相対的に粗
大な初晶Feとして凝固時に晶出し、この初晶Ji’e
が後工程で施されるほう化処理によってほう化D’ e
となり、部材表面の硬さを高めて耐摩耗性をとしく向」
ニさせる作用があるほか、他の一部が熱処理によって微
細な析出11“eとして析出し、部イ2素地の強度を向
上させる作用があり、さらに部材の耐熱性を向上させる
作用があるが、その含有量−が5%未満では、特に初晶
Feの晶出が不十分で、はう化処理による表面硬さ向」
二をはかることができず(初晶Feが存在しない場合、
Cuはほう化物を形成しないので、はう化処理により部
材の表面映さを著しく向」二させることは不可能である
)、一方50係を越えて含有させることは、Cu合金溶
製」−困難を伴うばかりでなく、延性が低下して加工性
が損なわれるようになることから、その含イー1”j、
+c ’f5〜50%と定めた。
(a) In FeD3E, a part of it crystallizes as relatively coarse primary Fe crystals during solidification as described above, and this primary crystal Ji'e
is borated by the boriding treatment performed in the subsequent process D' e
This increases the hardness of the material surface and improves wear resistance.
In addition to having the effect of increasing the heat resistance of parts, some other parts are precipitated as fine precipitates 11"e through heat treatment, and have the effect of improving the strength of the substrate, and further improving the heat resistance of the member. If the content is less than 5%, the crystallization of primary Fe is insufficient, and the surface hardness due to fertilization treatment is reduced.
(If primary Fe does not exist,
Since Cu does not form borides, it is impossible to significantly improve the surface roughness of the component by fertilization treatment.On the other hand, it is difficult to contain more than 50% Cu alloy. Not only is this accompanied by a decrease in ductility, which impairs workability,
+c' f5~50%.

(b)  Zr Zrの含有によって部材の200〜600℃の温度範囲
における延性が改善されるようになり、これに伴って耐
熱疲労割れ特性が向上するようになるので、これらの特
性が要求される場合に必要に応じて含有されるが、その
含有量が0.02%未満では前記特性改善に所望の効果
が得られず、一方1、5%を越えて含有させてもより一
層の向」二効果が現われないばか9でなく、溶製が困難
になると共に、加工性も劣化するようになることから、
その含有量を0.02〜0.25%と定めた。
(b) Zr The inclusion of Zr improves the ductility of the member in the temperature range of 200 to 600°C, and accordingly improves the thermal fatigue cracking resistance, so these properties are required. However, if the content is less than 0.02%, the desired effect of improving the above-mentioned properties cannot be obtained, while if the content exceeds 1.5%, the improvement will be even greater. This is not an idiot 9 where the two effects do not appear, but it becomes difficult to melt and the processability also deteriorates.
Its content was determined to be 0.02 to 0.25%.

(c)  ’p P成分には、鋳塊に偏析が発生するのを抑制するほか、
初晶として晶出するFe f均一に、かつ微細に分散さ
せ、もって部材の機械曲弾jすを向」ニさせる作用があ
るので、特に高強度が要求される場合に必要に応じて含
有されるが、その含有量が0、 OO5%未満では所望
の強度向」−をはかることができず、一方0.25%を
越えて含有させると熱伝導性が低下するようになること
から、その含有量を0005〜025%と定めた。
(c) 'p In addition to suppressing the occurrence of segregation in the ingot, the P component has the following properties:
Fe, which crystallizes as primary crystals, has the effect of uniformly and finely dispersing the material, thereby inhibiting mechanical bending of the component, so it may be included as necessary when particularly high strength is required. However, if the content is less than 0.00%, the desired strength cannot be achieved, while if the content exceeds 0.25%, the thermal conductivity will decrease. The content was determined to be 0005% to 025%.

なお、この発明の表面硬化Cu合金部材においては、鋳
塊清浄fヒをはかる目的で(脱酸剤として)、いずれも
001〜02%のCa、 Li 、  およびMgのう
ちの1種または2種以」−をそれぞれ含有させる場合が
ある。
In addition, in the surface hardened Cu alloy member of the present invention, one or two types of Ca, Li, and Mg are added in an amount of 001 to 02% for the purpose of cleaning the ingot (as a deoxidizing agent). ``-'' may be included respectively.

つぎに、この発明の表面硬化Cu合金部拐を実施例によ
り具体的に説明する。
Next, the surface-hardened Cu alloy part of the present invention will be specifically explained using examples.

実施例 l 高周波誘導炉を用い、真空雰囲気中、黒鉛るつぼ内で、
それぞれ第1表に示される成分組成をもったCu合金溶
湯を5 kgづつ調製した後、インゴットに金型鋳造し
、これに面削、熱間;殺造、および熱間圧延を施して板
厚:10mmの熱延板とし、ついで、との熱延板より幅
:25mmX長さ、250mmの寸法をもった試験片を
切出し、この試験片に、予め黒鉛るつぼ内で加熱溶融し
て900℃に保持しである溶融フラックス(組成:重量
%で、F34C二80%+ H3BO3: l 0%、
 Na2B40□: 10%)中に6時間浸漬のほう化
処理を施した後、大気中に取出して直ちに水冷し、最終
的に温度:470℃に2時間保持の条件で時効処理を施
すことによって、本発明表面硬化Cu合金板材1〜10
をそれぞれ製造した。
Example 1 Using a high frequency induction furnace, in a graphite crucible in a vacuum atmosphere,
After preparing 5 kg of each Cu alloy molten metal having the composition shown in Table 1, it was mold-cast into an ingot, which was subjected to face milling, hot finishing, and hot rolling to obtain a plate thickness. : A 10 mm hot-rolled plate was then cut out from the hot-rolled plate with dimensions of 25 mm in width and 250 mm in length. The molten flux (composition: in weight %, F34C2 80% + H3BO3: l 0%,
After performing a boriding treatment by immersion in Na2B40□: 10%) for 6 hours, it was taken out into the atmosphere and immediately cooled with water, and finally aged at a temperature of 470°C for 2 hours. Surface hardened Cu alloy plate materials 1 to 10 of the present invention
were manufactured respectively.

また、比較の目的で、成分組成範囲をそれぞれ第1表に
示されるものとし、かつ−に記のほう化処理を行なわな
い以外は、同一の条件で従来Cu合金板材1〜4を製造
した。さらに、比較の目的で前。
Moreover, for the purpose of comparison, conventional Cu alloy sheets 1 to 4 were manufactured under the same conditions except that the composition ranges were as shown in Table 1 and the boriding treatment described in - was not performed. Additionally, for comparison purposes.

記従来Cu合金板材4の無酸素銅のものには通常の条件
で硬質Crメッキを施し、これを従来Crメッキcu合
金板材とした。
The oxygen-free copper of the conventional Cu alloy plate material 4 was hard Cr plated under normal conditions, and this was used as the conventional Cr-plated Cu alloy plate material.

ついで、この結果得られた各種の板材について、表面最
高硬さおよび板厚中央部最低硬さくビッカース硬さ)を
測定すると共に、片持ち曲げ試験を行ない、表面割れが
発生する曲げ角度を測定した。
Next, for the various plate materials obtained as a result, the maximum surface hardness and the minimum hardness at the center of the plate thickness (Vickers hardness) were measured, and a cantilever bending test was conducted to measure the bending angle at which surface cracking occurs. .

これらの測定結果を第1表に合せて示した。These measurement results are also shown in Table 1.

第1表に示される結果から、本発明表面硬化Cu合金板
材1〜10は、いずれも従来Cu合金板制御〜4に比し
て表面硬さが一段と高く、かつ従来CrメッキCu合金
板材と同等もしくはこれυlの署しく高い表面硬さをも
つことがわかる。また本発明表面硬化Cu合金板材1〜
10における表面硬化層は、従来CrメッキCu合金板
材におけるCrメッキ層に比してすぐれた密着性と靭性
をもつことが明らかである。
From the results shown in Table 1, the surface hardened Cu alloy plates 1 to 10 of the present invention all have higher surface hardness than the conventional Cu alloy plates Control to 4, and are equivalent to the conventional Cr-plated Cu alloy plates. Or it can be seen that it has a significantly high surface hardness of υl. In addition, the surface hardened Cu alloy plate material 1 of the present invention
It is clear that the surface hardened layer in No. 10 has superior adhesion and toughness compared to the Cr plating layer in the conventional Cr-plated Cu alloy plate material.

実施例 2 高周波誘導炉を用い、真空雰囲気中、黒鉛るつぼ内で、
それぞれ第2表に示される成分組成をもったCυ合金溶
湯を250 kgづつ溶製した後、インコ゛ットに鋳造
し、このインゴットを熱間鍛造にて断面: ]、 70
韮×長さニア50mmの\」法をもった角柱洞とし、つ
いでこれに機械加工を加えて上部内径:135@mX下
部内径:134罷×外径:155mm0X長さ:690
mmの寸法をもったテーパー付チューブラモルードに仕
」二げ、引続いて、このチューブラモルードに、予め黒
鉛るつぼ内で加熱溶融して950℃に保持しである溶融
フラックス(組成:重量%で、B4C: 80%、 H
31303: 10%、 Na2B4O7: 10%)
中に6時間浸漬のほう化処理を施した後、大気中に取出
して直ちに水冷し、最終的に大気雰囲気中、温度:47
5℃に2時間保持の条件で時効処理を施すことによって
、本発明表面硬化Cu合金シJ型部材1〜10をそれぞ
れ製造した。
Example 2 Using a high frequency induction furnace, in a graphite crucible in a vacuum atmosphere,
After melting 250 kg of each Cυ alloy molten metal having the composition shown in Table 2, it was cast into an ingot, and this ingot was hot forged to have a cross section: ], 70
A prismatic cavity with the \" method of 鮮×length near 50mm was made, and then machining was added to this to create an upper inner diameter: 135@mX lower inner diameter: 134 striations×outer diameter: 155mm×length: 690
A tapered tubular mold with a dimension of So, B4C: 80%, H
31303: 10%, Na2B4O7: 10%)
After being subjected to boriding treatment by immersion in the air for 6 hours, it was taken out into the atmosphere and immediately cooled with water, and finally in the air at a temperature of 47
Surface-hardened Cu alloy J-shaped members 1 to 10 of the present invention were manufactured by aging at 5° C. for 2 hours.

第   2   表 また、比較の目的で、成分組成範囲をそれぞれ第2表に
示されるものとし、かつ上記のほう化処理を行なわない
以外は、同一の条件で従来Cu合金鋳型部材1〜4を製
造した。
Table 2 For the purpose of comparison, conventional Cu alloy mold members 1 to 4 were manufactured under the same conditions except that the component composition ranges were as shown in Table 2 and the above-mentioned boriding treatment was not performed. did.

ついで、この結果イ1jられた本発明表面(1炭化Cu
合金鋳型部材1〜10および従来Cu合金鋳型部1g1
〜4を用いて、鋳造鋼種: SUS 304(ステンレ
ス鋼)、1チヤージの鋳造鋳込み量:301,0月の条
件で連続鋳造試験を行ない、(上部内径 135myn
0−下部内径: 134mrX” )÷2 = 0.5
 H77Hの内面テーパが0.25 rar/LK 1
!::耗するまでのチャーノ数を測定した。この測定結
果を第2表に合せて示した。
Next, as a result of this, the surface of the present invention (Cu monocarbide)
Alloy mold members 1 to 10 and conventional Cu alloy mold part 1g1
A continuous casting test was conducted using 4 to 4 under the conditions of casting steel type: SUS 304 (stainless steel), casting amount per charge: 301,0 months, (upper inner diameter 135 myn
0-Lower inner diameter: 134mrX”)÷2 = 0.5
The inner taper of H77H is 0.25 rar/LK 1
! :: The number of Cianos until wear was measured. The measurement results are also shown in Table 2.

第2表に示される結果から、本発明表面硬化Cu合金鋳
型部材1〜10は、いずれもすぐれた高温耐摩耗性を有
するので、従来Cu合金釘j型部利」〜4に比して著し
く長い使用寿命を示すことが明らかである。
From the results shown in Table 2, the surface-hardened Cu alloy mold members 1 to 10 of the present invention all have excellent high-temperature abrasion resistance, and therefore have a significantly higher efficiency than the conventional Cu alloy nails J-shaped parts 1 to 4. It is clear that it has a long service life.

実施例 3 高周波誘導炉を用い、真空雰囲気中、黒鉛るつぼ内で、
それぞれ第3表に示される成分組成金もつたCu合金溶
湯を100kgづつ溶製した後、インゴットに鋳造し、
このインゴットを熱間鍛造にて外径:2101fiX長
さ:220 mmの寸法をもった円柱材に加工し、この
円柱材より外径:200mm×肉厚:30mmX長さ:
200m1の寸法をもったスリーブ材ヲ削シ出し、つい
でこのスリーブ材に、予め黒鉛るつぼ内で加熱溶融して
950℃に保持しである溶融フラックス(組成:重量係
で、B、C080%、  H3BO3: l 0%、 
Na2B4O7: 10%)中に6時間浸漬した後、大
気中に取出し、直ちに予め加熱溶融して480℃に保持
しである無水はう酸中に浸漬し、2時間保持のほう化処
理と時効処理を連続して施すことによって5本発明表面
硬化CU合金スリーブ材1〜3を製造した。3また、比
較の目的で、成分組成範囲を第3表に示されるものとし
、かつ]−記のほう化処理を行なわない以外は、同一の
条件で従来Cu台全全スリーブ材製造した。
Example 3 Using a high frequency induction furnace, in a graphite crucible in a vacuum atmosphere,
After melting each 100 kg of Cu alloy molten metal having the composition shown in Table 3, it was cast into an ingot.
This ingot was hot forged into a cylindrical material with dimensions of outer diameter: 2101 fi x length: 220 mm, and from this cylindrical material outer diameter: 200 mm x wall thickness: 30 mm x length:
A sleeve material with a size of 200 m1 was cut out, and then a molten flux (composition: by weight, B, C080%, H3BO3, which had been heated and melted in a graphite crucible and maintained at 950°C) was applied to this sleeve material. : l 0%,
After being immersed in Na2B4O7 (10%) for 6 hours, taken out into the atmosphere, immediately heated and melted in advance and held at 480°C, immersed in anhydrous balmic acid, and subjected to boration treatment and aging treatment for 2 hours. Five surface-hardened CU alloy sleeve materials 1 to 3 of the present invention were manufactured by successively applying the following steps. 3. For the purpose of comparison, conventional sleeve materials were manufactured on a Cu base under the same conditions except that the composition range was as shown in Table 3 and the boriding treatment described above was not performed.

ついで、この結果得られた本発明表面硬化CU合金スリ
ーブ材1〜3および従来Cu合金スリーブ材を、それぞ
れ2本を1組とし、溶湯から金属ストリップを直接鋳造
圧延する真空溶解鋳造面t′)2圧延装置の溶湯急冷圧
延用水冷ロールとして用い、]チャーソの鋳造圧延量:
1kg、  ロールの回転数:3 Or−plm−、製
品寸法:幅2 Omm X板11.j f、]乏1 m
mの条件でTl板を製造し、10チヤーソおj;び30
チヤージごとの製品Tl板の幅方向における最大板厚−
最小板厚(以下板厚差という)を測定すると共に、Tl
板表面荒れを観察し、さらにロール変形を評価する目的
でロール表面の凹凸を測定した。なおTl板表面荒れの
評価は、製造開始直後のTl板との比較において行ない
、これと同等のものを○印、肌荒れがかなシあるものを
X印で示した。またロール表面荒C いてロールの表面荒さを実測し、最大値−最小値にて行
なった。これらの結果を第3表に合せて示した。
Next, the resulting surface-hardened CU alloy sleeve materials 1 to 3 of the present invention and the conventional Cu alloy sleeve materials are each made into a set of two, and a vacuum melting casting surface t') is used to directly cast and roll a metal strip from the molten metal. Used as a water-cooled roll for quench rolling of molten metal in the 2-rolling device, Charso casting and rolling amount:
1kg, Roll rotation speed: 3 Or-plm-, Product dimensions: Width 2 Omm, X plate 11. j f,] scarcity 1 m
A Tl plate was manufactured under the conditions of 10 m and 30 m.
Maximum plate thickness in the width direction of product Tl plate per charge -
In addition to measuring the minimum plate thickness (hereinafter referred to as plate thickness difference), Tl
The roughness of the plate surface was observed, and the unevenness of the roll surface was also measured for the purpose of evaluating roll deformation. The surface roughness of the Tl plate was evaluated by comparing it with the Tl plate immediately after the production started, and those equivalent to this were marked with an ○, and those with slight roughness were marked with an X. In addition, the surface roughness of the roll was actually measured using the roll surface roughness C, and the results were calculated from the maximum value to the minimum value. These results are also shown in Table 3.

第3表に示される結果から明らかなように、本発明表面
硬化Cu合金スリーブ材1〜3においては、いずれも3
0チヤージ後においてもロール変形およびロール表面荒
れがきわめて少ないので、寸法精度が高く、かつ肌のき
れいな製品Tl板が得られるのに対して、従来(ハ」合
金スリーブ材においては、10チヤージ後においてすで
に著しいロール変形およびロール表面部J−シが発生し
ているので、製品T1板の寸法精度および表面性状はき
わめて悪いものになっており、11チヤーソで使J旧不
能に至るものであった。
As is clear from the results shown in Table 3, in all of the surface hardened Cu alloy sleeve materials 1 to 3 of the present invention,
Even after 0 charges, there is very little roll deformation and roll surface roughness, so a product Tl plate with high dimensional accuracy and a clean surface can be obtained. Since significant roll deformation and roll surface cracking had already occurred, the dimensional accuracy and surface quality of the product T1 plate were extremely poor, and it became unusable after 11 years.

]−述のように、この発明の表面硬化Co合金部材は、
特にCu合金累朋中に分散するイ目対的に粗大な初晶F
eをほう住処jワによりきわめて高い硬さを有するほう
化Feとした表面硬化層によって、すぐれた高温耐摩耗
性を有するようになり、かつ熱伝導性にもすぐれている
ので、これらの特性が要求される上記の用途に使用した
場合に著しく長期に亘ってすぐれた性能を発揮するので
ある。
]-As mentioned above, the surface hardened Co alloy member of the present invention has the following characteristics:
In particular, coarse primary F crystals are dispersed in Cu alloys.
The hardened surface layer made of Fe boride, which has extremely high hardness, provides excellent high-temperature wear resistance and excellent thermal conductivity. When used in the above-required applications, it exhibits excellent performance over an extremely long period of time.

出願人  三菱金属株式会社Applicant: Mitsubishi Metals Corporation

Claims (1)

【特許請求の範囲】 (1)Fe:5〜50重量係重量布し、残りがCuと不
可避不純物からなる組成、並びに素地中に相対的に粗大
な初晶Feと微細な析出Feとが分散した組織を有する
Cu合金部材の表面に、はう化処理による表面硬化層を
形成してなる、すぐれた高温耐摩耗性を有する表面硬化
Cu合金部材。 (2)  Fe: 5〜50重量%を含有し、さらにZ
r:0.02〜152〜15重量%、残りがCuと不可
避不純物からなる組成、並びに素地中に相対的に粗大な
初晶Feと微細な析出Feとが分散した組織を有するC
u合金部材の表面に、はう化処理による表面硬化層を形
成して々る、すぐれた高温耐摩耗性を有する表面硬化C
u合金部材。 (31Fe: 5〜50重量%を含有し、さらにP:0
005〜025005〜025重量%がCuと不1jJ
婢不純物からなる組成、並びに素地中に相対的に粗大な
初晶Feと微細な析出Feとが分散した組織を有するC
u合金部セの表面に、はう化処理による表面硬化層を形
成してなる、すぐれた高温耐摩耗性を有する表面硬化C
u合金部材。 (4)  Fe: 5〜50重g1%を含有し、さらに
Zr。 002〜1.5重量%とP:0.005〜0.25 :
iI+、’、 fi %を含有し、残りがCuと不可避
不純物からなる組成、並びに素地中に相対的に粗大な初
晶Feと微細な析出Feとが分散した組織を有するCu
合全金部41の表面に、はう化処理による表面硬化層を
形成してなる、すぐれた高温耐摩耗性を有する表面硬化
CLI合金部材。
[Scope of Claims] (1) Fe: composition with a weight distribution of 5 to 50, with the remainder being Cu and unavoidable impurities, and relatively coarse primary Fe and fine precipitated Fe dispersed in the matrix. A surface-hardened Cu alloy member having excellent high-temperature wear resistance, which is obtained by forming a surface-hardening layer by fertilizing treatment on the surface of a Cu alloy member having a hardened structure. (2) Fe: Contains 5 to 50% by weight, and further contains Z
r: 0.02 to 152 to 15% by weight, the remainder being Cu and unavoidable impurities, and C having a structure in which relatively coarse primary Fe crystals and fine precipitated Fe are dispersed in the matrix.
Surface hardening C has excellent high-temperature wear resistance by forming a surface hardening layer on the surface of the u-alloy member by fertilization treatment.
u alloy member. (Contains 31Fe: 5 to 50% by weight, and further contains P: 0
005~025005~025% by weight is Cu and non-1jJ
C having a composition consisting of dirty impurities and a structure in which relatively coarse primary Fe and fine precipitated Fe are dispersed in the matrix.
Surface-hardened C with excellent high-temperature wear resistance, formed by forming a surface-hardened layer on the surface of the u-alloy part C by fertilizing treatment.
u alloy member. (4) Fe: Contains 5 to 50 g1% by weight, and further contains Zr. 002-1.5% by weight and P: 0.005-0.25:
Cu containing iI+,', fi %, with the remainder consisting of Cu and unavoidable impurities, and a structure in which relatively coarse primary Fe crystals and fine precipitated Fe are dispersed in the matrix.
A surface-hardened CLI alloy member having excellent high-temperature wear resistance, in which a surface-hardened layer is formed on the surface of the alloy part 41 by a fertilizing treatment.
JP15278682A 1982-09-03 1982-09-03 Surface hardened cu alloy member with superior wear resistance at high temperature Pending JPS5943859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278682A JPS5943859A (en) 1982-09-03 1982-09-03 Surface hardened cu alloy member with superior wear resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278682A JPS5943859A (en) 1982-09-03 1982-09-03 Surface hardened cu alloy member with superior wear resistance at high temperature

Publications (1)

Publication Number Publication Date
JPS5943859A true JPS5943859A (en) 1984-03-12

Family

ID=15548112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278682A Pending JPS5943859A (en) 1982-09-03 1982-09-03 Surface hardened cu alloy member with superior wear resistance at high temperature

Country Status (1)

Country Link
JP (1) JPS5943859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
CN1053706C (en) * 1997-08-29 2000-06-21 鞍山钢铁集团公司 Dissolving casting technology for chromium zirconium copper slab used for continuous casting crystallizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126946A (en) * 1982-01-25 1983-07-28 Toyota Central Res & Dev Lab Inc Manufacture of copper alloy containing dispersed boride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126946A (en) * 1982-01-25 1983-07-28 Toyota Central Res & Dev Lab Inc Manufacture of copper alloy containing dispersed boride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
CN1053706C (en) * 1997-08-29 2000-06-21 鞍山钢铁集团公司 Dissolving casting technology for chromium zirconium copper slab used for continuous casting crystallizer

Similar Documents

Publication Publication Date Title
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
CN111910103A (en) Titanium alloy sheet material and method for producing same
US20230011769A1 (en) Ni-BASED ALLOY, HEAT-RESISTANT AND CORROSION-RESISTANT COMPONENT, AND HEAT TREATMENT FURNACE COMPONENT
JPS6157390B2 (en)
JPH10168532A (en) Copper alloy for backing plate and its production
JP2019218617A (en) Aluminum alloy fin material for heat exchanger excellent in buckling resistance and manufacturing method therefor
JPS5943859A (en) Surface hardened cu alloy member with superior wear resistance at high temperature
JPS58197241A (en) High strength cu alloy with high electric conductivity and superior resistance to erosion due to molten metal
GB2169000A (en) Aluminium-base alloy for head drum of video cassette recorders
JPS5943858A (en) Surface hardened cu alloy member with superior wear resistance at high temperature
JP4891768B2 (en) Copper-nickel-silicon multiphase quenched substrate
JPS5943860A (en) Surface hardened cu alloy member having excellent resistance to high temperature abrasion
US2150094A (en) Treatment of nickel and nickel alloys and products resulting therefrom
JPS58197240A (en) Copper alloy for roll for rapidly cooling molten metal
JPS62182239A (en) Cu alloy for continuous casting mold
JPH01149934A (en) Heat-resistant continuous casting mold and its production
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance
JPS6144930B2 (en)
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance
JPS6123862B2 (en)
JPS62107050A (en) Fin material of al base alloy containing fe for heat exchanger
JPS60248854A (en) Copper alloy for roll for rapidly cooling molten metal
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPS61186441A (en) High strength copper alloy having high heat resistance and its manufacture
CN111739851A (en) High-purity aluminum sheet, method for producing same, and power semiconductor module using same