JPS5943801A - Manufacture of sintered aluminum or aluminum alloy material - Google Patents

Manufacture of sintered aluminum or aluminum alloy material

Info

Publication number
JPS5943801A
JPS5943801A JP15278882A JP15278882A JPS5943801A JP S5943801 A JPS5943801 A JP S5943801A JP 15278882 A JP15278882 A JP 15278882A JP 15278882 A JP15278882 A JP 15278882A JP S5943801 A JPS5943801 A JP S5943801A
Authority
JP
Japan
Prior art keywords
aluminum
sintered
sintering
aluminum alloy
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15278882A
Other languages
Japanese (ja)
Inventor
Masayuki Iijima
正幸 飯島
Hidetoshi Akutsu
阿久津 英俊
Masahiro Imai
正洋 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15278882A priority Critical patent/JPS5943801A/en
Publication of JPS5943801A publication Critical patent/JPS5943801A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain stably a high strengh sintered material by sintering each green compact of Al powder under a specified pressure so as to extend the sintering temp. range and to make various kinds of atmospheric gases applicable. CONSTITUTION:Green compacts 3 formed by press-molding powder of Al or an Al alloy as a starting material are held between surface plates 1, 1 while interposing partition plates 2 made of iron, ceramics or the like, and the compacts 3 are sintered under 0.1-10kg/cm<2> oil pressure or other pressure. By this method, the sintering temp. range can be extended, and a reducing gas typified by decomposed gaseous NH3 or air as well as a conventional high purity inert gas is applicable as the atmospheric gas.

Description

【発明の詳細な説明】 この発明は、強1隻の高いアルミニウム及びアルミニウ
ム合金焼結材を安定・確実に製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stably and reliably manufacturing highly durable aluminum and aluminum alloy sintered materials.

近年、軽量で耐食性にすぐれており、しかも寸法精朋の
良い製品を歩留り良く生産することができるということ
から、アルミニウム又はアルミニウム合金焼結材が、自
動車部品あるいは家庭電気製品部品等として広く使用さ
れるようになってきている。
In recent years, aluminum or aluminum alloy sintered materials have been widely used as parts for automobiles and home appliances because they are lightweight, have excellent corrosion resistance, and can produce products with high precision in dimension. It is becoming more and more common.

従来、純AI、、At−Cu合金、At−Mg合金。Conventionally, pure AI, At-Cu alloy, At-Mg alloy.

AL−8t合金、At−Cu−C合金等に代表されるア
ルミニウム系焼結材料の製造にあたっては、これらの原
料粉末が極めて酸化しやすく、そして酸化によって焼結
性が著しく阻害されることから、圧粉体成形後、例えば
液化N2ガス等の高純度不活性ガス中での焼結が行われ
ていた。
When manufacturing aluminum-based sintered materials such as AL-8t alloy and At-Cu-C alloy, these raw material powders are extremely susceptible to oxidation, and sinterability is significantly inhibited by oxidation. After compacting, sintering is performed in a high purity inert gas such as liquefied N2 gas.

しかしながら、このような条件下での焼結では、焼結可
能温度範囲が極めて狭く、そのため、製造された焼結体
の強度等の特性にバラツキが大きくなるという問題点か
あシ、さらに、焼結の際にガス量の変動による影響を敏
感に受けて、酸化、あるいはそれによる強度低下を来た
すので量産化が困難で、コスト高を招くという不都合を
解決することができなかった。
However, sintering under such conditions has the problem that the temperature range that can be sintered is extremely narrow, resulting in large variations in the strength and other properties of the manufactured sintered bodies. It has not been possible to solve the problem of difficulty in mass production and high costs because it is sensitive to changes in the amount of gas during bonding, resulting in oxidation or a decrease in strength due to this.

本発明者等は、上述のような観点から、このような雰囲
気ガスや力″L結温度等の焼結雰囲気の影特に左右され
ることなく、安定して、強度の高いアルミニウム及びア
ルミニウム合金焼結相全製造する方法を見出すべ(’ 
47F究を行った結果、アルミニウム及びアルミニウム
合金圧粉体の焼結時に、特定の圧力で加圧4行いながら
焼結すると、焼結温度範囲を拡大できるとともに、雰囲
気ガスとして従来の高純度不活伯:ガスのほか、N H
3分解ガスに代表される還元性ガス、さらには大気に至
るまでの各わ1のものが適用可能となシ、しかも高強I
■の焼結相を安定して製造することが可hrとなるとの
知見を得るに至ったのである。
From the above-mentioned viewpoint, the present inventors have achieved stable and high-strength aluminum and aluminum alloy sintering without being particularly affected by the effects of the sintering atmosphere, such as the atmospheric gas or the sintering temperature. We need to find a way to produce all the phased products ('
As a result of conducting 47F research, it was found that when sintering aluminum and aluminum alloy green compacts, the sintering temperature range can be expanded by pressurizing 4 times at a specific pressure. Haku: In addition to gas, NH
3 Reducing gases represented by decomposition gases, and even the atmosphere, can be applied, and high strength I
We have come to the knowledge that it takes only a few hours to stably produce the sintered phase (2).

この発明は、上記知見に基づいてなされたものであp1
アルミニウム又はアルミニウム合金931ト結材の製造
にあたって、原料粉末をゾレス成11*1〜だ後、加圧
カニ0.1〜10 kf/cnの下で焼結することによ
って、強度の酋いアルミニウム又はアルミニウム合金焼
結材を製造することに特徴を有するものである。
This invention was made based on the above knowledge, p1
In the production of aluminum or aluminum alloy 931 material, the raw material powder is subjected to Sores formation 11*1 and then sintered under a pressure of 0.1 to 10 kf/cn to form aluminum or aluminum with the highest strength. This method is characterized by producing a sintered aluminum alloy material.

なお、この発明において使用する原料粉末は、通常のア
ルミニウム系焼結材料製造に使用されるものがそのまま
使用でき、焼結雰囲気ガスも、強酸化性のもの以外であ
ればどのようなものでも適用することができる。
Note that the raw material powder used in this invention can be the one used in the production of ordinary aluminum-based sintered materials, and any sintering atmosphere gas can be used as long as it is not strongly oxidizing. can do.

また、この発明の方法において、焼結の際の加圧力を前
記のように0.1〜10 kg/cn と定めた理由は
、加圧力が0.1kp/cJ未満では、大気中や還元性
ガス(NHaガス等)中において圧粉体内部が酸化して
焼結が進行せず、従って焼結製品の強度が低下してしま
い、 Nzガス中においても低温での焼結が不可能と々
す、一方、加圧力がI Okg/Cr!を越えると、焼
結製品の寸法精Uが十分に得られない上、焼結製品の強
度向上、密度手打0、及び焼結温度低下により以上の改
善効果が0pめられないということにある。
In addition, in the method of this invention, the reason why the pressurizing force during sintering is set at 0.1 to 10 kg/cn as described above is that if the pressurizing force is less than 0.1 kp/cJ, In gases (NHa gas, etc.), the inside of the green compact is oxidized and sintering does not proceed, resulting in a decrease in the strength of the sintered product, and even in Nz gas, sintering at low temperatures may be impossible. On the other hand, the pressing force is I Okg/Cr! If it exceeds 0, the dimensional precision U of the sintered product cannot be obtained sufficiently, and the above improvement effect cannot be expected due to the improvement in strength of the sintered product, the density of manual hammering, and the reduction of the sintering temperature.

そして、この発明の方法において、焼L!i時に圧粉体
に所定の加圧力を加える一J=段とし7でにL5例えば
第1図、第2図、及び第3図に示されるような方法を採
用することができる。
And, in the method of this invention, baked L! At time i, a predetermined pressing force is applied to the powder compact in one J=stage and L5 at 7, for example, a method as shown in FIGS. 1, 2, and 3 can be adopted.

第1図に示される方法は、定盤1.1の間に、鉄板やセ
ラミ1ツク板等の仕切板2を介してアルミニウム又はア
ルミニウム合金圧粉体3をはさみ、油圧によって0.1
〜1o kg/cnの加圧力を付加するものであり、第
2図に示されるものは、第1図と同様に仕切板2を介し
て定盤1,1にはさんだ圧粉体3を、一端が揺動自在に
支持され他端に荷重を負荷されたてこ桿4によって0.
1〜10kv/mに調整した加圧力を加える方法を示す
ものである。
In the method shown in FIG. 1, an aluminum or aluminum alloy green compact 3 is sandwiched between surface plates 1.1 via a partition plate 2 such as an iron plate or a ceramic plate, and then
This applies a pressing force of ~10 kg/cn, and the one shown in FIG. 2 is similar to that shown in FIG. 0.0 by a lever rod 4 which is swingably supported at one end and a load is applied to the other end.
This shows a method of applying a pressurizing force adjusted to 1 to 10 kv/m.

なお、第2図において、5は支点を示す。そして、第3
図に示すものは、連続的な焼結を可能とする加圧方法に
関するものであシ、移動するベルト6上に定盤1を介し
て圧粉体3を載面し、その上に重*I!7を載せて加圧
力を加えるもので、0.1〜0.5kr/crI 程度
の加圧力を加えるものに適用できる。
In addition, in FIG. 2, 5 indicates a fulcrum. And the third
The one shown in the figure is related to a pressurizing method that enables continuous sintering, in which a powder compact 3 is placed on a moving belt 6 via a surface plate 1, and a weight is placed on top of it. I! 7 is applied to apply a pressing force, and can be applied to a device that applies a pressing force of about 0.1 to 0.5 kr/crI.

つぎに、この発明を実施例によって比較例と対比しなが
ら説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 まず、第1表に示されるような配合組成を有し、5.5
トン/LyIで圧縮された、寸法が7X51X91 (
m)の圧粉体(供試材)A−Cを用意した。
Example First, the composition was as shown in Table 1, and 5.5
Compressed with tons/LyI, dimensions are 7X51X91 (
m) Green compacts (test materials) A to C were prepared.

ついで、この圧粉体を、それぞれ第2表に示されるよう
な焼結条件で焼結し、板状の焼結材を得た。なお、この
場合に、加圧力が高くなる程焼結温度を下げることが司
能となり、また焼結時間も短縮されることはb゛うまで
もない。
Next, this green compact was sintered under the sintering conditions shown in Table 2 to obtain a plate-shaped sintered material. In this case, it goes without saying that the higher the pressure, the more effectively the sintering temperature can be lowered, and the sintering time can also be shortened.

このようにして得られた焼結材の引張強さを測定した結
果を、第2表に併せて示した。
The results of measuring the tensile strength of the sintered material thus obtained are also shown in Table 2.

第2表に示される結果からも、本発明方法1〜18によ
って製造されたアルミニウム及びアルミニウム合金焼結
材は、表層部以外は酸化されることなく高強度を有して
いるのに対して、加圧力が本発明方法の範囲より小さい
比較法19〜22及び24によって製造された焼結4=
4は、酸化等によって強度が低いものとなったシ、パラ
ツギの大きいものとなっていた。また、加圧力が本発明
方法の範囲よシ大きい比較法23によって1q令された
焼結材は、強度は本発明方法のものとほとんど変らない
けれども、寸法精度の悪いものであった。
The results shown in Table 2 also show that the aluminum and aluminum alloy sintered materials manufactured by methods 1 to 18 of the present invention have high strength without being oxidized except for the surface layer. Sintered 4= produced by comparative methods 19 to 22 and 24 where the applied force is lower than the range of the method of the invention
No. 4 had low strength due to oxidation, etc., and had large cracks. Furthermore, the sintered material sized by Comparative Method 23, in which the pressing force was greater than the range of the method of the present invention, had poor dimensional accuracy, although the strength was almost the same as that of the method of the present invention.

上述のように、この発明によれば、焼結カー囲気に左右
されることなく、 しかも広い焼結可III温度範囲の
下で、高強度のアルミニウム及びアルミニウム合金焼結
材を安定・確実に量産することができ、一般鉄系焼結材
に代って、制輪子、摺動材。
As described above, according to the present invention, high-strength aluminum and aluminum alloy sintered materials can be stably and reliably mass-produced without being affected by the sintering car surroundings and within a wide sinterable temperature range. It can be used as brake shoes and sliding materials in place of general iron-based sintered materials.

あるいはクラッチ材等へ適用される条flをさらに一歩
進めることができるなど、工業上有用な効果がもたらさ
れるのである。
Alternatively, industrially useful effects can be brought about, such as being able to take a step further in terms of the strip fl applied to clutch materials and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、及び第3図は、焼結局に圧粉体を加圧
するための方法を示した概念図であり、各図はそれぞれ
別の態様を示すものである。 し1面において、 1・・・定盤、      2・・・仕切板、3・・・
圧粉体、     4・・・てこ桿、5・・・支点、 
     6・・・ベルト、7・・・重錘。 出願人  三菱金属株式会社
FIG. 1, FIG. 2, and FIG. 3 are conceptual diagrams showing a method for pressurizing a green compact after sintering, and each figure shows a different embodiment. On one side, 1...surface plate, 2...partition plate, 3...
Green compact, 4... lever, 5... fulcrum,
6... Belt, 7... Weight. Applicant Mitsubishi Metals Corporation

Claims (1)

【特許請求の範囲】[Claims] アルミニウム又はアルミニウム合金焼結材の製造におい
て、原料粉末をプレス成形した後、加圧カニ(1,1〜
l Okf/crlの下で焼結することを特徴とする高
強度アルミニウム又はアルミニウム合金焼結材の製造方
法。
In the production of aluminum or aluminum alloy sintered materials, the raw material powder is press-molded and then press-molded (1,1~
1. A method for producing a high-strength aluminum or aluminum alloy sintered material, which comprises sintering under Okf/crl.
JP15278882A 1982-09-03 1982-09-03 Manufacture of sintered aluminum or aluminum alloy material Pending JPS5943801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278882A JPS5943801A (en) 1982-09-03 1982-09-03 Manufacture of sintered aluminum or aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278882A JPS5943801A (en) 1982-09-03 1982-09-03 Manufacture of sintered aluminum or aluminum alloy material

Publications (1)

Publication Number Publication Date
JPS5943801A true JPS5943801A (en) 1984-03-12

Family

ID=15548155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278882A Pending JPS5943801A (en) 1982-09-03 1982-09-03 Manufacture of sintered aluminum or aluminum alloy material

Country Status (1)

Country Link
JP (1) JPS5943801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078223A (en) * 1976-03-12 1985-05-02 ステンカ−・コ−ポレ−シヨン Igniter circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538963A (en) * 1978-09-12 1980-03-18 Ricoh Co Ltd Production of sintered parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538963A (en) * 1978-09-12 1980-03-18 Ricoh Co Ltd Production of sintered parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078223A (en) * 1976-03-12 1985-05-02 ステンカ−・コ−ポレ−シヨン Igniter circuit

Similar Documents

Publication Publication Date Title
US4351787A (en) Process for sintering reaction bonded silicon nitride
US3953221A (en) Fully dense ceramic article and process employing magnesium oxide as a sintering aid
JPS5943801A (en) Manufacture of sintered aluminum or aluminum alloy material
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
US6852275B2 (en) Process for production of intermetallic compound-based composite material
JP2006299364A (en) Fe-BASED SINTERED ALLOY
JP3320645B2 (en) Manufacturing method of ceramic sintered body
Narayanasamy et al. Some aspects of workability studies in cold forging of pure aluminium powder metallurgy compacts
JP3942288B2 (en) Method for producing setter material for firing ceramics
US20050118053A1 (en) Process for complex transient liquid phase sintering of powder metal
JPH06279124A (en) Production of silicon nitride sintered compact
JPS6021945B2 (en) Silicon nitride sintered body
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
JPH0453831B2 (en)
WO1988000934A1 (en) Boron nitride sinter and process for its production
JPS60145349A (en) Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JP2657616B2 (en) Cu-Mo sintered body, heat radiation member using the same, and semiconductor device provided with heat radiation member
SU1375671A1 (en) Method of producing pulverulent ceramic-metallic material
JPH0687664A (en) Production of silicon nitride sintered compact
SU1510981A1 (en) Method of producing thermal composite metal
JPH08218103A (en) Production of metallic porous body
KR100261058B1 (en) Method of manufacturing a sintered alloy material
JPS6341870B2 (en)
JP3223205B2 (en) Method for producing silicon nitride reaction sintered body
JPH07113102A (en) Production of sintered compact