JPS5942828B2 - Cavity exploration device in concrete - Google Patents

Cavity exploration device in concrete

Info

Publication number
JPS5942828B2
JPS5942828B2 JP54076053A JP7605379A JPS5942828B2 JP S5942828 B2 JPS5942828 B2 JP S5942828B2 JP 54076053 A JP54076053 A JP 54076053A JP 7605379 A JP7605379 A JP 7605379A JP S5942828 B2 JPS5942828 B2 JP S5942828B2
Authority
JP
Japan
Prior art keywords
concrete
formwork
bowl
vibration
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076053A
Other languages
Japanese (ja)
Other versions
JPS56652A (en
Inventor
孝之 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haseko Corp
Original Assignee
Hasegawa Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Komuten Co Ltd filed Critical Hasegawa Komuten Co Ltd
Priority to JP54076053A priority Critical patent/JPS5942828B2/en
Publication of JPS56652A publication Critical patent/JPS56652A/en
Publication of JPS5942828B2 publication Critical patent/JPS5942828B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、型枠の内方に打設されたコンクリートが硬化
する前に、その充填度合を型枠の外方から確認できるコ
ンクリート中の空洞部探査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting cavities in concrete that can check the degree of filling of concrete placed inside the formwork from outside the formwork before it hardens. be.

近年、コンクリートエ事における型枠(せき板)として
、耐アルカリ性ガラス繊維強化セメント(F、R、C)
の単板、F、R、Cを木毛セメント板又は木毛セメント
板と断熱材との複合材に吹付けた複合板、断熱材と合板
との複合材など、コンクリート面仕上げ材又は仕上げの
下地材を用いることにより、コンクリート打設後におけ
る型枠の解体撤去を不要にした工法が提案されている。
In recent years, alkali-resistant glass fiber reinforced cement (F, R, C) has been used as formwork (shedding boards) in concrete works.
Concrete surface finishing materials or finishes, such as veneer, F, R, and C sprayed onto wood wool cement boards or composite boards of wood wool cement boards and heat insulating materials, composite boards of heat insulating materials and plywood, etc. A construction method has been proposed that uses a base material to eliminate the need for dismantling and removing formwork after concrete is poured.

この工法は、型枠の解体撤去を行なわないため、施工工
程の簡素化、工期の短縮、工費の節減などの各面で、大
きな利点を期待できるものであるが、コンクリートの充
填度合(空洞部の有無)を目視確認できないため、充填
度が悪いにも拘らず、補修されずに竣工する虞れがあり
、このことが当工法の普及を防げるネックとなつている
。ところで、型枠内方に打設されたコンクリートは、硬
化が完了する以前の流動性がある状態においても、軟弱
な地盤の場合と同様に、その硬化度に応じた固有振動数
を持つが、そのコンクリート中に空洞部がある場合、当
該空洞部では、空気の疎密波による異なる固有振動数を
示す。
Since this construction method does not involve dismantling and removing the formwork, it can be expected to have great advantages in terms of simplifying the construction process, shortening the construction period, and reducing construction costs. Since it is not possible to visually check the presence or absence of the filling, there is a risk that the construction will be completed without being repaired even though the degree of filling is poor, and this is a bottleneck preventing the spread of this method. By the way, even in a fluid state before hardening is complete, the concrete poured inside the formwork has a natural frequency that corresponds to the degree of hardening, just like in the case of soft ground. If there is a cavity in the concrete, the cavity exhibits different natural frequencies due to air compression waves.

即ち、前者が固体の振動であるのに対し、後者は気体の
振動であり、振動の周波数にはかなりの差異がある。
That is, while the former is a vibration of a solid, the latter is a vibration of a gas, and there is a considerable difference in the frequency of the vibrations.

従つて、型枠の外方からコンクリートに衝撃を加えた際
、コンクリートの密実な部分と空洞部がある部分とでは
、発生する音(振動の周波数)に相当な差異がある。
Therefore, when an impact is applied to concrete from outside the formwork, there is a considerable difference in the sound (frequency of vibration) generated between a solid part of the concrete and a part with hollow parts.

そこで、本発明は、上記の現象を利用して型枠の外方か
らコンクリート中の空洞部を探査し、探査された空洞部
(充填不良部位)には再充填を行なつて密実なコンクリ
ート体が得られるようにし、もつて、上述した工法の普
及を可能ならしめるコンクリート中の空洞部探査装置を
提供するものである。
Therefore, the present invention makes use of the above-mentioned phenomenon to explore cavities in concrete from outside the formwork, and refills the discovered cavities (areas with insufficient filling) to form dense concrete. The object of the present invention is to provide an apparatus for detecting cavities in concrete, which enables the above-mentioned construction method to be widely used.

即ち、硬化したコンクリートにじかに衝撃を加えて、当
該コンクリートの振動数及び音響伝播速度を計測するこ
とにより、コンクリートの圧縮強度を測定する非破壊強
度試験法は、古くから提案されているが、この方法をコ
ンクリートと型枠に囲まれた空洞部の探査に応用するこ
とは困難である。
In other words, a nondestructive strength testing method has been proposed for a long time that measures the compressive strength of concrete by directly applying an impact to hardened concrete and measuring the vibration frequency and sound propagation velocity of the concrete. It is difficult to apply the method to the exploration of cavities surrounded by concrete and formwork.

何故なら、この方法は、固体の振動測定であり、それも
軽微な衝撃によるかすかな振動をキヤッチするわけで、
本来的に、外因による振動の影響を受けやすい。一方、
型枠がコンクリート面の仕上げ材や仕上げ下地材に兼用
されたコンクリート体における空洞部探査は、打設され
たコンクリートがまだ完全に固まらないらちに、つまり
、空洞部へのコンクリートの再充填が可能な時期に行な
わないと、その実用的意義がなく、従つて、隣接する工
事区域で施工されるコンクリート打設と並行して行なう
必要性が極めて大である。
This is because this method measures the vibration of solid objects, and it also captures the faint vibrations caused by slight impacts.
They are inherently susceptible to vibrations caused by external factors. on the other hand,
Cavity exploration in a concrete body where the formwork is used as a finishing material or finishing base material for the concrete surface can be performed while the poured concrete has not yet completely hardened, meaning that the cavity can be refilled with concrete. It has no practical significance unless it is carried out at the appropriate time, and therefore, it is extremely necessary to carry out this work in parallel with the concrete pouring that is being carried out in the adjacent construction area.

而して、コンクリート打設施工中のような環境下では、
隣接工事区域におけるコンクリート打設作業そのものに
よる振動のほか、重機の走行、作業員の歩行や資材の取
扱い等等による振動が極めて多く、これらの外的振動に
よる影響を除去できないのである。
Therefore, in an environment such as during concrete pouring,
In addition to the vibration caused by the concrete pouring work itself in the adjacent construction area, there is also an extremely large amount of vibration caused by the running of heavy machinery, the walking of workers, the handling of materials, etc., and the effects of these external vibrations cannot be eliminated.

また、実開昭52−10383号公報に見られる通り、
壁面タイルを打撃して、その打撃音から壁面タイルの剥
離を探査する装置も知られている。
Also, as seen in Utility Model Application Publication No. 52-10383,
There is also known a device that strikes a wall tile and detects peeling of the wall tile based on the sound of the strike.

この装置は、コンクリートとタイルが密着した部分と剥
離した(つまり、タイルの裏側に空洞部が生じている)
部分とで相当な差異がある音をキヤツチすることによつ
て剥離を探査するため、上述した固体振動の伝播速度を
計測する方法に比べる,と、外因による振動の影響は小
さいが、この装置をコンクリート打設施工中における型
枠内方の空洞部探査に用いることは実際上困難である。
即ち、この装置は、竣工後、年数を経た建物に使用する
ことを前提として考案されたものであつ,て、外壁の上
縁部をガイドレールにして走行するモノレール方式の台
車に、壁面に沿う縦杆を上下動自在に取り付け、この縦
杆の下端部に、壁面タイルに対する打撃手段と打撃音を
キヤツチする感知器とを露出した状態に取り付けた構造
となつて・いる。従つて、内壁、梁、柱に対しては勿論
、外壁に対しても、下階から上階へと順次、コンクリー
ト打設が行なわれる工事途中においては、台車のガイド
レールとなる壁部分が存在せず、装置をセツトすること
ができない。
This device prevents the concrete and tiles from coming into contact with each other (i.e., creating a cavity on the back side of the tile).
Since separation is detected by capturing sounds that vary considerably from part to part, the influence of vibrations caused by external causes is small compared to the method of measuring the propagation velocity of solid vibrations described above. In practice, it is difficult to use this method to detect cavities inside formwork during concrete pouring.
In other words, this device was devised with the assumption that it would be used in buildings that have been completed for many years. The structure is such that a vertical rod is attached so as to be movable up and down, and a means for hitting the wall tiles and a sensor for catching the sound of hitting are attached to the lower end of the vertical rod in an exposed manner. Therefore, during the construction process where concrete is poured sequentially from the lower floor to the upper floor, not only for the inner walls, beams, and columns, but also for the outer wall, there are parts of the wall that serve as guide rails for the trolley. The device cannot be set.

また、何らかの支持部材を用いて、装置をセツトしたと
しても、縦杆の下端部に、打撃手段と感知器とが外部に
露出した状態に取り付けられているので、工事中に生じ
る騒音の影響を受けやすいばかりでなく、打撃手段の作
動によつて生じる縦杆の振動が感知器に影響を及ぼす可
能性が大である。以上の観点から、本発明は、外壁、内
壁、梁、柱のいずれに対しても適用できる簡便な、しか
も、コンクリート打設施工中の様様な外因による振動、
騒音や型枠への打撃手段による振動に左右されることな
く、コンタリートが硬化する前に、型枠外方から空洞部
を探査できる装置を開発したものである。
Furthermore, even if the device is set using some kind of support member, the impact means and the sensor are attached to the lower end of the vertical rod so that they are exposed to the outside, so the impact of noise generated during construction can be avoided. Not only is it easy to receive vibrations, but the vibration of the vertical rod caused by the operation of the striking means is likely to affect the sensor. From the above points of view, the present invention is a simple method that can be applied to any of external walls, internal walls, beams, and columns.
We have developed a device that can explore cavities from outside the formwork before the contours harden, without being affected by noise or vibrations caused by the means of striking the formwork.

即ち、本発明によるコンタリート中の空洞部探査装置は
、打撃棒が軸芯方向移動自在に挿設された銃身状部分と
握り部分を備えた探査装置本体の前記銃身状部分の先端
部に、コンクリート面仕上げ材又は仕上げ下地材を兼ね
た型枠の外面に密着させることが可能な且つ防振効果と
遮音効果がある弾性材料製の椀状部材を設け、該椀状部
材の内部空間に面する前記型枠外面を前記打撃棒にて打
撃することにより生じる前記内部空間の空気の振動を感
知する感知器を、前記椀状部材によつて弾性支持された
状態に設け、該感知器に、その出力信号に基づいてコン
クリートと型枠に囲まれた空洞部の有無を判別する計器
を接続してなるものである。
That is, the cavity exploration device during contouring according to the present invention includes a barrel-shaped portion in which a striking rod is inserted so as to be movable in the axial direction, and a grip portion. A bowl-shaped member made of an elastic material that can be closely attached to the outer surface of the formwork and that also serves as a surface finishing material or finishing base material and has vibration-proofing and sound-insulating effects is provided, and faces the internal space of the bowl-shaped member. A sensor for sensing vibrations of the air in the internal space caused by hitting the outer surface of the formwork with the striking rod is provided in a state where it is elastically supported by the bowl-shaped member, and the sensor has a It is connected to a meter that determines the presence or absence of a cavity surrounded by concrete and formwork based on the output signal.

以下、本発明の実施例を説明する。Examples of the present invention will be described below.

先ず、コンクリート中の空洞部探査方法を工程順に説明
する。
First, a method for detecting cavities in concrete will be explained step by step.

()コンクリート面仕上け材又は仕上げ下地材を型枠(
せき板)としてコンクリートを打設し、このコンクリー
トが完全に硬化する以前に、つまり、充填不良部位への
再充填が可能である間に、型枠の外面に軽微な衝撃を与
えてコンクリートと型枠に囲まれた空洞部に空気の疎密
波を発生させ、この疎密波による内部からの振動により
型枠を振動させる。
() Concrete surface finishing material or finishing base material is applied to the formwork (
Before the concrete has completely hardened, that is, while it is possible to refill the defective areas, a slight impact is applied to the outside of the formwork to loosen the concrete and the formwork. Air compression waves are generated in the cavity surrounded by the frame, and the formwork is vibrated by the internal vibrations caused by the compression waves.

()上記の型枠の振動を、周辺の空気を媒体とする振動
(音)としてキヤツチする。
() The vibration of the formwork described above is captured as vibration (sound) using the surrounding air as a medium.

即ち、空洞部の空気の疎密波による型枠の振動に起因す
る外部空気の振動を高感度のマイクロフオンにより感知
する。(1)上記マイクロフオンによる出力信号の周波
数を測定する一方、充填度合の異なる複数個のコンクリ
ートによつて得られる同様な周波数を、予めデータとし
て実験的に得ておき、このデータと上記測定周波数とに
基づいて型枠の外方からコンクリートの充填度合(空洞
部の有無)を判別する。
That is, a highly sensitive microphone senses vibrations in the external air caused by vibrations of the formwork due to compressional waves in the air in the cavity. (1) While measuring the frequency of the output signal from the above-mentioned microphone, similar frequencies obtained from multiple pieces of concrete with different filling degrees are experimentally obtained in advance as data, and this data and the above-mentioned measurement frequency are obtained experimentally in advance. Based on this, the degree of concrete filling (presence or absence of a cavity) is determined from the outside of the formwork.

(5)空洞部の存在が探査された場合には、その部分に
コンクリートの再充填を行ない、これによつて型枠を解
体撤去することなく、密実なコンクリート体を得る。
(5) If the existence of a cavity is detected, the cavity is refilled with concrete, thereby obtaining a solid concrete body without dismantling and removing the formwork.

次に、上記方法に好適に用い得るコンクリート中の空洞
部探査装置の実施例を図面に基づいて説明する。
Next, an embodiment of a cavity exploration device in concrete that can be suitably used in the above method will be described based on the drawings.

図面は、コンクリート中の空洞部探査装置の−例を示し
、Aは打設されたコンクリート、Bはコンクリート面仕
上げ材又は仕上げの下地材を兼用する型枠である。
The drawings show an example of a device for detecting cavities in concrete, where A is poured concrete and B is a formwork that also serves as a concrete surface finishing material or a finishing base material.

1は、銃身状部分2、握り部分3、引き金4等を備え、
片手で持ち運び可能とした探査装置本体で、銃身状部分
2には圧縮ばね5により前方へ摺動付勢され、且つ、後
端部の摘み6aを圧縮ばね5に抗して後方へ引張ること
により、引き金4(又はこれに連動する部材でもよい。
1 includes a barrel-shaped portion 2, a grip portion 3, a trigger 4, etc.,
The main body of the exploration device is portable with one hand, and the barrel-shaped portion 2 is biased to slide forward by a compression spring 5, and by pulling the knob 6a at the rear end backward against the compression spring 5. , trigger 4 (or a member interlocked therewith).

)の一部と係合する係止部6bを有する打撃棒6が前後
に貫通した状態に挿設されている。また、銃身状部分2
の先端には、ゴムなど防振効果と遮音効果とがある弾性
材料製の椀状部材7が装着され、椀状部材7を型枠Bの
外面に密着させた状態で、引き金4を引くことにより、
打撃棒6の先端で、椀状部材7の内部空間Sに面する型
枠Bの外面に軽微な衝撃を与え、この衝撃により、コン
クリートAの持つ固有振動を伴う弾性波を発生させ、も
つて、コンクリートA中に空洞部がある場合には、該空
洞部に空気の疎密波が発生するように構成してある。尚
、衝撃を付与する際、打撃棒6が、型枠B外面の反撥と
圧縮ばね5の力とによつて、型枠B外面に対する衝突を
小きざみに繰り返すことがないように、圧縮ばね5が伸
びきつた状態において、打撃棒6先端と型枠B外面との
間に小間隙が形成されるように設定して、圧縮ばね5が
伸びきつた後は、打撃棒6が慣性により圧縮ばね5の力
に抗して前進し、型枠B外面に衝突した後、該面から離
れた位置に静止するように構成することが望ましい。
) A striking rod 6 having a locking portion 6b that engages with a part of the rod is inserted so as to penetrate from the front and back. Also, the barrel-shaped part 2
A bowl-shaped member 7 made of an elastic material such as rubber that has a vibration-proofing effect and a sound-insulating effect is attached to the tip of the mold B, and the trigger 4 can be pulled while the bowl-shaped member 7 is in close contact with the outer surface of the formwork B. According to
The tip of the striking rod 6 applies a slight impact to the outer surface of the formwork B facing the internal space S of the bowl-shaped member 7, and this impact generates an elastic wave accompanied by the natural vibration of the concrete A. If there is a cavity in the concrete A, the construction is such that air compression waves are generated in the cavity. When applying the impact, the compression spring 5 is used to prevent the impact rod 6 from repeatedly colliding against the outer surface of the formwork B in small increments due to the rebound of the outer surface of the formwork B and the force of the compression spring 5. When the compression spring 5 is fully extended, a small gap is formed between the tip of the striking rod 6 and the outer surface of the formwork B, and after the compression spring 5 is fully extended, the striking rod 6 is forced to release the compression spring due to inertia. It is desirable that the molding member move forward against the force of 5, collide with the outer surface of the formwork B, and then come to rest at a position away from the surface.

8は、空洞部に生じた空気の疎密波による型枠体の振動
を、空気を媒体とする振動(椀状部材内部の空気の振動
)として感知する感知器であり、具体的には高感度のマ
イクロフオンが使用されている。
8 is a sensor that detects the vibration of the formwork due to air compression waves generated in the cavity as vibration using air as a medium (vibration of the air inside the bowl-shaped member), and specifically, it is a sensor with high sensitivity. Microphones are used.

この感知器8は、できるだけ、打撃棒6の摺動、引き金
4の揺動等による余分な振動を拾わないように、図示の
通り、椀状部材7によつて弾性支持された状態に設けら
れている。9は感知器8の出力信号の増巾器、10は増
巾された出力信号と予め記憶させたデータとを比較分析
する周波数分析器、11は充填度の指示計であり、これ
ら9,10,11によつて形成される計器12も可搬型
に構成され、感知器8と電気的に結線されている。
As shown in the figure, this sensor 8 is provided in a state where it is elastically supported by a bowl-shaped member 7 so as to avoid picking up extra vibrations caused by sliding of the striking rod 6, swinging of the trigger 4, etc. as much as possible. ing. 9 is an amplifier for the output signal of the sensor 8; 10 is a frequency analyzer for comparing and analyzing the amplified output signal with data stored in advance; 11 is a filling degree indicator; , 11 is also configured to be portable and is electrically connected to the sensor 8.

13はばね力調節ナツト、14は打撃棒6の位置調節筒
である。
13 is a spring force adjustment nut, and 14 is a position adjustment tube for the striking rod 6.

上記の装置を使用すれば、型枠Bの所所に椀状部材7を
押し当て、引き金4を引くことによつて、コンクリート
中の空洞部を探査することができる。
By using the above-mentioned device, by pressing the bowl-shaped member 7 against a location on the formwork B and pulling the trigger 4, a cavity in the concrete can be explored.

本発明によるコンクリート中の空洞部探査装置は、上述
した構成よりなり、コンクリート面の仕上げ材又は仕上
げ下地材を兼ねた型枠の外面に、防振・遮音効果のある
弾性材料製の椀状部材を押し当てて密着させ、外部と隔
離された椀状部材の内部空間において、前記型枠外面を
打撃し、椀状部材内部空間の空気の振動を、椀状部材に
弾性支持された感知器によつて感知し、コンクリートと
型枠に囲まれた空洞部を探査するため、隣接区域で行な
われるコンクリート打設による振動、重機の走行、作業
員の歩行や資材の取扱い等による振動等、施工中の様々
な外因による振動・騒音に左右されることなく、しかも
、打撃棒の作動に伴う探査装置本体の振動が感知器に悪
影響を及ぼすことなく、空洞部を探査できる効果がある
。しかも、探査装置本体の握り部分を片手で握つて椀状
部材を型枠外面の任意の位置に押し当て、椀状部材の内
部空間に面する型枠外面に打撃力を与えるといつた簡単
な操作によつて空洞部探査を行なえ、外壁、内壁、梁、
柱のいずれに対しても適用可能である。
The device for detecting cavities in concrete according to the present invention has the above-mentioned configuration, and has a bowl-shaped member made of an elastic material with vibration-proofing and sound-insulating effects on the outer surface of the formwork, which also serves as a finishing material for the concrete surface or a finishing base material. The outer surface of the formwork is struck in the inner space of the bowl-shaped member isolated from the outside, and the air vibrations in the inner space of the bowl-shaped member are transmitted to a sensor elastically supported by the bowl-shaped member. In order to detect cavities surrounded by concrete and formwork, the system detects vibrations caused by concrete pouring in adjacent areas, vibrations caused by heavy machinery running, workers walking, material handling, etc. during construction. The cavity can be explored without being influenced by vibrations and noise caused by various external factors, and without the vibration of the exploration device body caused by the operation of the striking rod having an adverse effect on the sensor. Moreover, it can be easily done by grasping the grip part of the exploration device body with one hand, pressing the bowl-shaped member against any position on the outside of the formwork, and applying a striking force to the outside surface of the formwork facing the internal space of the bowl-shaped member. Cavities can be searched by operation, including outer walls, inner walls, beams,
It can be applied to any pillar.

また、前記椀状部材が弾性材料製で、型枠外面の打撃箇
所や感知器を外部から隔離して、防振・遮音する役目と
、探査装置本体から感知器への振動伝播を防止する防振
装置の役目とを果たすため、部材の兼用化により装置構
造が簡略化されるのである。
In addition, the bowl-shaped member is made of an elastic material, and has the role of isolating the impact area on the outer surface of the formwork and the sensor from the outside to provide vibration and sound insulation, as well as preventing vibration propagation from the main body of the exploration device to the sensor. In order to fulfill the role of a vibration device, the structure of the device is simplified by using multiple members.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すコンクリート中の空洞部
探査装置の構成図である。 A・・・・・・コンクリート、B・・・・・・型枠、S
・・・・・・内部空間、1・・・・・・探査装置本体、
2・・・・・・銃身状部分、3・・・・・・握り部分、
6・・・・・・打撃棒、7・・・・・・椀状部分、8・
・・・・・感知器、12・・・・・・計器。
The drawing is a configuration diagram of a cavity exploration device in concrete showing an embodiment of the present invention. A: Concrete, B: Formwork, S
...Inner space, 1...Exploration device main body,
2... Barrel-shaped part, 3... Grip part,
6...Blowing stick, 7... Bowl-shaped part, 8.
...sensor, 12...meter.

Claims (1)

【特許請求の範囲】[Claims] 1 打撃棒6が軸芯方向移動自在に挿設された銃身状部
2と握り部分3を備えた探査装置本体1の前記銃身部分
2の先端部に、コンクリート面仕上げ材又は仕上げ下地
材を兼ねた型枠Bの外面に密着させることが可能な且つ
防振効果と遮音効果がある弾性材料製の椀状部材7を設
け、該椀状部材7の内部空間Sに面する前記型枠B外面
を前記打撃棒6にて打撃することにより生じる前記内部
空間Sの空気の振動を感知する感知器8を、前記椀状部
材7によつて弾性支持された状態に設け、該感知器8に
、その出力信号に基づいてコンクリートと型枠に囲まれ
た空洞部の有無を判別する計器12を接続してなるコン
クリート中の空洞部探査装置。
1. At the tip of the gun barrel part 2 of the exploration device body 1, which is equipped with a gun barrel part 2 into which a striking rod 6 is movably inserted in the axial direction, and a grip part 3, there is provided a material that also serves as a concrete surface finishing material or a finishing base material. A bowl-shaped member 7 made of an elastic material that can be brought into close contact with the outer surface of the formwork B and has a vibration-proofing effect and a sound-insulating effect is provided, and the outer surface of the formwork B facing the internal space S of the bowl-shaped member 7 is provided. A sensor 8 for sensing the vibration of the air in the internal space S caused by hitting with the striking rod 6 is provided in a state where it is elastically supported by the bowl-shaped member 7, and the sensor 8 is provided with: This is a cavity exploration device in concrete, which is connected to an instrument 12 that determines the presence or absence of a cavity surrounded by concrete and formwork based on the output signal.
JP54076053A 1979-06-16 1979-06-16 Cavity exploration device in concrete Expired JPS5942828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076053A JPS5942828B2 (en) 1979-06-16 1979-06-16 Cavity exploration device in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076053A JPS5942828B2 (en) 1979-06-16 1979-06-16 Cavity exploration device in concrete

Publications (2)

Publication Number Publication Date
JPS56652A JPS56652A (en) 1981-01-07
JPS5942828B2 true JPS5942828B2 (en) 1984-10-17

Family

ID=13594030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076053A Expired JPS5942828B2 (en) 1979-06-16 1979-06-16 Cavity exploration device in concrete

Country Status (1)

Country Link
JP (1) JPS5942828B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883258A (en) * 1981-11-13 1983-05-19 Hitachi Zosen Hihakai Kensa Kk Detection for condition of rear surface of concrete wall
JPS6086983U (en) * 1983-11-21 1985-06-14 日立造船非破壊検査株式会社 Concrete wall back situation detection device
JPS60212569A (en) * 1984-04-06 1985-10-24 鹿島建設株式会社 Impact apparatus of delamination detector of wall surface tile
JPH0679017B2 (en) * 1985-01-22 1994-10-05 大成建設株式会社 Void probe
JPS6232362U (en) * 1985-08-13 1987-02-26
JPS63177753U (en) * 1987-05-08 1988-11-17
JPH1164305A (en) * 1997-08-27 1999-03-05 Taisei Corp Vibration exciting and receiving device for inspecting back of concrete wall
JP6392069B2 (en) * 2014-10-10 2018-09-19 古河機械金属株式会社 Sound inspection device
JP6826373B2 (en) * 2016-03-02 2021-02-03 古河機械金属株式会社 Inspection equipment

Also Published As

Publication number Publication date
JPS56652A (en) 1981-01-07

Similar Documents

Publication Publication Date Title
CN108254440B (en) Detection robot and method for detecting concrete-filled steel tube pouring quality by using same
JP4667228B2 (en) Pile inspection method and sensor crimping device
JPS5942828B2 (en) Cavity exploration device in concrete
CN101071125A (en) Method and apparatus for non-destructive detecting sprayed concrete strength
CA3007067C (en) Method and apparatus for non-destructive measurement of modulus of elasticity and/or the compressive strength of masonry samples
CN104594395B (en) A kind of method utilizing railway in operation roadbed side Bored Pile Foundation detection structure to carry out pile measurement
CN103868992A (en) Nondestructive testing method for concrete structure with single measurable surface
CN104677996A (en) Impact echo triggering and collection device
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JP2021050538A (en) Concrete placement method and formwork
JP3917359B2 (en) Nondestructive compression test method and nondestructive compression test equipment for concrete
CN115078532A (en) Quality impact echo detection device and method for concrete beam plate
CN204439598U (en) A kind of impact echo percussion and harvester
CN113639846A (en) Laser vibration test inspection method for detecting pasting quality of thin-plastering heat-preservation and heat-insulation system
JPH0658351B2 (en) Cavity detection device for concrete structures
JP2000028591A (en) Method for measuring void between reinforcing plate material and grout material or the like
JP2004037411A (en) Nondestructive compressive concrete strength measuring method and system
JP3742091B2 (en) Elastic wave input device and method for investigating defects in concrete structures using the elastic wave input device
JP2001289829A (en) Non-destructively measuring technique of concrete deterioration by impulse elastic wave
JP2003043018A (en) Elastic wave inputting device for nondesttructive inspection
CN106596300B (en) Device for detecting material strength by pendulum bob knocking method and material strength detection method
JP2020041879A (en) Impact elastic wave measuring method of cement hardened body
JP2003043020A (en) Condition measuring instrument for concrete
JP6315381B2 (en) Elastic wave input device and defect search method for concrete structure using the elastic wave input device
JP2002181951A (en) Method for non-destructively inspecting foundation pile