JP2002181951A - Method for non-destructively inspecting foundation pile - Google Patents

Method for non-destructively inspecting foundation pile

Info

Publication number
JP2002181951A
JP2002181951A JP2000379175A JP2000379175A JP2002181951A JP 2002181951 A JP2002181951 A JP 2002181951A JP 2000379175 A JP2000379175 A JP 2000379175A JP 2000379175 A JP2000379175 A JP 2000379175A JP 2002181951 A JP2002181951 A JP 2002181951A
Authority
JP
Japan
Prior art keywords
foundation
foundation pile
accelerometer
column
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000379175A
Other languages
Japanese (ja)
Inventor
Hideyuki Mano
英之 真野
Shinya Nishio
伸也 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2000379175A priority Critical patent/JP2002181951A/en
Publication of JP2002181951A publication Critical patent/JP2002181951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp the conditions of existing foundation piles in a state where an existing structure exists. SOLUTION: The range of inspection is subdivided in a mesh shape in such a way as to maintain any given constant shape over a range in which the grasping of the location of a foundation pipe 5 is desired with a foundation slab main body 2 is present. Accelerometers 1 are arranged at the points of intersection in the set mesh, and a light hammer 10 is used to hit the foundation slab main body 2 close to the accelerometers 1. Frequency analysis is performed on waveforms detected by the accelerometers 1. In the case that some frequency components are conspicuously detected, it is determined that the foundation pile 5 is not present under the foundation slab main body 2. These operations are repeated on every mesh to determine the presence or absence of the foundation pile 5 within the range of inspection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】既存の基礎杭の状況(位置、
径等)を非破壊状態で調査する基礎杭の非破壊調査方法
に関する。
BACKGROUND OF THE INVENTION The condition (position,
The present invention relates to a non-destructive investigation method for foundation piles for investigating a diameter and the like in a non-destructive state.

【0002】[0002]

【従来の技術】従来の非破壊調査は、人工的に起こした
弾性波(地震波)の伝播速度から、地下の構造を推定す
る方法であり、基礎杭の状況を調査するには基礎杭の頭
部が露出している必要がある。
2. Description of the Related Art Conventional nondestructive investigation is a method of estimating an underground structure from the propagation speed of an artificially generated elastic wave (seismic wave). The part must be exposed.

【0003】[0003]

【発明が解決しようとする課題】既存構造物が存在する
状況において、弾性波を用いる既往の非破壊検査は、基
礎スラブ本体と基礎杭の頭部との間で断面変化により反
射波が生じて、基礎杭の先端から帰ってくる波が微弱な
ものとなるとともに、反射波によるノイズの中に埋もれ
てしまうため、波形が明瞭にならず構造物の解体後でな
いと調査が行えなかった。
In a situation where an existing structure exists, a conventional non-destructive inspection using an elastic wave is based on the fact that a reflected wave is generated due to a cross-sectional change between the foundation slab body and the head of the foundation pile. However, the waves returning from the tip of the foundation pile became weak and were buried in the noise due to the reflected waves, so the waveforms were not clear and the investigation could not be performed until after the structure was dismantled.

【0004】既存構造物の改修・リニューアル工事で
は、既存の基礎杭の存在が工事の支障となる場合が多い
とともに、既存の基礎杭の取り扱いについて、再利用の
可否で工事費用、設計方法が大きく異なる。このため、
工事着手前の早い段階で、基礎杭の状況をつかむことが
重要である。
In the renovation and renewal work of existing structures, the existence of existing foundation piles often hinders construction, and the cost and design method of handling existing foundation piles depends on whether they can be reused or not. different. For this reason,
It is important to grasp the condition of the foundation pile at an early stage before construction starts.

【0005】本発明は、基礎スラブ本体を打撃すること
で計測された波形に含まれる周波数成分の多寡をもと
に、打撃点の下に基礎杭が存在するか否かを判断する、
基礎杭の非破壊調査方法を提供することを目的としてい
る。
According to the present invention, it is determined whether or not a foundation pile exists below a strike point based on the frequency components included in a waveform measured by striking the foundation slab body.
It aims to provide a non-destructive method for investigating foundation piles.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
基礎スラブ本体のどの部分の真下に基礎杭があるかを調
査する非破壊調査方法であって、前記基礎スラブ本体の
調査範囲を複数に区分し、それぞれ区分毎に加速度計を
設置して、その近傍をハンマで打撃し、前記加速度計で
検出した弾性波を周波数分析し、特定の周波数でピーク
が現れるか否かにより、打撃点直下の基礎杭の有無を判
断することに基づき、基礎杭の位置を調査することを特
徴としている。
According to the first aspect of the present invention,
A non-destructive inspection method for investigating whether a foundation pile is located directly below which part of a foundation slab body, dividing the investigation range of the foundation slab body into a plurality, installing an accelerometer for each section, The vicinity is hit with a hammer, the elastic wave detected by the accelerometer is subjected to frequency analysis, and whether or not a peak appears at a specific frequency, based on determining the presence or absence of the foundation pile immediately below the impact point, It is characterized by investigating the location.

【0007】請求項2記載の発明は、柱の直下にある基
礎杭の径を柱と基礎杭との間に介された基礎スラブ本体
上から調査する非破壊調査方法であって、柱の底面の中
心点位置より適当な間隔で直線上に測定点を取り、各測
定点毎に加速度計を設置して、その近傍をハンマで打撃
し、前記加速度計で検出した弾性波を周波数分析し、特
定の周波数でピークが現れるか否かにより、打撃点直下
の基礎杭の有無を判断した後、柱位置より最も遠い位置
で基礎杭有りと判断された測定点と柱底面の中心点との
距離を測定することにより、基礎杭の径を測定すること
を特徴としている。
According to a second aspect of the present invention, there is provided a non-destructive method for investigating a diameter of a foundation pile immediately below a column from a foundation slab body interposed between the column and the foundation pile. Take measurement points on a straight line at an appropriate interval from the center point position, install an accelerometer for each measurement point, hit the vicinity with a hammer, analyze the frequency of the elastic wave detected by the accelerometer, After judging the presence or absence of a foundation pile immediately below the impact point based on whether or not a peak appears at a specific frequency, the distance between the center point of the column bottom and the measurement point determined to have the foundation pile at the farthest position from the column position It is characterized by measuring the diameter of the foundation pile by measuring.

【0008】[0008]

【発明の実施の形態】図1は、基礎杭位置を探査する非
破壊検査の状況を示す断面図である。符号1は加速度
計、2は基礎スラブ本体、5は基礎杭を示している。図
に示すように、既存する基礎スラブ本体2を軽ハンマ1
0を用いて打撃することにより波を生じさせ、この波形
の周波数成分を分析することにより基礎杭位置の有無を
判定するものである。
FIG. 1 is a sectional view showing a non-destructive inspection for exploring the position of a foundation pile. Reference numeral 1 denotes an accelerometer, 2 denotes a base slab body, and 5 denotes a base pile. As shown in the figure, the existing base slab body 2 is
A wave is generated by hitting using 0, and the presence or absence of the foundation pile position is determined by analyzing the frequency component of this waveform.

【0009】基礎スラブ本体2を打撃した際に生じる波
形は、直接波6と、反射波7と、透過波8との3種が得
られる。前記直接波6は、前記基礎スラブ本体2を打撃
することにより該基礎スラブ本体2内を透過せず、表面
上で発生して直接加速度計1にとらえられる波であり、
本発明における非破壊調査では取り除く必要がある波形
である。
There are three types of waveforms generated when the basic slab body 2 is hit, namely, a direct wave 6, a reflected wave 7, and a transmitted wave 8. The direct wave 6 is a wave that does not pass through the inside of the basic slab body 2 by hitting the basic slab body 2, is generated on the surface, and is directly captured by the accelerometer 1,
This is a waveform that needs to be removed in the nondestructive investigation in the present invention.

【0010】前記反射波7は、前記基礎スラブ本体2を
打撃することにより基礎スラブの表面3から入射した波
が、該基礎スラブ本体2内を透過し基礎スラブの底面4
で反射した後に加速度計1に捉えられる波形である。基
礎スラブ本体2の下部に躯体が存在しない場合には反射
波は基礎スラブの表面3と底面4でほぼ全反射となり、
多重反射9を生じることとなる。
The reflected wave 7 is transmitted from the surface 3 of the base slab by hitting the base slab body 2, and transmits through the base slab body 2, and the bottom surface 4 of the base slab is struck.
This is a waveform that is captured by the accelerometer 1 after being reflected by. If there is no skeleton at the bottom of the base slab body 2, the reflected wave is almost totally reflected on the surface 3 and the bottom surface 4 of the base slab,
Multiple reflections 9 will occur.

【0011】前記透過波8は、前記基礎スラブ本体2の
下部に基礎杭5等の躯体が存在する場合に、該基礎スラ
ブ本体2を打撃することにより基礎スラブの表面3内に
入射した波が基礎スラブ本体2内を透過した後、基礎ス
ラブ本体2底面で反射することなく、さらに前記基礎杭
5等の躯体内へ透過する波形である。
The transmitted wave 8 is a wave which is incident on the surface 3 of the basic slab by hitting the basic slab main body 2 when a skeleton such as the basic pile 5 is present below the basic slab main body 2. After passing through the inside of the foundation slab body 2, the waveform is transmitted through the skeleton such as the foundation pile 5 without being reflected on the bottom surface of the foundation slab body 2.

【0012】次に本発明における前記基礎杭5の有無に
関する判定方法を示す。上記に示した波形の中で、前記
反射波7を用いて前記基礎スラブ本体2の下部における
基礎杭5の有無を判定する。
Next, a method for determining the presence or absence of the foundation pile 5 in the present invention will be described. The presence or absence of the foundation pile 5 in the lower part of the foundation slab main body 2 is determined using the reflected wave 7 in the waveforms described above.

【0013】図2に示すように、前記基礎スラブ本体2
が存在する状態で前記基礎杭5の位置を把握したい範囲
に対して、任意の一定形状を保つような例えばメッシュ
12状に、調査範囲を細分化する。次に設定した該メッ
シュ12の例えば交点上に前記加速度計1を設置し、軽
ハンマ10を活用して該加速度計1近傍の基礎スラブ本
体2を打撃する。
[0013] As shown in FIG.
The survey range is subdivided into, for example, a mesh 12 that maintains an arbitrary constant shape in a range in which the position of the foundation pile 5 is to be grasped in the state where the stake exists. Next, the accelerometer 1 is set on, for example, an intersection of the set mesh 12 and the base slab body 2 near the accelerometer 1 is hit by utilizing the light hammer 10.

【0014】打撃により生じた波形のうち、前記加速度
計1では前記直接波6と前記反射波7が計測されるが、
直接波6、およびその影響が大きいと思われる部分を除
き、その他の反射波7についてフーリエ分析等により周
波数成分別に分析を行う(図3)。前記反射波7は、前
記基礎スラブの表面3から入射し、その底面4で反射す
ることから、該基礎スラブ本体2を1往復する時間毎に
加速度計1に該反射波7が到達するため、加速度計1に
計測された波形の周波数成分は(1)式に表すことがで
きる。
Among the waveforms generated by the impact, the accelerometer 1 measures the direct wave 6 and the reflected wave 7,
Except for the direct wave 6 and the portion that is considered to have a large effect, the other reflected wave 7 is analyzed for each frequency component by Fourier analysis or the like (FIG. 3). Since the reflected wave 7 enters from the surface 3 of the base slab and is reflected by the bottom surface 4 of the base slab, the reflected wave 7 reaches the accelerometer 1 every time when the base slab 2 reciprocates one time. The frequency component of the waveform measured by the accelerometer 1 can be expressed by equation (1).

【0015】 f=c/2H ・・・・・・・・・・・・・・・・・・・・(1) c:波の速度 H:スラブ厚さF = c / 2H (1) c: Wave velocity H: Slab thickness

【0016】前記基礎スラブ本体2の下部に前記基礎杭
5が存在しない場合には、前記反射波7は多重反射9を
生じるため、(1)式に示す周波数成分が際だって卓越
する。また、該基礎スラブ本体2の下部に該基礎杭5が
存在する場合には、該反射波7は全反射することなく、
基礎杭内に透過する透過波8が生じるため、該反射波7
の波はすぐに微弱なもとなり、(1)式に示す周波数成
分は際だって卓越するものとはならない。(図4)
If the foundation pile 5 does not exist below the foundation slab body 2, the reflected wave 7 causes multiple reflections 9, so that the frequency component represented by the equation (1) is outstanding. Also, when the foundation pile 5 is present below the foundation slab body 2, the reflected wave 7 is not totally reflected,
Since the transmitted wave 8 penetrating into the foundation pile is generated, the reflected wave 7
Immediately becomes weak, and the frequency component shown in the equation (1) does not become outstanding. (FIG. 4)

【0017】これらの計測結果から前記基礎スラブ本体
2内での多重反射9に起因する周波数で卓越するピーク
が現れた場合を基礎杭5無し、ピークが現れない場合を
基礎杭5有りと判断する。これらの作業をすべての前記
メッシュ12に対して繰り返し、調査範囲内の基礎杭5
の有無を判定する。
From these measurement results, it is determined that there is no foundation pile 5 when a peak appears at a frequency caused by multiple reflections 9 in the basic slab body 2 and that there is no foundation pile 5 when no peak appears. . These operations are repeated for all the meshes 12, and the foundation pile 5
Is determined.

【0018】また、既存柱13が存在しており基礎杭5
位置がわかっている状況における基礎杭5の径の測定方
法を示す。前記柱13の底面の中心点を通る直線上で、
該柱13位置から数〜10センチの間隔で測定点11を
数箇所決定し、該測定点11上に加速度計1を設置した
上で、その近傍を軽ハンマ10で打撃する。(図5)
In addition, the existing pillar 13 exists and the foundation pile 5
A method for measuring the diameter of the foundation pile 5 in a situation where the position is known will be described. On a straight line passing through the center point of the bottom surface of the pillar 13,
Several measurement points 11 are determined at intervals of several to 10 cm from the position of the column 13, the accelerometer 1 is installed on the measurement point 11, and the vicinity thereof is hit with a light hammer 10. (Fig. 5)

【0019】得られた波形の周波数成分について上述し
たように、前記基礎スラブ本体2内での多重反射9に起
因する周波数で卓越するピークが現れるか否かにより前
記基礎杭5の有無を判定する。基礎杭5有りと判定され
た測定点と柱13の底面の中心点との距離を計測するこ
とにより、おおよその基礎杭5の径を算出する。(図
6)
As described above, the presence or absence of the foundation pile 5 is determined based on whether or not a prominent peak appears at the frequency caused by the multiple reflection 9 in the foundation slab body 2 with respect to the frequency component of the obtained waveform. . The approximate diameter of the foundation pile 5 is calculated by measuring the distance between the measurement point determined to have the foundation pile 5 and the center point of the bottom surface of the column 13. (FIG. 6)

【0020】なお、前記基礎スラブ本体2を打撃する際
に軽ハンマ10を用いたが、これに限るものではない。
Although the light hammer 10 is used for hitting the base slab body 2, the present invention is not limited to this.

【0021】また、前記直接波6を取り除く方法とし
て、前記基礎スラブ本体2を打撃する際に軽ハンマ10
に代えて、インパクトハンマを用いて入力波形を別個に
求め、これを計測波より引く方法も考えられる。
As a method of removing the direct waves 6, a light hammer 10 is used when the basic slab body 2 is hit.
Alternatively, a method of separately obtaining an input waveform using an impact hammer and subtracting the input waveform from a measurement wave may be considered.

【0022】上述の構成によれば、基礎スラブ2等が存
在する状態で既存の基礎杭5の状況を把握することが可
能となり、改修・リニューアル工事等の設計・施工計画
等への反映が可能となる。
According to the above-described configuration, it is possible to grasp the condition of the existing foundation pile 5 in a state where the foundation slab 2 and the like are present, and to reflect the situation on the design and construction plan of the repair and renewal work. Becomes

【0023】[0023]

【発明の効果】請求項1の非破壊調査方法によれば、基
礎スラブ本体のどの部分の真下に基礎杭があるかを調査
する非破壊調査方法であって、前記基礎スラブ本体の調
査範囲を複数に区分し、それぞれ区分毎に加速度計を設
置して、その近傍をハンマで打撃し、前記加速度計で検
出した弾性波を周波数分析し、特定の周波数でピークが
現れるか否かにより、打撃点直下の基礎杭の有無を判断
することに基づき、基礎杭の位置を調査することから、
簡便な装置で基礎スラブ本体等の構造物が存在する状況
においても基礎杭の位置状況を把握することが可能であ
り、工事着手前の早い段階で改修・リニューアル等の設
計・施工計画に反映することができ、工期短縮、工費削
減等に寄与するものである。
According to the non-destructive inspection method of claim 1, the non-destructive inspection method for investigating which part of the foundation slab body is directly below the foundation pile is provided. It is divided into a plurality of parts, an accelerometer is installed for each section, the vicinity is hit with a hammer, the elastic wave detected by the accelerometer is subjected to frequency analysis, and whether or not a peak appears at a specific frequency is determined. From investigating the position of the foundation pile based on judging the presence or absence of the foundation pile immediately below the point,
It is possible to grasp the position of the foundation pile even in the presence of structures such as the foundation slab with simple equipment, and reflect it in the design and construction plan of renovation, renewal, etc. at an early stage before construction starts This contributes to shortening the construction period and reducing construction costs.

【0024】請求項2の非破壊調査方法によれば、柱の
直下にある基礎杭の径を柱と基礎杭との間に介された基
礎スラブ本体上から調査する非破壊調査方法であって、
柱の底面の中心点位置より適当な間隔で直線上に測定点
を取り、各測定点毎に加速度計を設置して、その近傍を
ハンマで打撃し、前記加速度計で検出した弾性波を周波
数分析し、特定の周波数でピークが現れるか否かによ
り、打撃点直下の基礎杭の有無を判断した後、柱位置よ
り最も遠い位置で基礎杭有りと判断された測定点と柱底
面の中心点との距離を測定することにより、基礎杭の径
を測定することから、上記と同様に、工事着手前の早い
段階で改修・リニューアル等の設計・施工計画に反映す
ることができ、工期短縮、工費削減等に効果を有する。
According to a second aspect of the present invention, there is provided a non-destructive inspection method for investigating a diameter of a foundation pile immediately below a column from a base slab body interposed between the column and the foundation pile. ,
Taking measurement points on a straight line at appropriate intervals from the center point position of the bottom surface of the column, installing an accelerometer at each measurement point, hitting the vicinity with a hammer, and changing the elastic wave detected by the accelerometer to frequency Analyze and determine the presence or absence of a foundation pile immediately below the strike point based on whether or not a peak appears at a specific frequency.Then, the measurement point determined to have a foundation pile farthest from the column position and the center point of the column bottom By measuring the distance from the base pile, the diameter of the foundation pile is measured, and as described above, it can be reflected in the design and construction plan of repair and renewal at an early stage before the start of construction, shortening the construction period, It is effective in reducing construction costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 基礎杭位置を探査する非破壊検査の状況を示
す断面図である。
FIG. 1 is a cross-sectional view showing a situation of a non-destructive inspection for exploring a position of a foundation pile.

【図2】 基礎杭位置を探査する非破壊検査の状況を示
す平面図である。
FIG. 2 is a plan view showing a situation of a non-destructive inspection for exploring a foundation pile position.

【図3】 計測波形の例と判定に用いる部分を示したグ
ラフである。
FIG. 3 is a graph showing an example of a measured waveform and a portion used for determination.

【図4】 計測された多重反射の周波数の例を示したグ
ラフである。
FIG. 4 is a graph showing an example of measured multiple reflection frequencies.

【図5】 基礎杭径を探査する非破壊検査の状況を示す
平面図である。
FIG. 5 is a plan view showing a situation of a non-destructive inspection for exploring a foundation pile diameter.

【図6】 計測された多重反射の周波数の例を示したグ
ラフである。
FIG. 6 is a graph showing an example of measured multiple reflection frequencies.

【符号の説明】[Explanation of symbols]

1 加速度計 2 基礎スラブ本体 3 基礎スラブ本体の表面 4 基礎スラブ本体の底面 5 基礎杭 6 直接波 7 反射波 8 透過波 9 多重反射 10 軽ハンマ 11 測定点 12 メッシュ 13 柱 DESCRIPTION OF SYMBOLS 1 Accelerometer 2 Basic slab main body 3 Surface of basic slab main body 4 Base bottom of basic slab main body 5 Foundation pile 6 Direct wave 7 Reflected wave 8 Transmitted wave 9 Multiple reflection 10 Light hammer 11 Measurement point 12 Mesh 13 Column

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基礎スラブ本体のどの部分の真下に基礎
杭があるかを調査する非破壊調査方法であって、前記基
礎スラブ本体の調査範囲を複数に区分し、それぞれ区分
毎に加速度計を設置して、その近傍をハンマで打撃し、
前記加速度計で検出した弾性波を周波数分析し、特定の
周波数でピークが現れるか否かにより、打撃点直下の基
礎杭の有無を判断することに基づき、基礎杭の位置を調
査することを特徴とする基礎杭の非破壊調査方法。
1. A non-destructive inspection method for inspecting a portion of a foundation slab body directly below a portion of a foundation slab, wherein an investigation range of the foundation slab body is divided into a plurality of sections, and an accelerometer is provided for each section. Install, hit the area with a hammer,
The elastic wave detected by the accelerometer is subjected to frequency analysis, and whether or not a peak appears at a specific frequency, based on determining the presence or absence of the foundation pile immediately below the impact point, to investigate the position of the foundation pile. Non-destructive survey method for foundation piles.
【請求項2】 柱の直下にある基礎杭の径を柱と基礎杭
との間に介された基礎スラブ本体上から調査する非破壊
調査方法であって、柱の底面の中心点位置より適当な間
隔で直線上に測定点を取り、各測定点毎に加速度計を設
置して、その近傍をハンマで打撃し、前記加速度計で検
出した弾性波を周波数分析し、特定の周波数でピークが
現れるか否かにより、打撃点直下の基礎杭の有無を判断
した後、柱位置より最も遠い位置で基礎杭有りと判断さ
れた測定点と柱底面の中心点との距離を測定することに
より、基礎杭の径を測定することを特徴とする基礎杭の
非破壊調査方法。
2. A non-destructive inspection method for investigating a diameter of a foundation pile immediately below a column from a foundation slab body interposed between the column and the foundation pile, the method being more appropriate than a center point position of a bottom surface of the column. Take measurement points on a straight line at an appropriate interval, install an accelerometer at each measurement point, hit the vicinity with a hammer, analyze the elastic wave detected by the accelerometer, and find a peak at a specific frequency. By judging the presence or absence of the foundation pile immediately below the impact point, by measuring the distance between the measurement point determined to have the foundation pile at the position farthest from the column position and the center point of the column bottom, A nondestructive method for investigating a foundation pile, comprising measuring a diameter of the foundation pile.
JP2000379175A 2000-12-13 2000-12-13 Method for non-destructively inspecting foundation pile Withdrawn JP2002181951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000379175A JP2002181951A (en) 2000-12-13 2000-12-13 Method for non-destructively inspecting foundation pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379175A JP2002181951A (en) 2000-12-13 2000-12-13 Method for non-destructively inspecting foundation pile

Publications (1)

Publication Number Publication Date
JP2002181951A true JP2002181951A (en) 2002-06-26

Family

ID=18847605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379175A Withdrawn JP2002181951A (en) 2000-12-13 2000-12-13 Method for non-destructively inspecting foundation pile

Country Status (1)

Country Link
JP (1) JP2002181951A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134070A (en) * 2006-11-27 2008-06-12 Tokyo Electric Power Co Inc:The Inspection method for pile existing under fundamental structure and its measuring device
CN103669428A (en) * 2013-12-04 2014-03-26 中交四航工程研究院有限公司 Integrity detection system with bearing platform foundation pile
CN105064423A (en) * 2015-08-12 2015-11-18 邓业灿 Existing building foundation pile projection detection method
CN106501368A (en) * 2016-12-30 2017-03-15 华中科技大学 A kind of sound detecting pipe buckling phenomenon recognition methodss for pile detection sound wave transmission method
CN114411830A (en) * 2022-01-25 2022-04-29 杭州西南检测技术股份有限公司 Method and system for detecting integrity of pile under bearing plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134070A (en) * 2006-11-27 2008-06-12 Tokyo Electric Power Co Inc:The Inspection method for pile existing under fundamental structure and its measuring device
CN103669428A (en) * 2013-12-04 2014-03-26 中交四航工程研究院有限公司 Integrity detection system with bearing platform foundation pile
CN103669428B (en) * 2013-12-04 2015-10-28 中交四航工程研究院有限公司 With the integrity detection system of cushion cap foundation pile
CN105064423A (en) * 2015-08-12 2015-11-18 邓业灿 Existing building foundation pile projection detection method
CN106501368A (en) * 2016-12-30 2017-03-15 华中科技大学 A kind of sound detecting pipe buckling phenomenon recognition methodss for pile detection sound wave transmission method
CN106501368B (en) * 2016-12-30 2019-09-10 华中科技大学 A kind of sound detecting pipe buckling phenomenon recognition methods for pile detection sound wave transmission method
CN114411830A (en) * 2022-01-25 2022-04-29 杭州西南检测技术股份有限公司 Method and system for detecting integrity of pile under bearing plate

Similar Documents

Publication Publication Date Title
JP4667228B2 (en) Pile inspection method and sensor crimping device
Ohtsu et al. Stack imaging of spectral amplitudes based on impact-echo for flaw detection
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
CN110455917B (en) Concrete crack repair quality detection method
JPH0988110A (en) Method of diagnosing defect of foundation pile
JP2010203810A (en) Method and device for non-destructive inspection of concrete structure, and anchor bolt
Matsuyama et al. On-site measurement of delamination and surface crack in concrete structure by visualized NDT
CN110954033A (en) Concrete crack depth detection method and system
JP5208625B2 (en) How to determine the quality type of a structure
JP2944515B2 (en) Shape diagnosis method for natural structures
JP3198840U (en) Prop road boundary inspection system
JP4919396B2 (en) Nondestructive inspection method for the degree of corrosion of reinforcing bars in concrete structures
JP2008039594A (en) Crack detection method for concrete foundation pile
JP2002181951A (en) Method for non-destructively inspecting foundation pile
CN210395465U (en) Side surface excitation structure for detecting integrity of foundation pile by double-speed method and detection device
JP7097738B2 (en) Void determination method and void determination system
KR20040052961A (en) The non-destruction test method for the spot of pipe, and the program of the read to record vehicle by the computer
JP2877759B2 (en) Dynamic diagnosis method of pile or structure defect
JP2008134070A (en) Inspection method for pile existing under fundamental structure and its measuring device
JP4596147B2 (en) Nondestructive inspection method for existing piles
JP2003014709A (en) Defect probing method for concrete due to strike based on attenuation of energy
JP6806836B2 (en) How to evaluate the soundness of concrete foundations
Watanabe et al. Cross-sectional visualization of defects by SIBIE
JP2006078243A (en) Nondestructive geometry diagnosing method for buried object and its device
Gong et al. Nondestructive evaluation of installed soil nails

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304