JPS594234B2 - density - Google Patents

density

Info

Publication number
JPS594234B2
JPS594234B2 JP49100164A JP10016474A JPS594234B2 JP S594234 B2 JPS594234 B2 JP S594234B2 JP 49100164 A JP49100164 A JP 49100164A JP 10016474 A JP10016474 A JP 10016474A JP S594234 B2 JPS594234 B2 JP S594234B2
Authority
JP
Japan
Prior art keywords
welding
electron beam
weld
line
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49100164A
Other languages
Japanese (ja)
Other versions
JPS5127839A (en
Inventor
博司 下山
昭三 佐藤
昭 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP49100164A priority Critical patent/JPS594234B2/en
Publication of JPS5127839A publication Critical patent/JPS5127839A/en
Publication of JPS594234B2 publication Critical patent/JPS594234B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は電子ビーム溶接方法に関する。[Detailed description of the invention] The present invention relates to an electron beam welding method.

電子ビーム溶接は、高密度のエネルギにより高速に行な
われ、溶込みが深く、幅の狭い溶接ビードが得られ、溶
接歪が少な<、溶接条件の制御が容易で、しかも真空中
で行なわれることにより溶接ビード部の材質変化が少な
いなど、多くの利点5 を有し、従来から原子力産業用
機器・航空宇宙開発産業用機器をはじめ精密構造物・精
密部品等の溶接に採用されてきたが、最近、般殻・圧力
容器等の一般大形重量構造物の溶接にもこれを導入する
ことが考えられている。
Electron beam welding is performed at high speed using high-density energy, has deep penetration, produces a narrow weld bead, has little welding distortion, is easy to control welding conditions, and can be performed in a vacuum. It has many advantages5, such as less material change in the weld bead, and has been used for welding nuclear power industry equipment, aerospace development equipment, precision structures, precision parts, etc. Recently, it has been considered to introduce this method to weld general large heavy structures such as general shells and pressure vessels.

ノo しかしながら、たとえば大形重量構造物の溶接を
電子ビーム溶接で行なうにあたつては次のような問題が
あり、実用化が困難とされていた。
However, when welding large heavy structures by electron beam welding, for example, there are the following problems, making it difficult to put it into practical use.

すなわち、一般大形重量構造物の溶接では反転が不要な
片側溶接が望まれるとともに、この種構造物は15機械
加工が困難なため、その開先加工は通常ガス切断により
行なわれている。したがつて開先の加工精度が悪く、し
かも開先合せが困難であることから、開先間隙が生じた
り開先賎が蛇行するなど、開先精度μ悪<、このため、
電子ビーム溶接では20溶接ビードの幅が狭いことがか
えつて災いしてしまう。つまり、第1図aに示すような
開先間隙gがあると、溶接金属が下方に溶け落ち、母材
1、1の下面側に同図b、cに示すようなクレーブ2を
生じたり、溶接ビード3内にボード4が生じる5 こと
になムまた、第2図aに示すように開先線5が蛇行して
いると、同図b、cに示すような溶け込み不良部6が生
じることになる。そこで、以上のような溶接条件に対処
するために、溶接速度をきわめて低速にしたり、電子ビ
ー30ムを所望の溶接ビード幅に相当する振幅で正弦波
形状に、もしくはら線状に移動して、広幅な溶接ビード
を得ることが考えられている。
That is, when welding general large heavy structures, one-sided welding that does not require reversal is desired, and since this type of structure is difficult to machine, the beveling process is usually performed by gas cutting. Therefore, the machining accuracy of the groove is poor, and it is difficult to align the grooves, resulting in groove gaps and meandering of the groove thread, resulting in poor groove accuracy μ<.
In electron beam welding, the narrow width of the 20 weld bead is a real problem. In other words, if there is a groove gap g as shown in Fig. 1a, the weld metal will melt downward, creating creves 2 as shown in Fig. 1b and c on the lower surface of the base metals 1 and 1. A board 4 is formed within the weld bead 3. In addition, if the groove line 5 is meandering as shown in Fig. 2a, poor penetration portions 6 as shown in Fig. It turns out. Therefore, in order to cope with the above welding conditions, the welding speed is made extremely low, and the electron beam is moved in a sine wave shape or in a spiral shape with an amplitude corresponding to the desired weld bead width. , it is considered to obtain a wide weld bead.

しかしながら、このような方法によると、母材1’、1
’を広範囲に溶融して広幅のビード3’を形成35する
ことができるが、その際、大きな溶融プールが形成され
る結果、凝固パターンが乱れ、母材1’、1’中の低融
点不純物が多量混入し、かつその不純物の偏析が促進さ
れ、収縮応力の増大と相俟つて溶接ビード35中に第3
図A,bに示すようなクラック7を生じたり、溶融金属
の増大と凝固速度の低下にともない、その溶融金属の表
面張力が小さくなつて下方に溶け落ち、溶接ビード3′
の下面側にクレーブ25上面側にアンダープール8を生
じることになり、実用化に至つていない。
However, according to such a method, base materials 1', 1
' can be melted over a wide range to form a wide bead 3', but at this time, a large melt pool is formed, resulting in a disordered solidification pattern and low melting point impurities in the base material 1', 1'. A large amount of impurities are mixed in, and the segregation of the impurities is promoted, and together with an increase in shrinkage stress, a third impurity is mixed into the weld bead 35.
Cracks 7 as shown in Figures A and b may occur, and as the molten metal increases and the solidification rate decreases, the surface tension of the molten metal decreases and melts downward, forming the weld bead 3'.
An underpool 8 is formed on the upper surface of the creve 25 on the lower surface side of the clave 25, so that it has not been put to practical use.

この発明は、このような問題にかんがみてなされたもの
で、電子ビームを所望の溶接ビード幅に相当する振幅で
溶接線に直交する方向に振動させながら溶接線方向に移
動するようにするとともに、上記電子ビームをその移動
軌跡の位相をずらせながら溶接線方向へも振動ざせ、溶
接線に直交する方向の振動周波数を溶接線方向の振動周
波数よりも高ぐ設定し、振幅を適当に設定することによ
り溶接部の溶融状態および凝固速度等の溶接条件を調節
するようにしたことを特徴とし、溶込みが深く、高速に
溶接が行えるという電子ビード溶接本来の特性を活かし
ながら、開先精度に影響されることなく片側溶接をも可
能とし、一般大形重要構造物などの溶接も効尿的に行な
うことができる電子ビーム溶接方法を提供しようとする
ものである。
This invention was made in view of such problems, and it is made to vibrate an electron beam in a direction perpendicular to the weld line with an amplitude corresponding to the desired weld bead width while moving in the weld line direction. vibrating the electron beam also in the welding line direction while shifting the phase of its movement trajectory, setting the vibration frequency in the direction perpendicular to the welding line to be higher than the vibration frequency in the welding line direction, and setting the amplitude appropriately. The feature is that the welding conditions such as the molten state and solidification rate of the welded part are adjusted by adjusting the welding condition, and while taking advantage of the original characteristics of electronic bead welding, such as deep penetration and high-speed welding, it does not affect the bevel accuracy. The purpose of the present invention is to provide an electron beam welding method that enables one-sided welding without being welded, and can also efficiently weld general large important structures.

以下、この発明の一実施例を第4図ないし第5図を参照
して説明する。第4図は母材11,11を突合せたI形
開先12を電子ビーム13により溶接する状態を示すも
ので、上記電子ビーム13は、偏向コイル14により溶
接線Xに直父するY方向に、所望の溶接ビード幅Wに相
当する振隔WYで振動(オシレーシヨン)するようにし
、かつ偏向コイル15により溶接線X方向にも適当な振
幅および周波数で振動(オシレーシヨン)するようにし
ているものである。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 shows a state in which an I-shaped groove 12 made by butting base materials 11 and 11 is welded by an electron beam 13. The electron beam 13 is directed in the Y direction directly parallel to the welding line , it is made to vibrate (oscillate) at an amplitude WY corresponding to the desired weld bead width W, and also to vibrate (oscillate) in the welding line X direction with an appropriate amplitude and frequency using a deflection coil 15. be.

この場合、周期比をY方向にX方向に対し大きくとる。
第5図aは、母材11,11上に卦ける電子ビーム13
の軌跡を示す写真である。このような構成であれば、電
子ビーム13をWYの振幅で溶接線Xに直父する方向に
振動させながら溶接線X方向に正弦波状に移動するとと
もに、上記電子ビーム13をその移動軌跡の位相をずら
せながら溶接線X方向にもオシレーシヨンさせることが
できる。したがつて、電子ビーム13の溶接線X方向の
オシレーシヨンの振幅Wxおよび周波数fを適当に設定
すれば、溶接部の溶融状態訃よび凝固速度等の溶接条件
を所要に調節することができ、第5図B,cに示すよう
に、ボード、溶け込み不良部、クラツクなどの内部欠陥
や、クレーブ、アンダープールなどの表面欠陥のない良
好な溶接ビード16を得ることができる。
In this case, the period ratio is set larger in the Y direction than in the X direction.
FIG. 5a shows the electron beam 13 that is printed on the base materials 11, 11.
This is a photograph showing the trajectory of. With such a configuration, the electron beam 13 is moved sinusoidally in the direction of the welding line X while vibrating in a direction directly parallel to the welding line X with an amplitude of WY, and the electron beam 13 is moved in the phase of its movement trajectory. Oscillation can also be performed in the welding line X direction while shifting the welding line. Therefore, by appropriately setting the amplitude Wx and frequency f of the oscillation of the electron beam 13 in the welding line As shown in FIGS. 5B and 5C, it is possible to obtain a good weld bead 16 free of internal defects such as boards, poor penetration, cracks, and surface defects such as creves and underpools.

つまり、電子ビームを溶接線Xに直父するY方向にのみ
オシレーシヨンするときは、第3図に示されるような欠
陥の多い溶接ビードが形成されることになるが、電子ビ
ーム13をY方向のオシレーシヨンに加えて溶接線X方
向へもオシレーシヨンL1両オシレーシヨンを合成する
ことによつて、電子ビームのエネルギが適当に分散され
、母材11,11を広範囲ではあるが連続的に溶融する
ことはないから、溶融金属の凝固速度が促進され、その
表面張力が増大して落下落らを防止することができ、溶
接ビード16に内部欠陥や表面欠陥などを生じない。
In other words, when the electron beam 13 is oscillated only in the Y direction directly parallel to the welding line X, a weld bead with many defects as shown in FIG. By combining the oscillations L1 and oscillation in the welding line Therefore, the solidification rate of the molten metal is accelerated, the surface tension of the molten metal is increased, and the falling of the molten metal can be prevented, thereby preventing internal defects and surface defects from occurring in the weld bead 16.

また、電子ビーム13が溶接線X方向にオシレーシヨン
する結果、溶接部に}いては溶融・凝固が多数回繰返さ
れる。この結果、母材11,11中の低融点不純物は拡
散されてその偏析を阻止し、クラツクの発生は防止され
る。また、万一発生したクラツクも溶融除去されること
になる。したかつて、上記実施例によれば、開先精度の
悪い厚板でも高品質な片側溶接を高速に行なうことがで
きるものである。
Furthermore, as a result of the electron beam 13 oscillating in the welding line X direction, the welded portion is melted and solidified many times. As a result, the low melting point impurities in the base materials 11, 11 are diffused and their segregation is prevented, and the generation of cracks is prevented. In addition, any cracks that occur will be melted and removed. According to the above embodiment, high-quality one-sided welding can be performed at high speed even on thick plates with poor groove precision.

ここで溶接線に直交する方向の振動周波数Yfを溶接線
方向Xfよりも高く設定(Xf<Yf)したのは、次の
理由による。
The reason why the vibration frequency Yf in the direction perpendicular to the welding line is set higher than the welding line direction Xf (Xf<Yf) is as follows.

振動周波数Yfを振動周波数Xfより低くすると、溶接
線の軌跡は第r図イに示すようになる。そしてこの場合
溶融金属中の低融点不純物は溶接線方向へ拡散されるが
、溶接部の断面は第8図イに示すように線状となり、凝
固時の収縮応力(溶接線と直角)に対しクラツクを生じ
る。また振動周波数Yfを振動周波数Xfと等し〈する
と、溶接線の軌跡は第7図口に示すようになる。そして
この場合第8図Qに示すように拡散作用が少な〈、不純
物が凝固の遅い中心部に集まりXf>Yfの場合以上に
クラツクを生じやすい。又溶け落ちも起しやすい。これ
に対して本発明の条件すなわち振動周波数Yfを振動周
波数Xfよりも高く設定すると、溶接線方向の軌跡は、
第7図ハに示すようになる。
When the vibration frequency Yf is made lower than the vibration frequency Xf, the locus of the weld line becomes as shown in Figure R, A. In this case, the low melting point impurities in the molten metal are diffused in the direction of the weld line, but the cross section of the weld becomes linear as shown in Figure 8A, and the shrinkage stress (perpendicular to the weld line) during solidification is Causes cracks. Further, when the vibration frequency Yf is made equal to the vibration frequency Xf, the locus of the weld line becomes as shown in FIG. 7. In this case, as shown in FIG. 8Q, the diffusion effect is small, and impurities gather in the center where solidification is slow and cracks are more likely to occur than in the case where Xf>Yf. It also tends to melt off. On the other hand, if the conditions of the present invention, that is, the vibration frequency Yf is set higher than the vibration frequency Xf, the trajectory in the weld line direction will be
The result is as shown in FIG. 7C.

そしてこの場合、第8図ハに示すように不純物の拡散が
効果的に}こなわれ、少なくとも最終凝固域の中心部に
偏析することはなく、クラックの発生を防止できる。ま
たビーム熱が拡散し、溶け落らのない広幅のビードが得
られる。従つて本発明の作用効果を得るには溶け落ちの
ない広幅のピードが得られる。Xf<Yfの条件としな
ければならない。な}、上記実施例に訃いて電子ビーム
13の溶接線X方向のオシレーシヨンの振幅Wx卦よび
その周波数fは、母材の材質、板厚、開先精度等に応じ
て適当に設定すべきことはもちろんである。
In this case, as shown in FIG. 8C, the impurities are effectively diffused and are not segregated at least in the center of the final solidification zone, thereby preventing the occurrence of cracks. In addition, the beam heat is diffused and a wide bead that does not melt through can be obtained. Therefore, in order to obtain the effects of the present invention, a wide pead without burn-through can be obtained. The condition must be Xf<Yf. However, in addition to the above embodiment, the amplitude Wx of the oscillation of the electron beam 13 in the welding line Of course.

次表に、板厚25mの炭素鋼板を従来方法卦よび本発明
の方法により溶接した結果を比較して示す。また、第6
図は、オシレーシヨンしない従来方法(点線)、溶接線
Xに直父するY方向にのみオシレーシヨンし、その振幅
を3?m1周波数を750Hzとした従来方法(一点鎖
線)、訃よびX方向とY方向とにそれぞれオシレーシヨ
ンした上記実施例の方法(実線)によりそれぞれ溶接し
た場合におけるビード幅(下面側1q定)と溶接速度と
の関係を比較して示すものである。
The following table shows a comparison of the results of welding carbon steel plates with a thickness of 25 m using the conventional method and the method of the present invention. Also, the 6th
The figure shows a conventional method that does not oscillate (dotted line), oscillates only in the Y direction directly parallel to the welding line X, and increases the amplitude to 3? Bead width (1q constant on the lower surface side) and welding speed when welded by the conventional method with m1 frequency of 750 Hz (dotted chain line) and the method of the above embodiment with oscillation in the X and Y directions (solid line), respectively. This is a comparison of the relationship between

な}、上記実施例の方法では、X方向のオシレーシヨン
は振幅5〜107!1f11.、周波数100Hzとし
、Y方向のオシレーシヨンは振幅1.5〜3rwt、周
波数750Hzとし、また、各方法ともに溶接電圧は5
0〜52KV1溶接電流は450〜500mAとし、母
材は板厚25朋の軟鋼板を使用した。この図からも明ら
かなように、本発明の方法による方が高速に溶接を行な
うことができた。以上詳述したように、この発明は、電
子ビームを所望の溶接ビード幅に相当する振幅で溶接線
に直交する方向に振動させながら溶接線方向に移動する
ようにするとともに、上記電子ビームをその移動軌跡の
位相をずらせながら溶接線方向へも振動させ、溶接線に
直交する方向の振動周波数を溶接線方向の振動周波数よ
りも高く設定し、振幅を適当に設定することにより溶接
部噌融状態卦よび凝固速度等の溶接条件を調接するよう
にしたことを特徴とし、これによつて溶込みが深く、高
速に溶接が行なえるという電子ビード溶接本来の特性を
活かしながら、開先精度に影響されることなく片側溶接
すQことができ、溶接開先の機械加工や、反転すること
の難しい一般大形重量構造物などの溶接も効果的に行な
うことができる電子ビーム溶接方法を提供することがで
きるものである。
In the method of the above embodiment, the oscillation in the X direction has an amplitude of 5 to 107!1f11. , the frequency was 100 Hz, the oscillation in the Y direction had an amplitude of 1.5 to 3 rwt, and a frequency of 750 Hz, and the welding voltage was 5 for each method.
The welding current of 0 to 52 KV1 was 450 to 500 mA, and a mild steel plate with a thickness of 25 mm was used as the base material. As is clear from this figure, welding could be performed faster using the method of the present invention. As described in detail above, the present invention moves the electron beam in the direction of the welding line while vibrating the electron beam in a direction perpendicular to the welding line with an amplitude corresponding to the desired weld bead width, By vibrating in the direction of the welding line while shifting the phase of the movement trajectory, and setting the vibration frequency in the direction perpendicular to the welding line to be higher than the vibration frequency in the welding line direction, and setting the amplitude appropriately, the welded area can be melted. It is characterized by adjusting the welding conditions such as welding speed and solidification rate, and this makes use of the original characteristics of electronic bead welding, such as deep penetration and high-speed welding, while affecting the bevel accuracy. To provide an electron beam welding method capable of performing one-sided welding without being damaged and effectively performing machining of weld grooves and welding general large heavy structures that are difficult to reverse. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はそれぞれ別個の従来例を示すもの
で、第1図aは溶接前の母材断面図、bは溶接部の断面
を示す写真、cはbの説明図、第2図aは斜視図、bは
溶接部の断面を示す写真、cはbの説明図、第3図aは
溶接部の断面を示す写真、bはaの説明図、第4図ない
し第5図はこの発明の一実施例を示すもので、第4図は
斜視図、第5図aは電子ビームの移動軌跡を示す写真、
bは溶接部の断面を示す写真、cはbの説明図、第6図
は従来方法と上記実施例の方法による、ビード幅と溶接
速度との関係を比較して示すグラフ、第7図イ及び同図
口は本発明条件から外れた場合のビームの軌跡を示す説
明図、同図ハは本発明方法に係るビーム軌跡を示す説明
図、第8図イ及び同図口は本発明条件から外れた場合の
溶接部を示す説明図、同図ハは本発明方法に係る溶接部
を示す説明図である。 11・・・・・・母材、13・・・・・・電子ビーム、
16・・・・・・溶接ビード。
Figures 1 to 3 show separate conventional examples, where Figure 1a is a cross-sectional view of the base metal before welding, Figure b is a photograph showing a cross-section of the welded part, Figure c is an explanatory diagram of Figure 2, Figure a is a perspective view, b is a photograph showing the cross section of the welded part, c is an explanatory view of b, Figure 3 a is a photograph showing the cross section of the welded part, b is an explanatory view of a, Figures 4 and 5. 4 shows an embodiment of the present invention, FIG. 4 is a perspective view, FIG. 5a is a photograph showing the movement trajectory of the electron beam,
b is a photograph showing a cross section of the welded part, c is an explanatory diagram of b, Fig. 6 is a graph comparing the relationship between bead width and welding speed by the conventional method and the method of the above embodiment, and Fig. 7 8A and 8B are explanatory diagrams showing the beam trajectory when the conditions of the present invention are not met, C is an explanatory diagram showing the beam trajectory according to the method of the present invention, and A and the mouth of the same figure are explanatory diagrams showing the beam trajectory when the conditions of the present invention are not met. An explanatory diagram showing a welded part when it comes off, and Figure C is an explanatory diagram showing a welded part according to the method of the present invention. 11... Base material, 13... Electron beam,
16...Welding bead.

Claims (1)

【特許請求の範囲】[Claims] 1 電子ビームを所望の溶接ビード幅に相当する振幅で
溶接線に直交する方向に振動させながら溶接線方向に移
動するようにするとともに、上記電子ビームをその移動
軌跡の位相をずらせながら溶接線方向へも振動させるよ
うにした電子ビーム溶接方法において、溶接線に直交す
る方向の振動周波数を溶接線方向の振動周波数よりも高
く設定し、振幅を適当に設定することにより溶接部の溶
融状態および凝固速度等の溶接条件を調節するようにし
たことを特徴とする電子ビーム溶接方法。
1 The electron beam is moved in the welding line direction while being vibrated in a direction perpendicular to the welding line with an amplitude corresponding to the desired weld bead width, and the electron beam is moved in the welding line direction while shifting the phase of its movement trajectory. In an electron beam welding method that vibrates to both sides, the vibration frequency in the direction perpendicular to the weld line is set higher than the vibration frequency in the weld line direction, and by setting the amplitude appropriately, the molten state and solidification of the weld zone can be controlled. An electron beam welding method characterized by adjusting welding conditions such as speed.
JP49100164A 1974-08-31 1974-08-31 density Expired JPS594234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49100164A JPS594234B2 (en) 1974-08-31 1974-08-31 density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49100164A JPS594234B2 (en) 1974-08-31 1974-08-31 density

Publications (2)

Publication Number Publication Date
JPS5127839A JPS5127839A (en) 1976-03-09
JPS594234B2 true JPS594234B2 (en) 1984-01-28

Family

ID=14266663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49100164A Expired JPS594234B2 (en) 1974-08-31 1974-08-31 density

Country Status (1)

Country Link
JP (1) JPS594234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196628U (en) * 1986-06-02 1987-12-14

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603986A (en) * 1983-06-22 1985-01-10 Kawasaki Heavy Ind Ltd Method and device for electron beam welding
JPH0294888U (en) * 1989-01-12 1990-07-27
JPH0639561A (en) * 1992-05-26 1994-02-15 Mitsubishi Electric Corp Electron beam welding equipment
KR101821557B1 (en) 2010-03-19 2018-01-25 아토모 다이아그노스틱스 피티와이 리미티드 Diagnostic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196628U (en) * 1986-06-02 1987-12-14

Also Published As

Publication number Publication date
JPS5127839A (en) 1976-03-09

Similar Documents

Publication Publication Date Title
US4229639A (en) Energy beam welding method
JPS6055223B2 (en) Overlay welding method
JPS594234B2 (en) density
JP3272534B2 (en) Laser welding method for Al alloy
JP6620683B2 (en) Welding method
US4037078A (en) Process for welding aluminum and aluminum alloys in horizontal welding position
JPH02137688A (en) Laser beam machine
JPH07323386A (en) Laser welding method
JP3173705B2 (en) Overlay method
JPS60177983A (en) Spot welding method
JP2505547B2 (en) Electronic beam welding method for casting materials
JPH04327386A (en) Tee type welding method by laser beam
JP7443661B2 (en) Laser welding method and laser welding device
JPH01278983A (en) Laser welding method
JPS62254992A (en) Laser welding method of aluminum member
JPS62107885A (en) Magnetic agitation welding method
JPS603986A (en) Method and device for electron beam welding
KR100327871B1 (en) More Fast Welding machine for Fillet welding
JPS61269973A (en) Preventing method for sticking of dross to melt cut part
JP2646388B2 (en) Gas shielded arc welding method
JPH106010A (en) Steam turbine rotor assembling method
JPS62220293A (en) Narrow groove laser beam welding method
RU2030262C1 (en) Method of surfacing
JPS582743B2 (en) Non-consumable electrode arc welding method
JPS6015068A (en) Arc welding method