JPS62107885A - Magnetic agitation welding method - Google Patents

Magnetic agitation welding method

Info

Publication number
JPS62107885A
JPS62107885A JP60248326A JP24832685A JPS62107885A JP S62107885 A JPS62107885 A JP S62107885A JP 60248326 A JP60248326 A JP 60248326A JP 24832685 A JP24832685 A JP 24832685A JP S62107885 A JPS62107885 A JP S62107885A
Authority
JP
Japan
Prior art keywords
welding
molten pool
stator
bead
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248326A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60248326A priority Critical patent/JPS62107885A/en
Publication of JPS62107885A publication Critical patent/JPS62107885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To prevent a high temp. crack and to improve the shape of a bead, etc. by arranging the stator of an alternating current linear motor just the above or the below of a molten pool in the laser beam welding that a welding current is not passed to the base metal. CONSTITUTION:The stator 21 of a cylindrical three phase AC linear motor is arranged at the position just the above or the below of a molten pool 2 in the laser beam welding, etc. which forms the molten pool 2 and melting metal 3 via a laser beam 30 on a base metal 1. The stator 21 is of annular shape, providing a radial projecting part on the lower face and is composed of the core which forms a notch part on one place thereof and a coil 25. A magnetic flux density is formed with the passing of a three phase alternating current to the stator 21, the waveform thereof forms a progressive magnetic field and the molten pool 2 is subjected to a magnetic agitation by the mutual action with the eddy current to be generated in the base metal. In this way, the prevention from high temp. cracks, the improvement of the bead shape and the structural improvement of the welding metal can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気撹拌溶接方法に関し、詳しくは製鉄機械
、風力機械等における精密部材の溶接を始じめ、化学機
械、原子力、船舶、鉄橋等のあらゆる溶接構造物の溶接
に適した磁気撹拌溶接方法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic stir welding method, and more specifically, it is used for welding precision parts in iron and steel machinery, wind machinery, etc., as well as chemical machinery, nuclear power, ships, and iron bridges. This relates to a magnetic stirring welding method suitable for welding all kinds of welded structures such as.

〔従来の技術〕[Conventional technology]

溶接金属の組織の改善及び融合不良、高温割れ等を防止
する方法としては、溶融池の撹拌がある。こうした溶融
池の撹拌方法としては、従来、磁気による方法が実用化
されている。これをTIG溶接に適用した第10図の原
理図を診照して説明する。図中の1は母材、2は溶融池
、3は溶接金属、4はタングステン電極、5はTIG溶
接トーチ、6は励磁コイル、7は交番磁場発生装置、8
はシールドノズルである。まず、タングステン電極4か
ら母材1の溶融池2に流れる溶接電流9は溶融池2を中
心に放射状にかつ母材1の表面とほぼ平行に同母材ノ内
を流れる。こうした状態で、溶接トーチ5の周囲に配置
した励磁コイル6より母材1の表面に対して垂直な磁界
10を与えると、溶融池2全流れる溶接電流9とでロー
レンツ力Fが発生し、溶融金属が一方向に回転する。前
記励磁コイル6は交番磁場発生電源7に接続されている
ことにより、溶融池2に周期的に反転する力が与えるこ
とができ、溶融池2を効果的に撹拌できる。
Stirring of the molten pool is a method for improving the structure of weld metal and preventing poor fusion, hot cracking, etc. As a method for stirring such a molten pool, a magnetic method has conventionally been put into practical use. This will be explained with reference to the principle diagram of FIG. 10, which is applied to TIG welding. In the figure, 1 is the base material, 2 is the molten pool, 3 is the weld metal, 4 is the tungsten electrode, 5 is the TIG welding torch, 6 is the excitation coil, 7 is the alternating magnetic field generator, 8
is a shield nozzle. First, the welding current 9 flowing from the tungsten electrode 4 to the molten pool 2 of the base material 1 flows radially around the molten pool 2 and approximately parallel to the surface of the base material 1 within the base material. In this state, when a magnetic field 10 perpendicular to the surface of the base metal 1 is applied from an excitation coil 6 placed around the welding torch 5, a Lorentz force F is generated by the welding current 9 flowing throughout the molten pool 2, causing the melt to melt. Metal rotates in one direction. Since the excitation coil 6 is connected to an alternating magnetic field generating power source 7, it can apply a periodic reversing force to the molten pool 2, and the molten pool 2 can be effectively stirred.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、レーザ溶接や非移行式プラズマ溶接の場
合は、TIG溶接、 MIG溶接、サブマージアーク溶
接のように溶接電流を溶融池や母材に流さないため、従
来方法では磁気撹拌が不可能であった。
However, in the case of laser welding and non-transfer plasma welding, unlike TIG welding, MIG welding, and submerged arc welding, welding current does not flow through the molten pool or base metal, so magnetic stirring was not possible with conventional methods. .

本発明は、上記事情に鑑みなされたもので、レーザ溶接
やプラズマ溶接において、母材の溶融池を効果的に磁気
撹拌し得る磁気撹拌溶接方法を提供しようとするもので
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic stirring welding method that can effectively magnetically stir a molten pool of a base material in laser welding or plasma welding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、プラズマ溶接又はレーザ溶接等の母材に溶接
′1流を流さない溶接により該母材に溶融池を形成する
溶接方法において、前記溶融池直上又は溶融池直下の母
材裏面に交流銹導リニアモータの固定子を配置し、母材
及び溶融池内に誘導電流を生じせしめ、溶融池を回転さ
せて撹拌することを特徴とするものである。
The present invention provides a welding method in which a molten pool is formed in a base material by welding such as plasma welding or laser welding that does not flow a welding current into the base material, and in which an alternating current is applied to the back surface of the base material directly above or below the molten pool. This method is characterized in that a stator of a rust induction linear motor is arranged to generate an induced current in the base material and the molten pool, thereby rotating and stirring the molten pool.

以下1本発明の溶接方法を第1図〜第3図を参照して説
明する。
The welding method of the present invention will be explained below with reference to FIGS. 1 to 3.

図中の1は母材、2は溶融池、3は溶接金属である。前
記溶融池2の直上には、円筒状の三相交流IJ ニアモ
ータの固定子2ノが配置されている。この固定子2ノは
、リング状をなし、下面に放射状の突起部22を複数布
すると共に突起部22の一箇所に切欠部23が形成され
た強磁性材料のコア24と、このコア24の突起部間に
配置されたコイル25とから構成されている。前記固定
子2ノは三相交流電源26に接続されている。この三相
交流電源26と固定子2ノの間には周期的に極性を変更
するだめのスイッチング回路27が介装されている。ま
た。
In the figure, 1 is the base material, 2 is the molten pool, and 3 is the weld metal. Directly above the molten pool 2, a stator 2 of a cylindrical three-phase AC IJ near motor is arranged. This stator 2 has a ring shape, has a plurality of radial protrusions 22 on its lower surface, and has a core 24 made of a ferromagnetic material with a notch 23 formed in one place of the protrusions 22. The coil 25 is arranged between the protrusions. The stator 2 is connected to a three-phase AC power source 26. A switching circuit 27 for periodically changing the polarity is interposed between the three-phase AC power supply 26 and the stator 2. Also.

前記固定子21の上方にはレンズ28を有するレーザ溶
接機29が配設されており、この溶接機29からはレー
ザ光30が固定子2ノの中空部を通して母材1に照射さ
れ、溶融池2を形成する。
A laser welding machine 29 having a lens 28 is disposed above the stator 21, and a laser beam 30 from this welding machine 29 is irradiated onto the base material 1 through the hollow part of the stator 2, forming a molten pool. form 2.

〔作用〕[Effect]

第4図に示すように固定子21′に三相交流を流すと、
磁束密度Bが発生する。この磁束密度Bの波形は、時間
を止めた時のものであり、時間経過に伴ってその波形は
右方向へ移動する。
When three-phase alternating current is applied to the stator 21' as shown in Fig. 4,
A magnetic flux density B is generated. The waveform of this magnetic flux density B is when time is stopped, and the waveform moves to the right as time passes.

これが進行磁界であり、回転形の誘導機では回転磁界と
いっているのと原理的に同じである。
This is a traveling magnetic field, which is basically the same as a rotating magnetic field in a rotating induction machine.

固定子27’から発生する磁束は交流であるから、レン
ツの法則に従って母材lにうず電流工。を発生する。第
4図中の母材1に示したe印と×印はうず電流の流れる
方向と大きさである。・印、X印は夫々紙面に垂直で、
互に向きが逆である。
Since the magnetic flux generated from the stator 27' is alternating current, eddy current is applied to the base material l according to Lenz's law. occurs. The e mark and the x mark shown on the base material 1 in FIG. 4 indicate the direction and magnitude of eddy current flow.・The mark and the X mark are perpendicular to the paper surface, respectively.
The directions are opposite to each other.

このうず電流工。と磁束密度BKよりフレミングの左手
則に従って連続的に推力Fが発生する。
This eddy electrician. According to Fleming's left-hand rule, a thrust force F is generated continuously from the magnetic flux density BK and the magnetic flux density BK.

上述した固定子21′を第1図〜第3図に示すように円
筒状の固定子2ノとすることにょシ、推力Fは第5図に
示すように溶融池2を中心とする円状に作用し、溶融池
2に回転力が与えられる。したがって、溶融池2等への
溶接電流を流がさない例えばレーザ溶接機29を用いて
も、溶融−池−2f効濠的に撹拌できる。
The stator 21' mentioned above is made into a cylindrical stator 2 as shown in FIGS. , and rotational force is applied to the molten pool 2. Therefore, even if a laser welder 29, for example, which does not flow welding current to the molten pool 2, etc., is used, the molten pool 2f can be effectively stirred.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 まず、第6図に示すように250 X100 X30 
llll11の寸法の5M50材の拘束板3ノ上に20
0 X60 X20瓢の寸法の5M50材の試験片32
を設置した後、該試験片32周縁と拘束板3ノとを溶接
して拘束ビード33により拘束した。つづいて、前述し
た第1図〜第3図の装置を用いて下記第1表に示す条件
にて前記試験片32の中央をメルトラン溶接(溶加材を
使用せず、ビードを走らせるだけ)を行ない、試験ビー
ド34を形成した。
Example 1 First, as shown in Fig. 6, 250 x 100 x 30
20 on top of 3 restraining plates made of 5M50 material with dimensions lllll11
32 test pieces of 5M50 material with dimensions of 0 x 60 x 20 gourds
After installing the test piece 32, the periphery of the test piece 32 and the restraint plate 3 were welded and restrained by a restraint bead 33. Next, the center of the test piece 32 was melt-run welded using the apparatus shown in FIGS. 1 to 3 described above under the conditions shown in Table 1 below (no filler metal was used, just a bead was run). A test bead 34 was formed.

しかして、レーザ溶接後の試験ビード34について、X
線検査による欠陥の調査(ブローホールの発生)及び割
れ率を調べた。割れ率については、5箇所の断面を第7
図、第8図に示すように割れを調査し、次式 t(割れ長さ)/L(溶込み深さ)X100(%)よ)
算出した。これらの結果を同第1表に併記した。なお、
第1表中には磁気撹拌を行なわないレーザ溶接によるブ
ローホール、割れ率を比較例1として示した。
Therefore, regarding the test bead 34 after laser welding,
Defects (occurrence of blowholes) and cracking rates were investigated by line inspection. Regarding the cracking rate, the cross sections at five locations were
Investigate the crack as shown in Figure 8 and use the following formula t (crack length) / L (penetration depth) x 100 (%))
Calculated. These results are also listed in Table 1. In addition,
In Table 1, the blowhole and cracking rates obtained by laser welding without magnetic stirring are shown as Comparative Example 1.

上記第1表よシ明らかなように、本実施例1の磁気撹拌
溶接によればブローホールの発生及び割れを防止できる
ことがわかる。
As is clear from Table 1 above, it can be seen that the magnetic stirring welding of Example 1 can prevent the occurrence of blowholes and cracks.

実施例2 前述した第1図〜第3図の装置を用いて下記第2表に示
す条件にて第9図のステライト粉末(図示せず)を厚さ
2■散布した軟鋼板35をレーザ肉盛溶接を行なって肉
盛溶接ビード36を形成した。
Example 2 A mild steel plate 35 on which the stellite powder (not shown) shown in FIG. 9 was sprinkled to a thickness of 2 cm was laser-cut using the apparatus shown in FIGS. 1 to 3 described above under the conditions shown in Table 2 below. Overlay welding was performed to form an overlay weld bead 36.

上記肉盛溶接においては、材料費及び作業効率の観点か
ら、できるだけ薄くかつ幅広の肉盛溶接ビードを形成す
ることが望ましいため、H(ビード高さ)/W(ビード
幅)の小さいものが良好であるといえる。また、ビード
重ね部での欠陥発生を抑制する観点から、肉盛溶接ビー
ド止端部の角度(θ)が大きいことが望ましい。そこで
、実施例2で形成した肉盛溶接ビード36についてルW
及びθを調べた。その結果を第2表に併記した。なお、
第2表中には磁気撹拌を行なわないレーザ溶接により形
成した肉盛溶接ビードのル傳及びθを比較例2として併
記した。
In the above-mentioned overlay welding, from the viewpoint of material cost and work efficiency, it is desirable to form an overlay weld bead as thin and wide as possible, so a smaller H (bead height)/W (bead width) is better. You can say that. Furthermore, from the viewpoint of suppressing the occurrence of defects at the bead overlapped portion, it is desirable that the angle (θ) of the overlay weld bead toe be large. Therefore, regarding the overlay weld bead 36 formed in Example 2,
and θ were investigated. The results are also listed in Table 2. In addition,
In Table 2, the radius and θ of an overlay weld bead formed by laser welding without magnetic stirring are also listed as Comparative Example 2.

上記第2表よシ明らかなように、本実施例2によれば肉
盛溶接ビード形状を改善できることがわかる。
As is clear from Table 2 above, it can be seen that according to Example 2, the overlay weld bead shape can be improved.

なお、上記実施例ではレーザ溶接を採用した磁気撹拌溶
接方法について説明したが、プラズマ溶接等の母材に溶
接電流を流さない溶接を採用しても同様な効果全達成で
きる。
In the above embodiment, a magnetic stirring welding method employing laser welding has been described, but the same effects can be achieved even by employing welding such as plasma welding in which no welding current is passed through the base material.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればレーザ溶接やプラズ
マ溶接において、母材の溶融池全磁気撹拌でき、ひいて
は高温割れの防止及びビード形状の改善、溶接金属の組
織の改善等を達成し得る磁気撹拌溶接方法を提供できる
As detailed above, according to the present invention, in laser welding or plasma welding, it is possible to fully magnetically stir the molten pool of the base metal, and as a result, it is possible to prevent hot cracking, improve the bead shape, and improve the structure of the weld metal. A magnetic stir welding method can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気撹拌溶接に用いら八る装置の概略
図、第2図は第1図のA −A’線に沿う断面図、第3
図は第1図のB −B’線に沿う断面図、第4図は本発
明の磁気(W拌の原理を示す説明図、第5図は溶融池の
磁気撹拌状態を示す説明図、第6図は本発明の実施例1
で用いた試鋏片を示す平面図、第7図は第6図のc −
c’線に沿う断面図、第8図は第7図のD部の拡大断面
図、第9図は実施例2によυ肉盛溶接ビードが形成され
た軟鋼板を示す概略図、第10図は従来の磁気撹拌を採
用したTIG溶接を示す説明図である。 ノ・・・母材、2・・・溶融池、3・・・溶接金属、2
1・・・交流誘導リニアモータの固定子、24・・・コ
ア、2.5・・コイル、26・・・三相交流電源、28
・・・レンズ、29・・・レーザ溶接機、30・・・レ
ーザ光、3ノ・・・拘束板、32・・・試験片、34・
・・試験ビード、35・・・軟鋼板、36・・・肉盛溶
接ビード。 出願人復代理人  弁理士 鈴 江 武 彦第2図  
   第32 第4図 第5図 第6図 第7図 1ム 第8図
FIG. 1 is a schematic diagram of an apparatus used for magnetic stirring welding of the present invention, FIG. 2 is a sectional view taken along line A-A' in FIG. 1, and FIG.
The figure is a sectional view taken along the line B-B' in Figure 1, Figure 4 is an explanatory diagram showing the principle of magnetic (W stirring) of the present invention, Figure 5 is an explanatory diagram showing the state of magnetic stirring of the molten pool, Figure 6 shows Example 1 of the present invention.
A plan view showing the test scissors piece used in Figure 7 is c- in Figure 6.
8 is an enlarged sectional view of section D in FIG. 7, FIG. 9 is a schematic diagram showing a mild steel plate on which a υ overlay weld bead is formed according to Example 2, and FIG. The figure is an explanatory diagram showing TIG welding using conventional magnetic stirring. No... Base metal, 2... Molten pool, 3... Weld metal, 2
1... Stator of AC induction linear motor, 24... Core, 2.5... Coil, 26... Three-phase AC power supply, 28
... Lens, 29... Laser welding machine, 30... Laser light, 3... Restriction plate, 32... Test piece, 34...
...Test bead, 35... Mild steel plate, 36... Overlay welding bead. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 2
32 Figure 4 Figure 5 Figure 6 Figure 7 Figure 1 Figure 8

Claims (1)

【特許請求の範囲】[Claims] プラズマ溶接又はレーザ溶接等の母材に溶接電流を流さ
ない溶接により該母材に溶融池を形成する溶接方法にお
いて、前記溶融池直上又は溶融池直下の母材裏面に交流
誘導リニアモータの固定子を配置し、母材及び溶融池内
に誘導電流を生じせしめ、溶融池を回転させて撹拌する
ことを特徴とする磁気撹拌溶接方法。
In a welding method in which a molten pool is formed in the base material by welding such as plasma welding or laser welding in which no welding current is applied to the base material, a stator of an AC induction linear motor is placed on the back surface of the base material directly above or below the molten pool. A magnetic stirring welding method characterized in that the molten pool is rotated and stirred by arranging the molten metal and the molten pool to generate an induced current in the base metal and the molten pool.
JP60248326A 1985-11-06 1985-11-06 Magnetic agitation welding method Pending JPS62107885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248326A JPS62107885A (en) 1985-11-06 1985-11-06 Magnetic agitation welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248326A JPS62107885A (en) 1985-11-06 1985-11-06 Magnetic agitation welding method

Publications (1)

Publication Number Publication Date
JPS62107885A true JPS62107885A (en) 1987-05-19

Family

ID=17176413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248326A Pending JPS62107885A (en) 1985-11-06 1985-11-06 Magnetic agitation welding method

Country Status (1)

Country Link
JP (1) JPS62107885A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106348A (en) * 1991-11-20 1994-04-19 Tadahiro Omi Welding equipment
JP2010264313A (en) * 2010-08-31 2010-11-25 Sanyo Product Co Ltd Game machine
RU2653744C1 (en) * 2017-03-27 2018-05-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of large thicknesses workpieces laser welding
CN110640315A (en) * 2019-08-26 2020-01-03 江苏大学 Laser welding method and device with additional variable frequency magnetic field
CN110977160A (en) * 2018-10-03 2020-04-10 丰田自动车株式会社 Laser welding method for stator coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106348A (en) * 1991-11-20 1994-04-19 Tadahiro Omi Welding equipment
JP2010264313A (en) * 2010-08-31 2010-11-25 Sanyo Product Co Ltd Game machine
RU2653744C1 (en) * 2017-03-27 2018-05-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of large thicknesses workpieces laser welding
CN110977160A (en) * 2018-10-03 2020-04-10 丰田自动车株式会社 Laser welding method for stator coil
CN110640315A (en) * 2019-08-26 2020-01-03 江苏大学 Laser welding method and device with additional variable frequency magnetic field

Similar Documents

Publication Publication Date Title
JP6159147B2 (en) Hybrid laser arc welding process and apparatus
CN102848058B (en) The method and apparatus of pulsed magnetic field refinement seam organization is used in welding process
JPS62107885A (en) Magnetic agitation welding method
JPS5811317B2 (en) Horizontal electroslag build-up welding method
Sasaki et al. Development of two-electrode electro-gas arc welding process
Jones et al. Towards advanced welding methods for the ITER vacuum vessel sectors
Chattopadhyay et al. Hybrid electroslag cladding (H-ESC): an innovation in high speed electroslag strip cladding
US3882298A (en) Method of and apparatus for the submerged arc surfacing of metallic work pieces
Katoh Pulsed TIG Welding of Aluminum
JP2001205435A (en) Magnetically controlled welding method for narrow bevel and device therefor
JPS60121076A (en) Tig welding device
JPS6390366A (en) Build-up welding method to shaft end
JPS62144877A (en) Spot welding method
JP2909434B2 (en) Assembly method of steam turbine rotor
US3042788A (en) Welding system with scanning weld current
Schmidt et al. The GMAW Process Using a Two-Dimensional Arc Deflection with AC Hot Wires
JPS6117372A (en) Magnetic agitation horizontal position welding
JPS61279365A (en) Narrow groove horizontal welding method
JPH01278983A (en) Laser welding method
Chae et al. Welding phenomena in hybrid laser-rotating arc welding process
JPH0557072B2 (en)
JP2005138153A (en) Welding method for aluminum or aluminum alloy material
Duong The evaluation on performance of narrow-gap welding thick steel plates under the influence of main welding parameters
JPS62203675A (en) Stud welding method and its device
JPS62114769A (en) Hardening buildup welding method for valve