JPS5942053B2 - Manufacturing method of high tension line pipe - Google Patents

Manufacturing method of high tension line pipe

Info

Publication number
JPS5942053B2
JPS5942053B2 JP2973076A JP2973076A JPS5942053B2 JP S5942053 B2 JPS5942053 B2 JP S5942053B2 JP 2973076 A JP2973076 A JP 2973076A JP 2973076 A JP2973076 A JP 2973076A JP S5942053 B2 JPS5942053 B2 JP S5942053B2
Authority
JP
Japan
Prior art keywords
less
seam
welding
manufacturing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2973076A
Other languages
Japanese (ja)
Other versions
JPS52111849A (en
Inventor
節男 岡本
昭夫 池田
富久長 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2973076A priority Critical patent/JPS5942053B2/en
Publication of JPS52111849A publication Critical patent/JPS52111849A/en
Publication of JPS5942053B2 publication Critical patent/JPS5942053B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は、耐硫化物割れ性に優れた溶接部を有するAP
I規格X60以上の高張力鋼ラインパイプの製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an AP material having a welded portion with excellent sulfide cracking resistance.
The present invention relates to a method for manufacturing high tensile strength steel line pipes of I standard X60 or higher.

近年、石油や天然ガスの需要の増大に伴い、パイプライ
ンの埋設が大規模に施行されている。
In recent years, as demand for oil and natural gas increases, pipelines are being buried on a large scale.

この際、原油や天然ガス中に硫化水素や、二酸化炭素な
どを含む場合が多く、苛酷な環境条件を生みだす要因と
なる。
At this time, crude oil or natural gas often contains hydrogen sulfide, carbon dioxide, etc., which creates harsh environmental conditions.

特に、高張力鋼ラインパイプの溶接部は溶接により生ず
る残留応力、残留歪、硬度上昇などにより硫化物割れ感
受性が大きくなる。
In particular, welded parts of high-strength steel line pipes are susceptible to sulfide cracking due to residual stress, residual strain, and increased hardness caused by welding.

このような硫化物割れ感受性の増大した溶接部を有する
ラインパイプを、上述した如き、苛酷なサワー環境下で
使用した場合、硫化物割れが発生し、重大なラインパイ
プの破壊事故につながる危険性がある。
If a line pipe with a welded part with increased susceptibility to sulfide cracking is used in the harsh sour environment described above, there is a risk that sulfide cracking will occur, leading to a serious line pipe failure accident. There is.

本発明は、このように苛酷な環境下で使用される、耐硫
化物割れ性に優れた溶接部を有するAPI規格X60以
上の高張力鋼ラインパイプを低廉な方法で供給すること
を目的とするものである。
The purpose of the present invention is to provide, in an inexpensive manner, a high-tensile steel line pipe that meets API standard It is something.

即ち、本発明は、パイプ母材が、重量係で、C:0.0
3〜0.20 、 S i : 0.01〜0.50
、 Mn :0.50〜1.20 、P: 0.03
0以下、S:0.002〜0.020 、 Cu :
0.20〜0.50を含有し、残部は実質的に鉄である
成分系を有するか、またはC: 0.03〜0.20
、Si :0.O]〜0.50.Mn:0.50〜1.
20 、P: 0.030以下、S:0.002〜0.
020 、 Cu : 0.20〜0.50 、を含有
し、さらにCr:0.50以下、Ni:0.30以下、
Nb:0.1以下、V:O,1以下、Mo:0.30以
下、Ca:0.0050以下およびNl:0.1以下の
少なくとも1種を含有し、残部は実質的に鉄である成分
系を有する鋼片を圧延し、または圧延後、適当な焼入れ
、焼戻し処理もしくは焼ならし処理を施し、得られた鋼
板を、所定形状に成形後、サブマージドアーク溶接法、
または電気抵抗溶接法で溶接し、次いでシーム部を50
0〜1000°Cの間の温度に、適当時間保持後、徐冷
し該シーム部の最高硬度をビッカース硬度230相当以
下にすることを特徴とする、耐硫化物割れ性に優れた溶
接部を有する高張力鋼ラインパイプの製造法である。
That is, in the present invention, the pipe base material has a weight ratio of C: 0.0.
3-0.20, Si: 0.01-0.50
, Mn: 0.50-1.20, P: 0.03
0 or less, S: 0.002-0.020, Cu:
C: 0.20 to 0.50, with the remainder being substantially iron, or C: 0.03 to 0.20
, Si:0. O]~0.50. Mn: 0.50-1.
20, P: 0.030 or less, S: 0.002-0.
020, Cu: 0.20 to 0.50, further Cr: 0.50 or less, Ni: 0.30 or less,
Contains at least one of Nb: 0.1 or less, V: O, 1 or less, Mo: 0.30 or less, Ca: 0.0050 or less, and Nl: 0.1 or less, and the remainder is substantially iron. After rolling a steel piece having a compositional system, or after rolling, subjecting it to appropriate quenching, tempering or normalizing treatment, and forming the obtained steel plate into a predetermined shape, submerged arc welding method,
Or weld by electric resistance welding method and then weld the seam with 50mm
A welded part with excellent sulfide cracking resistance, which is maintained at a temperature between 0 and 1000°C for an appropriate time and then slowly cooled to reduce the maximum hardness of the seam to a Vickers hardness equivalent to 230 or less. This is a manufacturing method of high tensile steel line pipe.

次に本発明におけるパイプ母材の上記各成分の限定の理
由について述べると次の通りである。
Next, the reasons for limiting the above-mentioned components of the pipe base material in the present invention are as follows.

C: 炭素は、o、o3%未満では所要の強度が得られず、一
方、0.20%を越えると溶接性を劣化させるので、0
.03〜0.20%とした。
C: If the carbon content is less than 3%, the required strength cannot be obtained, while if it exceeds 0.20%, the weldability deteriorates.
.. 03 to 0.20%.

Si : ケイ素は脱酸剤として0.01%以上必要であり、0.
50%を越えると脆性が増すので、0.01〜0.50
係とした。
Si: Silicon is required as a deoxidizing agent in an amount of 0.01% or more;
If it exceeds 50%, brittleness increases, so 0.01 to 0.50
I was in charge.

Mn: マンガンは脱酸および強度、靭性を付与するのに必要な
元素であるが、特に大型鋼塊又は連続鋳造より製造する
場合1.20%を越えるとミクロ偏析に基づく、マルテ
ンサイト又はベイナイトなどの低温変態組織形成を助長
し、硫化物割れ感受性を高める一力、0.50%未満で
は必要なしん性を確保できないので、0.50〜1.2
0 %とした。
Mn: Manganese is an element necessary for deoxidizing and imparting strength and toughness, but especially when manufactured from large steel ingots or continuous casting, if it exceeds 1.20%, it will cause martensite or bainite etc. due to micro segregation. If it is less than 0.50%, it is not possible to secure the necessary toughness, so 0.50 to 1.2
It was set to 0%.

P: 燐は硫化物割れ感受性を高める元素であり、本発明の場
合、想定される環境が極めて厳しいから、P含有量は可
及的に少なくするのが望ましいので、0.030%以下
とした。
P: Phosphorus is an element that increases the susceptibility to sulfide cracking, and in the case of the present invention, the assumed environment is extremely harsh, so it is desirable to reduce the P content as much as possible, so it was set to 0.030% or less. .

S: 硫黄は硫化物系介在物を形成し、硫化物割れに非常に顕
著な影響を及ぼす元素であり、前述のように、本発明の
場合、想定される環境が極めて厳しいので、0.002
〜0.020係とした。
S: Sulfur is an element that forms sulfide-based inclusions and has a very significant effect on sulfide cracking, and as mentioned above, in the case of the present invention, the envisaged environment is extremely harsh, so 0.002
~0.020 ratio.

Cu: 銅は水素吸収低減に有効であり、o、2o%未満ではそ
の十分な効果が期待できず、一方0.50%を越えて含
有させてもその効果は大きく向上せず、むしろ溶接性を
劣化させる場合があるので、0.20〜0.50fOと
した。
Cu: Copper is effective in reducing hydrogen absorption, but a sufficient effect cannot be expected if it is less than 0.50%, while the effect does not improve significantly if it is contained more than 0.50%, and the weldability is rather reduced. Since it may cause deterioration, the value was set at 0.20 to 0.50 fO.

なお、本発明基本鋼に対してCr≦0.50%。Note that Cr≦0.50% with respect to the basic steel of the present invention.

Ni≦0.30%、Nb≦0.1妬、■≦0.1%、M
Ni≦0.30%, Nb≦0.1 jealousy, ■≦0.1%, M
.

≦o、3ofO1Ca≦o、o 050 %およびAl
≦0.1係をパイプ母材に要求される靭性あるいは強度
を調整するために単独もしくは組合せて含有させること
ができる。
≦o, 3ofO1Ca≦o, o 050% and Al
≦0.1 may be contained alone or in combination in order to adjust the toughness or strength required for the pipe base material.

そして、上記各成分の限定理由について述べると次のと
おりである。
The reason for limiting each of the above components is as follows.

Crは強度調整のために含有させるが、0.50係を越
えると局部偏析による低温変態組織形成を助長して耐硫
化水素割れ性を劣化させるのに加えて、溶接部の靭性を
劣化させるので、0.50%を上限とした。
Cr is included to adjust the strength, but if it exceeds a coefficient of 0.50, it promotes the formation of a low-temperature transformation structure due to local segregation and deteriorates the hydrogen sulfide cracking resistance, as well as the toughness of the weld. , the upper limit was 0.50%.

Niは靭性調整のために含有させるが、0.30係を越
えると硫化水素環境下でのピッティング(孔食)を生じ
易くするのに加えて、溶接部の耐硫化水素割れ性が劣化
するので、0.30%を上限とした。
Ni is included to adjust toughness, but if it exceeds a coefficient of 0.30, it not only tends to cause pitting (pitting corrosion) in a hydrogen sulfide environment, but also deteriorates the hydrogen sulfide cracking resistance of the weld. Therefore, the upper limit was set at 0.30%.

Nb 、Vはいづれも強度調整のために含有させるが、
いずれも0.1%を越えると鋼を脆化させ、特に溶接部
の靭性を劣化させるので、0.1係を上限とした。
Both Nb and V are included to adjust the strength, but
If any content exceeds 0.1%, the steel becomes brittle and the toughness of the welded part in particular deteriorates, so the upper limit was set at 0.1%.

Moは強度および靭性調整のため含有させるが、その効
果は0.30%で飽和し経済的でないので、0.30係
を上限とした。
Mo is included to adjust strength and toughness, but its effect is saturated at 0.30% and is not economical, so the upper limit was set at 0.30%.

Caは鋼中の非金属介在物を球状化して耐硫化水素割れ
性および靭性を向上させる元素で、主に靭性調整のため
に含有させるが、0.0050%を越えると、非金属介
在物をクラスター状に凝集させて逆に耐硫化水素割れ性
および靭性を劣化させるので0.0050係を上限とし
た。
Ca is an element that spheroidizes nonmetallic inclusions in steel and improves hydrogen sulfide cracking resistance and toughness.Ca is mainly included to adjust toughness, but if it exceeds 0.0050%, it can cause nonmetallic inclusions to become spheroidal. The upper limit was set at 0.0050 because it causes agglomeration in clusters and deteriorates hydrogen sulfide cracking resistance and toughness.

Alは脱酸剤として添加されるもので、結晶粒を細かく
して靭性調整に有効な元素であるが、0.1係を越える
と鋼を脆化させ逆に靭性劣化を招くので、0.1係を上
限とした。
Al is added as a deoxidizing agent, and is an effective element to refine grains and adjust toughness, but if it exceeds 0.1, it will embrittle the steel and cause deterioration of toughness. The upper limit was Section 1.

本発明の方法におけるシーム部熱処理の加熱温度は少な
くとも500℃としないと所期の効果が得られず、一方
1000℃を越えると鋼質の劣化を生じて好ましくない
The heating temperature for the seam heat treatment in the method of the present invention must be at least 500°C, or the desired effect will not be obtained, while if it exceeds 1000°C, the quality of the steel will deteriorate, which is undesirable.

したがって、500〜1000℃の間の加熱温度で熱処
理してシーム部の最高硬度をビッカース硬度230相当
以下とすることが肝要であり、その際以下の実施例に示
すように本発明において特定する組成の鋼種にあっては
じめて割れの完全防止が可能となる。
Therefore, it is important to heat-treat at a heating temperature between 500 and 1000°C to make the maximum hardness of the seam part equivalent to Vickers hardness 230 or less. Complete prevention of cracking is only possible with steel types such as .

次に本発明を実施例に関連してさらに説明する。The invention will now be further explained with reference to examples.

実施例−1 第1表および第2表に実験に用いたパイプ母材の化学成
分及び溶接法を示す。
Example-1 Tables 1 and 2 show the chemical composition and welding method of the pipe base material used in the experiment.

それらのパイプより硫化物割れ試験片を採取し、機械加
工により所定形成とした。
Sulfide crack test pieces were taken from these pipes and machined into the specified shapes.

硫化物割れ試験は、0.5係酢酸水溶液に硫化水素を飽
和させたpH値3.0〜3,5の試験液中で、母材降伏
点の1.5倍の応力が付加されるように、4点曲げ定歪
法により、試験温度25°C1試験時間330hr、で
行なった。
In the sulfide cracking test, a stress of 1.5 times the yield point of the base material is applied in a test solution with a pH value of 3.0 to 3.5, which is a 0.5 acetic acid aqueous solution saturated with hydrogen sulfide. The test was carried out using the four-point bending constant strain method at a test temperature of 25° C. and a test time of 330 hours.

尚、この試験は、−鋼種につき、所定応力レベルで3本
行なった。
This test was conducted three times at a predetermined stress level for each type of steel.

試験結果を第3表にまとめて示す。本例の場合、シーム
部熱処理は950°Cに1時間保持後徐冷した。
The test results are summarized in Table 3. In this example, the seam heat treatment was performed by holding the seam at 950°C for 1 hour and then slowly cooling it.

母材として、本発明鋼を用い、シーム部熱処理を行なう
ことにより溶接部最高硬度を)(v230以下にしたも
のは、欠陥皆無であった。
When the steel of the present invention was used as the base material and the maximum hardness of the welded part was reduced to v230 or less by heat-treating the seam part, there were no defects.

一方、母材として本発明鋼以外を用いたり、シーム部熱
処理を行なわず硬度がHv>230になったものは、欠
陥が発生している。
On the other hand, defects occur when a material other than the steel of the present invention is used as the base material, or when the seam portion is not heat-treated and the hardness becomes Hv>230.

実施例−2 実施例−1の第1表および第2表に示す本発明鋼マーク
H鋼を対象にシーム部熱処理の加熱温度の影響について
の試験結果を第4表に示す。
Example 2 Table 4 shows test results regarding the influence of heating temperature in seam heat treatment for the present invention steel Mark H shown in Tables 1 and 2 of Example 1.

なお硫化物割れ試験は実施例−1と同様である。Note that the sulfide cracking test was the same as in Example-1.

第4表より明らかな如く、500°C未満又は1000
℃を越える温度でシーム部熱処理をすると耐硫化物割れ
性が劣ることがわかる。
As is clear from Table 4, less than 500°C or 1000°C
It can be seen that when the seam portion is heat treated at a temperature exceeding ℃, the sulfide cracking resistance is inferior.

かかる実施例をみても、明白なように、本発明において
特定する鋼をパイプ母材として用い、シーム部熱処理を
行なうことにより溶接部最高硬度をHV230以下にす
れば、非常に苛酷な環境条件下でも、溶接部は耐硫化物
割れ性に優れていることは暦然としている。
As is clear from these examples, if the steel specified in the present invention is used as the pipe base material and the maximum hardness of the welded part is reduced to HV230 or less by heat-treating the seam, it can withstand extremely harsh environmental conditions. However, it is clear that welded parts have excellent resistance to sulfide cracking.

Claims (1)

【特許請求の範囲】 I C:0.03〜0,20%、Si : 0.01
〜0.50係、Mn : 0.50〜1.20%、P:
0.030%以下、s : o、o 02〜0.020
%、Cu:0.20〜0.50%を含有し、残部は実質
的に鉄である成分系を有する鋼片を圧延し、または圧延
後、適当な焼入れ、焼戻し処理もしくは焼ならし処理を
施し、得られた鋼板を、所定形状に成形後、サブマージ
ドアーク溶接法、または電気抵抗溶接法で溶接し、次い
でシーム部を500〜1000℃の間の温度に、適当時
間保持後、徐冷し該シーム部の最高硬度をビッカース硬
度230相当以下にすることを特徴とする、耐硫化物割
れ性に優れた溶接部を有するAPI規格X60以上の高
張カラインパイプの製造法。 2C:0.03〜0.20係、Si:0.01〜0.5
0係、Mn : 0.50−1.20%、P:0.03
0%以下、s : o、o O2〜0.02 o%、C
u:0.20〜0.50%を含有し、更にCr : 0
.50%以下、Ni:0.30係以下、Nb:0.1係
以下、V:0.1係以下、Mo : 0.30 ’lo
以下、Ca : 0.0050 %以下、およびAl二
〇、1%以下の少なくとも1種を含有し、残部は実質的
に鉄である成分系を有する鋼片を圧延し、または圧延後
、適当な焼入れ、焼戻し処理もしくは焼ならし処理を施
し、得られた鋼板を、所定形状に成形後、サブマージド
アーク溶接法、または電気抵抗溶接法で溶接し、次いで
シーム部を500〜1000℃の間の温度に、適当時間
保持後、徐冷し該シーム部の最高硬度をビッカース硬度
230相当以下にすることを特徴とする、耐硫化物割れ
性に優れた溶接部を有するAPI規格X60以上の高張
カラインパイプの製造法。
[Claims] IC: 0.03 to 0.20%, Si: 0.01
-0.50 ratio, Mn: 0.50-1.20%, P:
0.030% or less, s: o, o 02-0.020
%, Cu: 0.20 to 0.50%, and the remainder is substantially iron, or after rolling, appropriate quenching, tempering or normalizing treatment is performed. After forming the obtained steel plate into a predetermined shape, welding is performed by submerged arc welding or electric resistance welding, and then the seam is kept at a temperature between 500 and 1000°C for an appropriate period of time, followed by slow cooling. A method for manufacturing a hypertonic Karaline pipe of API standard X60 or higher having a welded part with excellent sulfide cracking resistance, characterized in that the maximum hardness of the seam part is equal to or less than 230 Vickers hardness. 2C: 0.03-0.20, Si: 0.01-0.5
0 ratio, Mn: 0.50-1.20%, P: 0.03
0% or less, s: o, o O2~0.02 o%, C
Contains u: 0.20 to 0.50%, and further contains Cr: 0
.. 50% or less, Ni: 0.30 or less, Nb: 0.1 or less, V: 0.1 or less, Mo: 0.30'lo
Hereinafter, a steel slab containing at least one of Ca: 0.0050% or less and Al: 20.1% or less, with the remainder being substantially iron, is rolled, or after rolling, a suitable After quenching, tempering, or normalizing, the resulting steel plate is formed into a predetermined shape, welded using submerged arc welding or electric resistance welding, and then the seam is heated between 500 and 1000°C. High tensile strength of API standard Method of manufacturing line pipes.
JP2973076A 1976-03-18 1976-03-18 Manufacturing method of high tension line pipe Expired JPS5942053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2973076A JPS5942053B2 (en) 1976-03-18 1976-03-18 Manufacturing method of high tension line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2973076A JPS5942053B2 (en) 1976-03-18 1976-03-18 Manufacturing method of high tension line pipe

Publications (2)

Publication Number Publication Date
JPS52111849A JPS52111849A (en) 1977-09-19
JPS5942053B2 true JPS5942053B2 (en) 1984-10-12

Family

ID=12284210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2973076A Expired JPS5942053B2 (en) 1976-03-18 1976-03-18 Manufacturing method of high tension line pipe

Country Status (1)

Country Link
JP (1) JPS5942053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638077B2 (en) 2017-04-14 2020-04-28 Canon Kabushiki Kaisha Imaging device and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638077B2 (en) 2017-04-14 2020-04-28 Canon Kabushiki Kaisha Imaging device and control method

Also Published As

Publication number Publication date
JPS52111849A (en) 1977-09-19

Similar Documents

Publication Publication Date Title
WO2021109439A1 (en) Hic-resistant and large deformation-resistant pipeline steel and preparation method therefor
CN109136779B (en) Preparation method of 1100 MPa-level rare earth Q & P steel with martensite matrix
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPH0375337A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture
JPS6145697B2 (en)
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JPS6033310A (en) Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH0413406B2 (en)
KR920008133B1 (en) Making process for steel materials for welding
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPS5942053B2 (en) Manufacturing method of high tension line pipe
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPS5940220B2 (en) Low alloy steel with excellent sulfide corrosion cracking resistance
JPS63206449A (en) Low-carbon steel for cold forging
WO2024088380A1 (en) High-strength corrosion-resistant steel for photovoltaic pile foundation and manufacturing method therefor
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPH028322A (en) Manufacture of high-tensile steel plate excellent in ssc resistance
JPS6117885B2 (en)