JPS5941877A - Phototransistor - Google Patents

Phototransistor

Info

Publication number
JPS5941877A
JPS5941877A JP57151950A JP15195082A JPS5941877A JP S5941877 A JPS5941877 A JP S5941877A JP 57151950 A JP57151950 A JP 57151950A JP 15195082 A JP15195082 A JP 15195082A JP S5941877 A JPS5941877 A JP S5941877A
Authority
JP
Japan
Prior art keywords
base
region
emitter
phototransistor
impurity density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57151950A
Other languages
Japanese (ja)
Other versions
JPH0381312B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57151950A priority Critical patent/JPS5941877A/en
Priority to DE8383902822T priority patent/DE3381666D1/en
Priority to EP83902822A priority patent/EP0116652B1/en
Priority to PCT/JP1983/000290 priority patent/WO1984001055A1/en
Priority to US06/903,890 priority patent/US4720735A/en
Publication of JPS5941877A publication Critical patent/JPS5941877A/en
Publication of JPH0381312B2 publication Critical patent/JPH0381312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor the device being a bipolar phototransistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide a highly sensitive, high speed phototransistor, by making base impurity density higher in only certain required region without forming uniform density on the entire area. CONSTITUTION:On an Si n<+> substrate, a highly resistive n<-> layer 13 of about 10<12>-10<16> is epitaxially formed. Then an SiO2 film is formed on the surface of the epitaxial film. A p<+> region having a high impurity of 10<19>cm<-3> is formed by boron diffusion. The epitaxial growth is performed again, and an n type highly resistive layer 12, which is about the same as the region 13, is grown. By a selective diffusion method of an SiO2 film, an n<+> layer 11, which is to have high impurity density for an emitter, is formed at a value of 10<19> or higher by the diffusion of phosphorus. Then chemical etching is performed to the p<+> region of a base, the p<+> base region is exposed, oxidation is performed, the electrode regions of a base and an emitter are exposed, and Al is evaporated on both surfaces in a high vacuum. Selective etching is performed on the surface, and the emitter and base electrodes are formed. The back surface becomes a collector electrode.

Description

【発明の詳細な説明】 本発明はフォトトランジスタに係り、特に高速で高感度
な半導体装置に関する。従来のバイポーラ構造のp−n
−pないしはn−pn 構造のフォトトランジスタは、
ベース抵抗が大きく、又コレクタ・ベース容量、エミッ
タ・ベース容量が大きい為に、感度が悪く。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phototransistor, and particularly to a high-speed and highly sensitive semiconductor device. Conventional bipolar structure p-n
A phototransistor with a -p or n-pn structure is
Sensitivity is poor due to large base resistance, collector-base capacitance, and emitter-base capacitance.

又高速でないという欠点を有している。It also has the disadvantage of not being fast.

第1図は従来のバイポーラフォトトランジスタの一例で
あり、4はエミッタ電極、1はエミッタ領域、5はベー
ス電極、2はベース領域、6はコレクタ電極、3はコレ
クタ領域である。1oは先入力を示している。ベース電
極5はフローティングにする場合もある。
FIG. 1 shows an example of a conventional bipolar phototransistor, in which 4 is an emitter electrode, 1 is an emitter region, 5 is a base electrode, 2 is a base region, 6 is a collector electrode, and 3 is a collector region. 1o indicates first input. The base electrode 5 may be floating.

7はS t Ox膜等の絶縁物である。7 is an insulator such as an StOx film.

この例に示される様にバイポーラフォトトランジスタは
、ベース領域2の部分において引き出し抵抗R2がベー
スfV谷が低いこと及び幅が狭いことにより大きく、か
つその他の抵抗分もあるのでこれらの抵抗分を含め抵抗
値が非常に大きいものである。
As shown in this example, in the bipolar phototransistor, the extraction resistance R2 in the base region 2 is large due to the low base fV valley and narrow width, and there are also other resistance components, so these resistance components are included. The resistance value is extremely large.

n−p−n構造のフォトトランジスタの電子電流密度△
Inの全電流密度に対する比つまり電流増幅率△1./
 Iは次式で与えられる。
Electron current density △ of phototransistor with npn structure
The ratio of In to the total current density, that is, the current amplification factor △1. /
I is given by the following formula.

ここてり、、、D、は電子、正孔の拡散係数、Lpは正
孔の拡散長、Wtはベース厚み、n、はエミッタの不純
物密度、 Phはベースの不純物密度である。
Here, D is the diffusion coefficient of electrons and holes, Lp is the diffusion length of holes, Wt is the base thickness, n is the impurity density of the emitter, and Ph is the impurity density of the base.

(1)式はちょうどエミッタ接合の注入比重。Equation (1) is just the injection specific gravity of the emitter junction.

/■Pであり、注入率の大きいトランジスタ程電流増幅
率が太き(なるということである電流増幅率を高めるた
めには、エミ・ンタの不純物密度を高くシ、ベースの不
純物密度を低くすること、ベースの厚みを薄くすること
が考えられるが、ベースの不純物密度を下げ、ベースの
厚みを薄くすることは、ベース抵抗が大きくなり)第1
・トランジスタとして望ましくない。
/■P, and the higher the implantation rate of a transistor, the higher the current amplification factor. However, lowering the impurity density of the base and reducing the base thickness will increase the base resistance).
・Undesirable as a transistor.

次にフォトトランジスタの動作速度を考えてみると、立
上り、立下りの時定数は概路次ここで+φ、6はベース
・エミッタ間の拡散電位である。時定数はLp/D、を
小さくすれば小さくなるが、(1)式より電流増幅率は
低下する。ベースの厚みWbを小さくすると時定数は小
さくなり、電流増幅率は増大する。十φ、bはベースと
エミッタの不純物密度で決まる拡散電位で小さくすれば
時定数は小さくなる。
Next, considering the operating speed of a phototransistor, the time constants for rising and falling are roughly as follows: +φ, 6 is the diffusion potential between the base and emitter. Although the time constant becomes smaller by reducing Lp/D, the current amplification factor decreases according to equation (1). When the base thickness Wb is reduced, the time constant becomes smaller and the current amplification factor increases. The time constant will become smaller if 0φ and b are made smaller by the diffusion potential determined by the impurity density of the base and emitter.

+φ、bはnlまたはPbを小さくすれば小さくなるが
、電流増幅率が小さくならないためには、 P6を小さ
くすれば良い。
+φ, b can be reduced by reducing nl or Pb, but in order to prevent the current amplification factor from becoming small, P6 should be reduced.

以上のことから従来のバイポーラトランジスタのフォト
トランジスタは、電流増幅度を大きくして速度を早くす
るためには結局ベース厚みWhを薄くして、ベースの不
純物密度を下げるしかない。しかしこれは前述のよう1
こ、ベース抵抗を増し、性能の限界値が存在し、極めて
不満足な結果しか得られない。現在光検出の素子として
は、p−1z−nフォトダイオード、アバランシェフォ
トダイオード等が良く用いられているが、二端子のダイ
オードでは1次段とのアイソレーションがよくない等の
欠点がある。又アバランシェフォトダイオードは比較的
高電圧(数十V)を要し、また雑音が大きいという大き
な欠点をも有している。
From the above, in order to increase the current amplification degree and increase the speed of the conventional bipolar phototransistor, the only option is to reduce the base thickness Wh and lower the impurity density of the base. However, as mentioned above, this
This increases the base resistance, there is a performance limit, and very unsatisfactory results are obtained. Currently, p-1z-n photodiodes, avalanche photodiodes, and the like are often used as photodetecting elements, but two-terminal diodes have drawbacks such as poor isolation from the primary stage. Furthermore, the avalanche photodiode requires a relatively high voltage (several tens of volts) and also has major drawbacks of high noise.

本発明の目的は、叙上の従来のバイポーラのフォトトラ
ンジスタの欠点をなくした新規な高感度で高速なフォト
トランジスタを提供することにある。
An object of the present invention is to provide a novel high-sensitivity, high-speed phototransistor that eliminates the drawbacks of the conventional bipolar phototransistors mentioned above.

以下本発明を図面を参照して詳細に説明をする。高感度
、高速なフォトトランジスタを得るためには、ベース抵
抗を減らすと共に。
The present invention will be explained in detail below with reference to the drawings. In order to obtain a high-sensitivity, high-speed phototransistor, we need to reduce the base resistance.

ベースまわりの容量を減らす必要がある。It is necessary to reduce the capacity around the base.

本発明ではベース抵抗を減少させる為に。In the present invention, in order to reduce the base resistance.

ベース不純物密度を全体に均一ではなく所要のある領域
に限って多量にするとベース抵抗を非常に小さくできる
事を利用するものである。ベースの不純物密度の低い領
域はエミッタからの少数キャリアが流入し易いようにす
る。これは前述のベースの不純物密度の高い領域はエミ
ッタとの拡散電位φ、bか前述のベース領域の不純物密
度の低い領域とエミッタする。前記の二つにわかれたベ
ース領域は互に電気的に接続されていることになり、実
効的なベース抵抗は減少する。
This method takes advantage of the fact that the base resistance can be made extremely small by making the base impurity density not uniform over the entire area but only in a certain area. The low impurity density region of the base allows minority carriers from the emitter to easily flow into it. This means that the region of the base with high impurity density has a diffusion potential φ,b with the emitter or emitters with the region of the base region with low impurity density. The two divided base regions are electrically connected to each other, and the effective base resistance is reduced.

光が照射されると、生成した電子・正孔対のうち正孔は
不純物密度の高いベース領域に蓄積され、電子は不純物
密度の低いベース領域を通過してコレクタのn領域へ流
れる。正孔はベース領域で、不純物密度の高い領域を正
に充電させ、ベース・エミッタ間の拡散電位φabを△
V6bだけ下げるからエミッタから多くの自由電子がベ
ース領域の不純物密度の低い方へ流れこみ易くなり、(
1)式から明らかなように、光による電流増幅率は通常
のパイボーラフA1〜トランジスタよりも非常に大きく
なる。
When irradiated with light, holes of the generated electron-hole pairs are accumulated in the base region with high impurity density, and electrons flow to the n region of the collector through the base region with low impurity density. The holes positively charge the region with high impurity density in the base region, increasing the base-emitter diffusion potential φab.
Since V6b is lowered, many free electrons from the emitter tend to flow into the base region where the impurity density is lower, (
As is clear from equation 1), the current amplification factor due to light is much larger than that of the normal pievorous A1 transistor.

第2 図+alは本発明のフォトトランジスタの半導体
装置の一実施例である。まず構造について説明すると、
11はn型の高不純物密度のエミッタ領域、12はn型
の比較的低不純物密度なエミッタ領域、13はn型の比
較的低不純物密度なコレクタ領域、14はn型の高不純
物密度なコレクタ領域、15はエミッタ電極、17はコ
レクタ電極、18は表面保護膜で8102等の絶縁膜で
ある。
FIG. 2+al shows an embodiment of the phototransistor semiconductor device of the present invention. First, let me explain the structure.
11 is an n-type emitter region with high impurity density, 12 is an n-type emitter region with relatively low impurity density, 13 is an n-type collector region with relatively low impurity density, and 14 is an n-type collector with high impurity density. 15 is an emitter electrode, 17 is a collector electrode, and 18 is a surface protection film, which is an insulating film such as 8102.

16はベース電極である。ベース領域はエミッタとコレ
クタの間の領域で、p型の高不純物密度な領域20とp
型紙不純物密度な領域21よりなり、かつ高不純物密度
領域20の幾何学的形状は低不純物密度領域21よりも
大きく形成している。
16 is a base electrode. The base region is a region between the emitter and the collector, and includes a p-type high impurity density region 20 and a p-type region 20 with high impurity density.
The high impurity density region 20 has a geometrical shape larger than the low impurity density region 21 .

動作について説明すると、このよう1こベース領域を形
成することによって、前述したように光入力10が照射
されたとき、正孔は高−ス領域21を通して行なわれる
ことにより光に対する電流増幅率は大きくなり、又高不
純物密度なベース領域20によりベース抵抗は単に低不
純物密度なベース領域21て形成されているよりも非常
に小さくなるので、スイッチング時間も非常tこ短くな
るという特徴を有する。更にエミッタeベース間、ベー
ス・コレクタ間に比較的低不純物密度な領域をそう人し
、ていることから、エミッタ・ベース間容量、及びベー
ス・コレクタ間の容量が減少するので、スイッチング特
性が更に向上することに寄与している。
To explain the operation, by forming one base region in this way, when the optical input 10 is irradiated as described above, holes are conducted through the high-space region 21, so that the current amplification factor for light is large. Furthermore, since the base region 20 with high impurity density makes the base resistance much smaller than if it were simply formed with the base region 21 with low impurity density, the switching time is also very short. Furthermore, since there are regions with relatively low impurity density between the emitter and base and between the base and collector, the capacitance between the emitter and base and the capacitance between the base and collector are reduced, which further improves the switching characteristics. It contributes to the improvement of

以上の説明から本発明のフォトトランジスタはベース抵
抗が減少すること、エミッタからの注入効率が高いこと
、ベース・エミッタ間容量及びベース・コレクタ間の容
n1が小さいことから、高感度で高速なフォトトランジ
スタを実現できる。
From the above explanation, the phototransistor of the present invention has a reduced base resistance, high injection efficiency from the emitter, and small base-emitter capacitance and base-collector capacitance n1. A transistor can be realized.

第2図tb+乃至((1)は別の実施例でベースの形状
を変えたものである。第2図fblはベース・エミッタ
接合は平らで、ベース・コレクタ接1゜金側ヘベースの
p+領領域突出させている。第2図+CIは、第2図(
+))とは逆にベースのp4領域をエミッタ側へ突出さ
せている。第2図fdlはベースの厚みを均一にした実
施例である。
Figure 2 tb+ to ((1) are different embodiments in which the shape of the base is changed. In Figure 2 fbl, the base-emitter junction is flat, and the p+ region of the base is 1° to the gold side of the base-collector contact. The area is projected. Figure 2 + CI is shown in Figure 2 (
+))), the p4 region of the base is made to protrude toward the emitter side. FIG. 2 fdl is an embodiment in which the base thickness is made uniform.

第2図(alに示すフォトトランジスタは次のようにし
て製造される。Siのn゛基板1×e−3 10cmシ1.J:、)上に、5ict!t とH2ガ
スによは算つ竺シ り気相成長法により、13の高抵抗なn−眉を10μn
2エピタキシヤル成長させる。次にS型の高抵抗層X2
を3μm程度成長させる。
The phototransistor shown in FIG. 2 (al) is manufactured as follows: 5 ict! Using t and H2 gas, 13 high-resistance n-brows were deposited at 10 μn using the vapor phase epitaxy method.
2. Epitaxial growth. Next, S-type high resistance layer X2
is grown to a thickness of about 3 μm.

エピタキ/ヤル成長時に不純物密度の低いp率 層は形成される。S x Oz膜による選択拡散法−ス
のp3領域まで化学エツチングを施してplのベース領
域を露出させる。酸化をして、ベース、エミッタの電極
領域をマスク法により露出させ、高真空中でA/を両面
に蒸着する。表面はAJの選択エツチングを施すことに
より、エミッタvベース電極を形成する。裏面はコレク
タ電極となる。
A p-rate layer with a low impurity density is formed during epitaxial/dial growth. Selective diffusion method using S x Oz film - Chemical etching is performed down to the p3 region of the base to expose the base region of pl. After oxidation, the base and emitter electrode regions are exposed by a mask method, and A/ is deposited on both sides in a high vacuum. The surface is subjected to AJ selective etching to form an emitter v-base electrode. The back surface becomes the collector electrode.

ベースのp+領領域エミッタのn+領領域格子歪が生じ
ないように格子歪みを緩和する為に第■族の7元素を添
加する方法を採用することが望ましい。キャリアの寿命
が短いと、エミッタからコレクタへの到達率か落ちるの
で。
It is desirable to adopt a method of doping seven elements of group Ⅰ in order to alleviate lattice distortion so that lattice distortion does not occur in the n+ region of the emitter of the p+ region of the base. If the carrier life is short, the rate of arrival from the emitter to the collector decreases.

キラーとなる重金属の混入は、極力防ぐ必要があり、製
造工程の最終段階で1重金属のゲッタリングを施した方
が良い。ベースのpへ形成は、イオン注入法あるいはボ
ロンドープの多結晶シリコンを拡散源とする方法等にょ
り実理てきる。
It is necessary to prevent the contamination of heavy metals, which are killers, as much as possible, and it is better to perform gettering with one heavy metal at the final stage of the manufacturing process. Formation of the base p layer can be accomplished by ion implantation or a method using boron-doped polycrystalline silicon as a diffusion source.

第3図(a)〜(C)は本発明の更に別の実施例である
。エミッタからの注入効率を高める為にベースの低不純
物密度領域を高抵抗なp−領域、24,25.26はそ
れぞれエミッタ、ベース、コレクタ電極である。ベース
抵抗を下げる為にベース電極は各々配線している。
FIGS. 3(a) to 3(C) show yet another embodiment of the present invention. In order to improve injection efficiency from the emitter, the low impurity density region of the base is a high resistance p- region, and 24, 25 and 26 are emitter, base and collector electrodes, respectively. Each base electrode is wired to lower the base resistance.

第3図(b)は、ベース壷エミッタ間のブレーク電圧の
向上、エミッタ・ベース間の容量の減少、及び光の照射
面積を増すために、ベースの高不純物密度なpJJj域
まで堀下げた構造の実施例である。p+のベース領域ま
での堀下げは、化学エツチング、結晶の異方性を利用し
た化学エツチング、Siの窒化膜と酸化膜による方法、
あるいはプラズマエツチング等の方法により形成できる
Figure 3(b) shows a structure in which the base is dug down to the pJJj region with high impurity density in order to improve the break voltage between the base and emitter, reduce the emitter-base capacitance, and increase the light irradiation area. This is an example. The trench down to the p+ base region can be done by chemical etching, chemical etching using crystal anisotropy, method using Si nitride film and oxide film,
Alternatively, it can be formed by a method such as plasma etching.

フォトトランジスタを多数個並べたフォトトランジスタ
の上面図であって、ベース、エミッタの電極を櫛形の配
線パターンとした実施例である。
FIG. 2 is a top view of a phototransistor in which a large number of phototransistors are arranged, and is an example in which the base and emitter electrodes have a comb-shaped wiring pattern.

第4図fat、fblは本発明のフォトトランジスタの
使用法を示す実施例である。+alはエミッタ接地、(
b)はベース接地の例である。
FIG. 4 fat and fbl are examples showing how to use the phototransistor of the present invention. +al is emitter grounded, (
b) is an example of base grounding.

30は本発明の第2図乃至は第3図に示すフォトトラン
ジスタ、31はベース電極に接続された可変の外部ベー
ス抵抗、32はベース・エミッタ電源、33はコレクタ
の負荷抵抗RL、34はコレクタ・エミッタ電源、35
は出力端子、1oは光入力を示している。
30 is a phototransistor shown in FIGS. 2 and 3 of the present invention, 31 is a variable external base resistor connected to the base electrode, 32 is a base-emitter power supply, 33 is a collector load resistance RL, and 34 is a collector・Emitter power supply, 35
indicates an output terminal, and 1o indicates an optical input.

本発明のフォトトランジスタはベース抵抗を極力下げる
構造を有している為に、ベース電極に接続されたベース
可変抵抗31により、非常に広範囲にわたって、実効的
なベース抵抗を調節できることによって、光検出回路の
要求に応じて、ベース可変抵抗31を設定できるという
従来のバイポーラフォトトランジスタにはない特徴を有
している。第4図(blは第4図(Qlのエミッタ接地
に対して、ベース接地とした場合の本発明の実施例であ
る。
Since the phototransistor of the present invention has a structure that lowers the base resistance as much as possible, the effective base resistance can be adjusted over a very wide range by the base variable resistor 31 connected to the base electrode. It has a feature not found in conventional bipolar phototransistors in that the base variable resistor 31 can be set according to the requirements of the bipolar phototransistor. FIG. 4 (bl is an embodiment of the present invention in which the base is grounded in contrast to the emitter grounding of FIG. 4 (Q1).

第5図ta+ 、 fbl 、 iclはそれぞれ、ベ
ース、エミッタ、コレクタ電極にコンデンサを接続した
本発明のフォトトランジスタの実施例を示す。フォトト
ランジスタ30の各電極にコンデンサ41..42.4
3を接続することにより1本発明のフォトトランジスタ
は光入力10による光信号を、各電極に接続されたコン
デンサに蓄積することができる。このような機能を有す
る第5図に示す実施例のフォトトランジスタは、1トラ
ンジスタ/1ピクセル方式の光情報のランダムアクセス
イメージセンサ、光情報の記憶機能を有する各種のイメ
ージセンサに応用できることになるのはいうまでもない
FIG. 5 ta+, fbl, and icl show examples of phototransistors of the present invention in which capacitors are connected to the base, emitter, and collector electrodes, respectively. A capacitor 41 is connected to each electrode of the phototransistor 30. .. 42.4
By connecting 3, the phototransistor of the present invention can store an optical signal from the optical input 10 in a capacitor connected to each electrode. The phototransistor of the embodiment shown in FIG. 5 having such a function can be applied to a 1-transistor/1-pixel optical information random access image sensor and various image sensors having an optical information storage function. Needless to say.

第6 図fat 、 +1)lは1本発明のフォトトラ
ンジスタのベースにコンデンサ41と抵抗51を接続し
た本発明の一実例である。ベースのコンデンサによるC
R時定数により、フォトトランジスタとしての機能は拡
大する。
FIG. 6 shows an example of the present invention in which a capacitor 41 and a resistor 51 are connected to the base of a phototransistor according to the present invention. C due to base capacitor
The function as a phototransistor is expanded by the R time constant.

第7図伸)乃至fdlは更にエミッタ、コレクタにC−
2時定数を有する実施例である。
Figure 7) to fdl are further connected to the emitter and collector.
This is an example having two time constants.

本発明のフォトトランジスタは反対導電型のp” −p
−−n+−n−−p+にもできることは勿論である。
The phototransistor of the present invention is of the opposite conductivity type p"-p
--n+-n--p+ can of course be used.

本発明のフォトトランジスタは材料は81に限らずGe
、ないしはIII−V族の化合物半導体であるG a 
A s 、 G a P 、 A 、e A s 、 
 Inpあるいはそれらの混晶であるG a +−x 
A LAs等でも良いし、 n−Vl族の化合物半導体
であっても良い。
The material of the phototransistor of the present invention is not limited to 81 but also Ge.
, or Ga which is a III-V compound semiconductor
A s , G a P , A , e A s ,
Inp or their mixed crystal G a +−x
It may be ALAs or the like, or it may be an n-Vl group compound semiconductor.

本発明の目的とするところは、ベース抵抗を極力下げて
、エミッタがらベースを通過して、コレクタへの注入効
率を増したことを特徴とするフォトトランジスタであっ
て、従来のバイポーラフォトトランジスタにはない新規
なバイポーラフォトトランジスタを提供し、有用なもの
である。
The object of the present invention is to provide a phototransistor characterized by lowering the base resistance as much as possible and increasing injection efficiency from the emitter to the base and into the collector, which is different from conventional bipolar phototransistors. The present invention provides a new and useful bipolar phototransistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来型バイポーラフォトトランジスタの断面概
略図、第2図fat乃至(dlはベースの構造を種々番
こ変えた本発明実施例の断面構造図、第3図(al乃至
tC)は本発明の別な実施例、第4図(a)及びfbl
はエミッタ接地及びベース接地による本発明の実施例の
動作回路例、第5図(al乃至fclはベース、エミッ
タ、コレクタにコンデンサをつけた本発明光トランジス
タ実施例の動(′1回路例、第6図fa+及びfblは
ベース電極に外部からコンデンサと抵抗の直列及び並列
回路を接続して機能を増大させた動作回路例、第7図+
a+乃至fd+はエミッタ及びコレクタに外部から抵抗
とコンデンサの直列乃至は並列回路を接続した動作回路
例である。 第1 図 1θ <−6−’) つ2つ /θ <C) 0 第2窃
Fig. 1 is a schematic cross-sectional diagram of a conventional bipolar phototransistor, Fig. 2 fat to (dl) are cross-sectional structural diagrams of embodiments of the present invention in which the base structure is variously changed, and Fig. 3 (al to tC) is a schematic cross-sectional diagram of a conventional bipolar phototransistor. Another embodiment of the invention, FIG. 4(a) and fbl
5 is an operational circuit example of an embodiment of the present invention with a common emitter and a common base. Figure 6 fa+ and fbl are examples of operating circuits in which the functions are increased by connecting a series and parallel circuit of a capacitor and a resistor from the outside to the base electrode, Figure 7 +
a+ to fd+ are examples of operating circuits in which a series or parallel circuit of a resistor and a capacitor is connected to the emitter and collector from the outside. 1st Figure 1θ <-6-') 2/θ <C) 0 2nd theft

Claims (1)

【特許請求の範囲】[Claims] (1)  エミッタ、コレクタ、ベースよりなるトラン
ジスタにおいて、ベース部分の不純物−密度に不均一を
つけ、該ベースの不純物密度の大きなところに少数キャ
リアを蓄積させ、該ベースの不純物密度の小さいところ
は多数キャリアか抜は易いよう1こして1両者の電圧が
互いに結合せしめてなることを特徴としたフォトトラン
ジスタ。    ′(2)  ベース近傍のエミッタ、
コレクタ側の低不純物な領域の伝導型が反転している前
記特許請求の範囲第一項記載のフォトトランジスタ。
(1) In a transistor consisting of an emitter, a collector, and a base, the impurity density in the base portion is made non-uniform, so that minority carriers are accumulated in areas where the impurity density is high in the base, and many carriers are accumulated in areas where the impurity density is low in the base. A phototransistor characterized in that both voltages are coupled to each other so that carriers can be easily removed. ′(2) Emitter near the base,
The phototransistor according to claim 1, wherein the conductivity type of the low impurity region on the collector side is inverted.
JP57151950A 1982-08-31 1982-08-31 Phototransistor Granted JPS5941877A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57151950A JPS5941877A (en) 1982-08-31 1982-08-31 Phototransistor
DE8383902822T DE3381666D1 (en) 1982-08-31 1983-08-31 Phototransistor.
EP83902822A EP0116652B1 (en) 1982-08-31 1983-08-31 Phototransistor
PCT/JP1983/000290 WO1984001055A1 (en) 1982-08-31 1983-08-31 Phototransistor
US06/903,890 US4720735A (en) 1982-08-31 1983-08-31 Phototransistor having a non-homogeneously base region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151950A JPS5941877A (en) 1982-08-31 1982-08-31 Phototransistor

Publications (2)

Publication Number Publication Date
JPS5941877A true JPS5941877A (en) 1984-03-08
JPH0381312B2 JPH0381312B2 (en) 1991-12-27

Family

ID=15529742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151950A Granted JPS5941877A (en) 1982-08-31 1982-08-31 Phototransistor

Country Status (5)

Country Link
US (1) US4720735A (en)
EP (1) EP0116652B1 (en)
JP (1) JPS5941877A (en)
DE (1) DE3381666D1 (en)
WO (1) WO1984001055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016535A (en) * 2006-07-04 2008-01-24 Opnext Japan Inc Surface-incident light receiving element and light-receiving module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IES20010616A2 (en) * 2001-06-28 2002-05-15 Nat Microelectronics Res Ct Microelectronic device and method of its manufacture
CN108039363A (en) * 2017-11-30 2018-05-15 电子科技大学 Optical drive SiC/GaN based semiconductor devices and its manufacture craft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732437A (en) * 1980-08-06 1982-02-22 Konishiroku Photo Ind Co Ltd Mirror unit of camera

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409812A (en) * 1965-11-12 1968-11-05 Hughes Aircraft Co Space-charge-limited current triode device
US3532945A (en) * 1967-08-30 1970-10-06 Fairchild Camera Instr Co Semiconductor devices having a low capacitance junction
FR2050630A5 (en) * 1969-06-19 1971-04-02 V Elektrotekhni
JPS526076B1 (en) * 1971-04-28 1977-02-18
GB1502165A (en) * 1974-04-10 1978-02-22 Sony Corp Semiconductor devices
US4086610A (en) * 1974-06-28 1978-04-25 Motorola, Inc. High reliability epi-base radiation hardened power transistor
FR2299727A1 (en) * 1975-01-28 1976-08-27 Alsthom Cgee Quick release switching thyristor - with grid of similar semiconductor material and higher doping over control layer
JPS5273A (en) * 1975-06-20 1977-01-05 Matsushita Electric Ind Co Ltd Washing machine
US4178190A (en) * 1975-06-30 1979-12-11 Rca Corporation Method of making a bipolar transistor with high-low emitter impurity concentration
JPS525273A (en) * 1975-07-02 1977-01-14 Hitachi Ltd Transistor
JPS53124086A (en) * 1975-10-21 1978-10-30 Semiconductor Res Found Semiconductor device
US4047217A (en) * 1976-04-12 1977-09-06 Fairchild Camera And Instrument Corporation High-gain, high-voltage transistor for linear integrated circuits
DE2728845A1 (en) * 1977-06-27 1979-01-18 Siemens Ag METHOD OF MANUFACTURING A HIGH FREQUENCY TRANSISTOR
US4151540A (en) * 1977-12-08 1979-04-24 Fairchild Camera And Instrument Corporation High beta, high frequency transistor structure
US4427990A (en) * 1978-07-14 1984-01-24 Zaidan Hojin Handotai Kenkyu Shinkokai Semiconductor photo-electric converter with insulated gate over p-n charge storage region
JPS55128870A (en) * 1979-03-26 1980-10-06 Semiconductor Res Found Electrostatic induction thyristor and semiconductor device
US4295058A (en) * 1979-06-07 1981-10-13 Eaton Corporation Radiant energy activated semiconductor switch
JPS5685848A (en) * 1979-12-15 1981-07-13 Toshiba Corp Manufacture of bipolar integrated circuit
JPS5946103B2 (en) * 1980-03-10 1984-11-10 日本電信電話株式会社 transistor
US4381953A (en) * 1980-03-24 1983-05-03 International Business Machines Corporation Polysilicon-base self-aligned bipolar transistor process
JPS5895877A (en) * 1981-12-01 1983-06-07 Semiconductor Res Found Semiconductor photoelectric transducer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732437A (en) * 1980-08-06 1982-02-22 Konishiroku Photo Ind Co Ltd Mirror unit of camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016535A (en) * 2006-07-04 2008-01-24 Opnext Japan Inc Surface-incident light receiving element and light-receiving module

Also Published As

Publication number Publication date
DE3381666D1 (en) 1990-07-19
WO1984001055A1 (en) 1984-03-15
US4720735A (en) 1988-01-19
JPH0381312B2 (en) 1991-12-27
EP0116652B1 (en) 1990-06-13
EP0116652A4 (en) 1986-09-04
EP0116652A1 (en) 1984-08-29

Similar Documents

Publication Publication Date Title
JP2557745B2 (en) Optical semiconductor device
JPH06326120A (en) Heterojunction bipolar transistor and its integrated light-receiving circuit
EP0137905A1 (en) Method for making lateral bipolar transistors
US3699406A (en) Semiconductor gate-controlled pnpn switch
US4000506A (en) Bipolar transistor circuit
JPH0719882B2 (en) Photoelectric conversion device
JPS5941877A (en) Phototransistor
US3677280A (en) Optimum high gain-bandwidth phototransistor structure
US10453984B2 (en) Conductive isolation between phototransistors
US3761326A (en) Process for making an optimum high gain bandwidth phototransistor structure
EP0881688A1 (en) PNP lateral bipolar electronic device
JP2657120B2 (en) Optical semiconductor device
JP2953666B2 (en) Semiconductor device and electronic device
JP2657119B2 (en) Optical semiconductor device
JP3037710B2 (en) Semiconductor device and electronic device using the semiconductor device
US3959810A (en) Method for manufacturing a semiconductor device and the same
KR810001646B1 (en) Semiconductor device
JP2557744B2 (en) Optical semiconductor device
JP3129586B2 (en) Vertical bipolar transistor
JP2603346B2 (en) Semiconductor device and photoelectric conversion device
KR810000025Y1 (en) Bipolar transistor circuit
SU626713A3 (en) Semiconductor device
JPH05109745A (en) Semiconductor device
CN114093937A (en) Bipolar transistor and preparation method thereof
JPH05343508A (en) Structure and manufacture of integrated circuit