JPS5941828A - Ion implanter - Google Patents

Ion implanter

Info

Publication number
JPS5941828A
JPS5941828A JP57150752A JP15075282A JPS5941828A JP S5941828 A JPS5941828 A JP S5941828A JP 57150752 A JP57150752 A JP 57150752A JP 15075282 A JP15075282 A JP 15075282A JP S5941828 A JPS5941828 A JP S5941828A
Authority
JP
Japan
Prior art keywords
wafer
ions
ion implantation
supported
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57150752A
Other languages
Japanese (ja)
Other versions
JPH0136696B2 (en
Inventor
Toshimichi Taya
田谷 俊陸
Osami Okada
岡田 修身
Kuniyuki Sakumichi
訓之 作道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57150752A priority Critical patent/JPS5941828A/en
Publication of JPS5941828A publication Critical patent/JPS5941828A/en
Publication of JPH0136696B2 publication Critical patent/JPH0136696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Abstract

PURPOSE:To keep the angle of ions implanted by simple constitution by processing a support means for a wafer in a recessed shape in the direction of implantation of the ions, bending the wafer toward the recessed section and supporting it. CONSTITUTION:The angle of ions implanted is kept constant at all times to a wafer by supporting the wafer in a recessed shape such as a circular arc of a radius R at a time when a distance up to the wafer 42 from a scanning means for the ions is made R. The ions such as charged particles, which are generated by an ion source, accelerated and selected, are scanned, and implanted to the whole surface of the wafer 42, but the wafer 42 is supported to the support means 50 by a support mechanism 504 in a recessed shape in the direction of implantation of the ions. A cushion material 502 of high thermal conductivity is interposed between the wafer 42 and the support means 50 in predetermined thickness, and the wafer 42 is supported to a cylindrical surface.

Description

【発明の詳細な説明】 本発明は半導体素子の製造において、不純物添加に用い
られるイオン打込装置に係わシ、特に半導体基盤(以下
ウェハと記す)への荷電粒子の入射角を一定にする手段
と、ウニく・の冷却手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion implantation device used for adding impurities in the manufacture of semiconductor devices, and in particular, to a constant angle of incidence of charged particles onto a semiconductor substrate (hereinafter referred to as a wafer). It concerns the cooling means for sea urchins.

従来よシ荷電粒子を走査することで均一なイオン打込を
行おうとする試みが成されてきた。
Conventionally, attempts have been made to perform uniform ion implantation by scanning charged particles.

即ち、第1図にその原理を示すように、荷電粒子1は走
査手段2によシ破線部領域3の範囲で走査され、支持手
段5で支持されたウェハ4に打込まれる。
That is, as the principle is shown in FIG. 1, the charged particles 1 are scanned by the scanning means 2 within a region 3 indicated by broken lines, and are implanted into the wafer 4 supported by the supporting means 5.

ここでウェハ4は通常、平面で支持されるか又は、支持
手段5との間に隙間を生じさせずに密着させ冷却効果を
上げるために、若干、イオンの打込方向に凸状に支持さ
れている。
Here, the wafer 4 is usually supported on a flat surface, or supported in a slightly convex shape in the ion implantation direction in order to bring the wafer 4 into close contact with the support means 5 without creating a gap and increase the cooling effect. ing.

近年、ウェハが大口径化されるに伴い、前記の原理に基
づ〈従来装置では、ウェハ両端部へのイオン打込角がウ
ェハ中央部への打込角と異なるため、不純物添加の制御
上の問題が生じてきた。
In recent years, as wafers have become larger in diameter, based on the above principle, in conventional equipment, the ion implantation angle to both ends of the wafer is different from the implantation angle to the center of the wafer, so it is difficult to control impurity addition. A problem has arisen.

即ち、ウェハ面上に形成されたマスクによって、本来打
込まれる部分にマスクの影が生じてしまったシ、物質の
結晶構造がイオンの打込角とある特定の角度を成した時
にイオンが物質中に深く打込まれる、いわゆるチャネリ
ング効果によって、不純物添加が不均一になる等の問題
が無視し得なくなってきた。
In other words, the mask formed on the wafer surface casts a shadow on the part that was originally implanted, and when the crystal structure of the material forms a certain angle with the ion implantation angle, the ions are removed from the material. Problems such as non-uniform doping of impurities due to the so-called channeling effect caused by deep implantation have become impossible to ignore.

このような問題を解決する装置として、イオン打込角を
修正するイオン打込装置が提案されている。この原理は
第2図に示されるように、走査手段を22と24の2つ
に分けて、常に一定の角度でウェハにイオンを打込むも
のである この装置では走査手段として2つの磁場を用いねばなら
ず、電源も含めて装置が犬かが9になる欠点があった。
An ion implantation device that corrects the ion implantation angle has been proposed as a device to solve this problem. The principle behind this is that, as shown in Figure 2, the scanning means is divided into two parts 22 and 24, and ions are implanted into the wafer at a constant angle at all times.In this device, two magnetic fields must be used as the scanning means. However, there was a drawback that the device, including the power supply, was rated 9 times.

他方、ウェハはイオン打込みによって加熱されるので、
ウニへの品質を左右する結晶性や表面に形成されたマス
クを保護するために、ウェハを冷却する必要がある。
On the other hand, since the wafer is heated by ion implantation,
The wafer must be cooled to protect the crystallinity and the mask formed on the surface, which determine the quality of the sea urchin.

本発明の目的は、既に述べた従来装置の欠点を解決すべ
く、簡単な構成でイオンの打込角を一定に保ち得る支持
手段を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a supporting means capable of maintaining a constant ion implantation angle with a simple structure, in order to solve the drawbacks of the conventional apparatus described above.

本発明はウェハの支持手段をイオンの打込方向に対して
凹状に加工し、ウェハをその凹状部の方へ湾曲させて支
持する点が特徴である。
The present invention is characterized in that the wafer support means is processed to have a concave shape with respect to the ion implantation direction, and the wafer is supported by being curved toward the concave portion.

第3図に本発明の原理図を示す。第1図と同一番号を符
した手段は同じ概念である。前記の凹状はイオンの走査
手段からウェハまでの距離を几とした時の半径凡の円弧
である。偏向手段によっては円弧でなくとも良く、2次
曲線或は偏向角度を考慮した三角級数で補正された曲線
で凹状を形成しても良い。
FIG. 3 shows a diagram of the principle of the present invention. Means labeled with the same numbers as in FIG. 1 have the same concept. The concave shape is an arc with a radius approximately equal to the distance from the ion scanning means to the wafer. Depending on the deflection means, the concave shape may not be a circular arc, but may be a quadratic curve or a curve corrected by a trigonometric series taking into account the deflection angle.

このように支持することによってイオンの打込角はウェ
ハに対して′帛に一定に保つことができる。また走査手
段2は磁場又は電場を変化させて荷電粒子を走査する。
By supporting the wafer in this manner, the ion implantation angle can be kept constant throughout the wafer. Further, the scanning means 2 scans the charged particles by changing a magnetic field or an electric field.

第4図に本発明の一実施例を示す。FIG. 4 shows an embodiment of the present invention.

イオン源で発生し、加速され、選択された荷電粒子は矢
印3の如く走査されウェハ42の全面に打込まれるが、
ウェハ42は図示のようにイオンの打込方向に対し凹状
に、支持機構504によって支持手段50に支持されて
いる56は回転円盤の1部である。ウェハ42と支持手
段5oの間には、熱伝導率の高いクッション材(以下ク
ールシートと記す)5o2が一定の厚みで介在されてい
る。ウェハは図の紙面の表裏方向には直線状である。即
ちウェハ42は円筒面で支持されている。
The charged particles generated by the ion source, accelerated, and selected are scanned as shown by arrow 3 and implanted into the entire surface of the wafer 42.
As shown in the figure, the wafer 42 is supported by a support means 50 by a support mechanism 504 in a concave shape with respect to the ion implantation direction, and 56 is a part of a rotating disk. A cushioning material (hereinafter referred to as a cool sheet) 5o2 having a high thermal conductivity is interposed between the wafer 42 and the support means 5o with a constant thickness. The wafer is linear in the front and back directions of the paper in the figure. That is, the wafer 42 is supported by a cylindrical surface.

ウェハ42は単結晶の場合が多いが、R,=1000r
rrrnの時の押え距11iIDは表1に示す程度であ
るので破損の心配はない。
The wafer 42 is often single crystal, but R,=1000r
Since the pressing distance 11iID at the time of rrrn is as shown in Table 1, there is no fear of damage.

表1 ウェハの口径と押え距離りの関係第5図に本発明
のもう1つの実施例を示す。
Table 1 Relationship between wafer diameter and presser distance FIG. 5 shows another embodiment of the present invention.

この実施例では回転円盤が回転する際の遠心力を利用し
て、本発明の特徴である凹状支持を行うもので、第4図
の支持機構504を必要としない効果と、凹状の支持手
段50の凹部分の形状を自由に設定できる効果がある。
In this embodiment, the centrifugal force generated when the rotary disk rotates is used to perform the concave support, which is a feature of the present invention, and the advantage is that the support mechanism 504 shown in FIG. 4 is not required, and the concave support means 50 This has the effect of allowing the shape of the concave portion to be freely set.

即ち、図の紙面の表裏方向にも、同じ半径Rで凹状に支
持することが可能である。この支持を行えば、荷電粒子
の走査方向のみならず、回転円盤の回転方向にも凹状に
支持できる。
That is, it is possible to support it concavely with the same radius R both in the front and back directions of the plane of the drawing. If this support is performed, it is possible to support the charged particles concavely not only in the scanning direction of the charged particles but also in the rotational direction of the rotating disk.

第5図の互は軸tを中心に回転するイオン打込装置の回
転円盤であシ、支持手段5oは円盤周辺に多数取付けら
れている。
5 is a rotating disk of an ion implantation device that rotates around an axis t, and a large number of supporting means 5o are attached around the disk.

真空排気した後に、支持手段5oがら奪う熱量に比べて
充分な量の冷媒(通常は純水)を封入したヒートディス
ク部602には、真空排気時の強度を補うための補強材
606が、凝縮した冷媒が遠心力で602内を軸側から
支持手段5oへ移動するのに妨げとならぬように、要所
要所に配置されている。
After evacuation, a reinforcing material 606 to supplement the strength during evacuation is added to the heat disk portion 602, which is filled with a sufficient amount of refrigerant (usually pure water) compared to the amount of heat removed from the support means 5o. They are arranged at important points so as not to obstruct the movement of the refrigerant inside 602 from the shaft side to the support means 5o by centrifugal force.

イオン打込みによって生じた熱は、ウェハ42からクー
ルシート502を通って支持手段5oへ伝導し、さらに
ヒートディスク部602によって冷却部604に伝えら
れる。
The heat generated by ion implantation is conducted from the wafer 42 to the support means 5o through the cool sheet 502, and further transferred to the cooling section 604 by the heat disk section 602.

クールシート502はもっと薄くとも良く、材質として
図示した様な形状の高分子材料から成る固体物質を使用
するか、又は真空グリースの様な高温(〜100C)で
も粘性の高い半固体物質をウェハ42と支持手段5oの
間に塗布しても良い。
The cool sheet 502 may be thinner, and a solid material made of a polymeric material having the shape shown in the figure may be used as the material, or a semi-solid material such as vacuum grease, which is highly viscous even at high temperatures (~100 C), may be used as the material for the wafer 42. and the support means 5o.

冷却部604は、回転円盤旦の外壁を外側のパイプとす
る2重パイプに連なった構造を持ち、冷媒は第5図矢印
の向きか又はそれと逆向きに流入し流出する。仕切円盤
610は熱膨張の影響を受けずに支持されるよう、スプ
リング608で回転円盤6に固定されている。
The cooling section 604 has a structure in which the outer wall of the rotating disk is connected to a double pipe as the outer pipe, and the refrigerant flows in and out in the direction of the arrow in FIG. 5 or in the opposite direction. The partition disk 610 is fixed to the rotating disk 6 with a spring 608 so that it is supported without being affected by thermal expansion.

この構造によれば冷却水をウエノ・付近にまで導〈従来
例に比べて回転モーメントを小さく抑える効果があると
同時に、大電流イオン打込みを行う際の冷却に係る熱容
量を大きくてきる効果もある。
With this structure, cooling water is guided to the Ueno area and its vicinity.It has the effect of keeping the rotational moment to a smaller value than conventional examples, and at the same time has the effect of increasing the heat capacity related to cooling when performing high-current ion implantation. .

冷却部604には通常フレオン等の冷媒を循環させてお
くが、イオン打込みによって生じる熱量の大小によって
は、液体窒素を流入しても良い。
Usually, a coolant such as freon is circulated in the cooling unit 604, but liquid nitrogen may be introduced depending on the amount of heat generated by ion implantation.

但し、この場合には流入する液体窒素の量をヒートディ
スク部602内の冷媒が凍結しないように制御する必要
がある。
However, in this case, it is necessary to control the amount of liquid nitrogen flowing in so that the refrigerant in the heat disk section 602 does not freeze.

以上述べたように、本発明によればイオンの打込角度が
ウニ/・に対し常に一定角度で行うことができる。
As described above, according to the present invention, the ion implantation angle can always be set at a constant angle with respect to the sea urchin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は走査手段を用いた従来のイオン打込装置の原理
図、第2図は2つの走査手段を用いた従来のイオン打込
装置の原理図、第3図は本発明に係るイオン打込装置の
原理図、第4図は本発明!−係る一実施例を示す図、第
5図は本発明に係るもう一つの実施例を示す図である。 1・・・荷電粒子線、2・・・走査手段、3・・・走査
範囲、42・・・半導体基板、50・・・支持手段、5
02・・・熱伝導率の高いクッション材、504・・・
支持機構、6・・・回転円盤、602・・・ヒートディ
スク部、604・・・冷却部、606・・・補強材、6
08・・・スプリング、610・・・仕切円盤。
FIG. 1 is a principle diagram of a conventional ion implantation apparatus using a scanning means, FIG. 2 is a principle diagram of a conventional ion implantation apparatus using two scanning means, and FIG. 3 is an ion implantation apparatus according to the present invention. The principle diagram of the loading device, Figure 4, is based on the present invention! FIG. 5 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Charged particle beam, 2... Scanning means, 3... Scanning range, 42... Semiconductor substrate, 50... Supporting means, 5
02...Cushion material with high thermal conductivity, 504...
Support mechanism, 6... Rotating disk, 602... Heat disk section, 604... Cooling section, 606... Reinforcement material, 6
08...Spring, 610...Partition disk.

Claims (1)

【特許請求の範囲】 1、支持手段によシ支持された半導体基盤に、イオン源
で発生したイオンを加速手段で加速し、選択手段で選択
し、走査手段で走査して打込むイオン打込装置において
、前記支持手段には前記イオンが前記半導体基盤に打込
まれる側に凹状部を形成し、前記半導体基盤をこの凹状
部側に湾曲させて支持することを特徴とするイオン打込
装置。 2、特許請求の範囲第1項記載のイオン打込装置におい
て、前記支持手段を回転させて生じる遠心力を用いて前
記半導体基盤を支持することを特徴とするイオン打込装
置。
[Claims] 1. Ion implantation in which ions generated in an ion source are accelerated by an accelerating means, selected by a selecting means, and scanned by a scanning means to be implanted into a semiconductor substrate supported by a supporting means. An ion implantation device characterized in that the supporting means has a recessed portion formed on the side where the ions are implanted into the semiconductor substrate, and the semiconductor substrate is supported by being curved toward the recessed portion side. 2. The ion implantation apparatus according to claim 1, wherein the semiconductor substrate is supported using centrifugal force generated by rotating the support means.
JP57150752A 1982-09-01 1982-09-01 Ion implanter Granted JPS5941828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150752A JPS5941828A (en) 1982-09-01 1982-09-01 Ion implanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150752A JPS5941828A (en) 1982-09-01 1982-09-01 Ion implanter

Publications (2)

Publication Number Publication Date
JPS5941828A true JPS5941828A (en) 1984-03-08
JPH0136696B2 JPH0136696B2 (en) 1989-08-02

Family

ID=15503636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150752A Granted JPS5941828A (en) 1982-09-01 1982-09-01 Ion implanter

Country Status (1)

Country Link
JP (1) JPS5941828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236072A2 (en) * 1986-03-05 1987-09-09 Eaton Corporation Ion beam implanter control system
EP0287630A1 (en) * 1986-10-08 1988-10-26 Varian Associates, Inc. Method and apparatus for constant angle of incidence scanning in ion beam systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123174A (en) * 1976-04-09 1977-10-17 Hitachi Ltd Specimen scanning method for ion implantation
JPS53119670A (en) * 1977-03-28 1978-10-19 Toshiba Corp Ion implanting method and apparatus for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123174A (en) * 1976-04-09 1977-10-17 Hitachi Ltd Specimen scanning method for ion implantation
JPS53119670A (en) * 1977-03-28 1978-10-19 Toshiba Corp Ion implanting method and apparatus for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236072A2 (en) * 1986-03-05 1987-09-09 Eaton Corporation Ion beam implanter control system
EP0287630A1 (en) * 1986-10-08 1988-10-26 Varian Associates, Inc. Method and apparatus for constant angle of incidence scanning in ion beam systems

Also Published As

Publication number Publication date
JPH0136696B2 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
EP0385707B1 (en) Ion implanter end station
US4899059A (en) Disk scanning apparatus for batch ion implanters
US20030201724A1 (en) Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient
JP2595113B2 (en) Semiconductor manufacturing equipment
EP1320866A2 (en) An apparatus for the backside gas cooling of a wafer in a batch ion implantation system
US4929840A (en) Wafer rotation control for an ion implanter
US5629528A (en) Charged particle beam system having beam-defining slit formed by rotating cyclinders
WO1991004569A1 (en) Disk scanning apparatus for batch ion implanters
US6686598B1 (en) Wafer clamping apparatus and method
EP0385708B1 (en) Beam pattern control system for an ion implanter
CN104054155A (en) Ion implant apparatus and method of implanting ions
US8008638B2 (en) Ion implantation apparatus and ion implantation method
JPS5941828A (en) Ion implanter
GB2109996A (en) Hydraulically actuated semiconductor wafer clamping and cooling apparatus
US6727509B2 (en) Wafer pedestal tilt mechanism
JP4016279B2 (en) Wafer pedestal tilt mechanism and cooling system
JP2006060159A (en) Method and apparatus for beam irradiation
JPS59184443A (en) Ion implantation device
JPS58201241A (en) Control method for ion implanting angle
JPH02298263A (en) Sputtering device
US20030070316A1 (en) Wafer pedestal tilt mechanism and cooling system
JPH0224908B2 (en)
JPH0479102B2 (en)
JPH02301558A (en) Sputtering device
JPH09306415A (en) Board retainer